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Abstract

In this paper, we weaken the notion of Ψ of Luong and Thuan, [V. N. Luong, N. X. Thuan, Nonlinear
Anal., 74 (2011), 983–992] and prove some new coupled coincidences and coupled common fixed point
theorems for mappings having a mixed g-monotone property in partially ordered complete probabilistic
metric spaces. As an application, we discuss the existence and uniqueness for a solution of a nonlinear
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1. Introduction

As a generalization of a metric space, the concept of a probabilistic metric space has been introduced by
Menger [14],[16]. Fixed point theory in a probabilistic metric space is an important branch of probabilistic
analysis, and many results on the existence of fixed points or solutions of nonlinear equations under various
types of conditions in Menger PM -spaces have been extensively studied by many scholars (see e.g. [18],[19]).

In 2006, Bhaskar and Lakshmikantham [8] introduced the concept of a mixed monotone mapping and
proved coupled coincidence and coupled common fixed point theorems in partially ordered complete metric
spaces. After that, in 2009, Lakshmikantham and Ćirić [12] introduced the concept of a mixed g-monotone
mapping, which is a generalization of a mixed monotone mapping. Their results extend the results of [8]. On
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the other hand, Choudhury and Das [2] gave a generalized unique fixed point theorem by using an altering
distance function, which was originally introduced by Khan et al. [10]. For other results in this direction,
we refer to [4], [5], [7], [9], [15], [17]. In 2009, Dutta et al. [6] gave some fixed point results in Menger spaces
using a control function. Moreover, Kutbi and Gopal et al. [11] established some fixed point theorems by
revisting the notion of ψ-contractive mapping in Menger PM -spaces.

In this paper, we combine the results of [11] and [13], weaken the notion of Ψ in [1] and establish
some new coupled coincidences and coupled common fixed point theorems for mappings having a mixed
g-monotone property in partially ordered complete probabilistic metric spaces, by using an altering distance
function. Finally, we discuss the existence and uniqueness for a solution of a nonlinear integral equation, as
an application to our main results.

2. Preliminaries

Throughout this paper, let R = (−∞,+∞), R+ = [0,+∞) and Z+ be the set of all positive integers.
A mapping F : R → R+ is called a distribution function if it is nondecreasing left-continuous with

sup
t∈R

F (t) = 1 and inf
t∈R

F (t) = 0.

We shall denote by D the set of all distribution functions while H will always denote the specific
distribution function defined by

H(t) =

{
0, t ≤ 0,
1, t > 0.

A mapping ∆ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (for short, a t-norm) if the following
conditions are satisfied:

(1) ∆(a, 1) = a;

(2) ∆(a, b) = ∆(b, a);

(3) a ≥ b, c ≥ d⇒ ∆(a, c) ≥ ∆(b, d);

(4) ∆(a,∆(b, c)) = ∆(∆(a, b), c).

A typical example of t-norm is ∆m, where ∆m(a, b) = min{a, b}, for each a, b ∈ [0, 1].

Definition 2.1 ([1]). A triplet (X,F ,∆) is called a Menger probabilistic metric space (for short, a Menger
PM -space) if X is a nonempty set, ∆ is a t-norm and F is a mapping from X × X into F satisfying the
following conditions (we denote F(x, y) by Fx,y):

(MS-1) Fx,y(t) = H(t) for all t ∈ R if and only if x = y;
(MS-2) Fx,y(t) = Fy,x(t) for all t ∈ R;
(MS-3) Fx,y(t+ s) ≥ ∆(Fx,z(t), Fz,y(s)) for all x, y, z ∈ X and t, s ≥ 0.

Remark 2.2. In [1], it is pointed out that if (X,F ,∆) satisfies the condition sup
0<t<1

∆(t, t) = 1, then (X,F ,∆)

is a Hausdorff topological space in the (ε, λ)-topology T , i.e., the family of sets {Ux(ε, λ) : ε > 0, λ ∈
(0, 1]}(x ∈ X) is a basis of neighborhoods of a point x for T , where Ux(ε, λ) = {y ∈ X : Fx,y(ε) > 1− λ)}.

By virtue of this topology T , a sequence {xn} is said to be T -convergent to x ∈ X(we write xn
T→ x)

if for any given ε > 0 and λ ∈ (0, 1], there exists a positive integer N = N(ε, λ) such that Fxn,x(ε) > 1− λ
whenever n ≥ N , which is equivalent to lim

n→∞
Fxn,x(t) = 1 for all t > 0; {xn} is called a T -Cauchy sequence

in (X,F ,∆) if for any given ε > 0 and λ ∈ (0, 1], there exists a positive integer N = N(ε, λ) such that
Fxn,xm(ε) > 1− λ whenever n,m ≥ N ; (X,F ,∆) is said to be T -complete if each T -Cauchy sequence in X

is T -convergent in X. Note that in a Menger PM -space, when we write lim
n→∞

xn = x, it means that xn
T→ x.

Definition 2.3 ([3]). Let Φ denotes the class of all functions φ : R+ → R+ satisfying the following
conditions:
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(i) φ(t) = 0 if and only if t = 0;
(ii) φ(t) is strictly increasing and φ(t)→∞ as t→∞;
(iii) φ is left continuous in (0,∞);
(iv) φ is continuous at 0.

Remark 2.4. Φ-functions play the role of altering distance functions in probabilistic metric spaces.

Definition 2.5. Let Ψ denote the class of all functions ψ : R+ → R+ satisfying the following conditions:
(i) ψ is non-decreasing;
(ii) ψ(t+ s) ≤ ψ(t) + ψ(s) for all t, s ∈ [0, 1).

Remark 2.6. In [13], Ψ also satisfy: Ψ is continuous and Ψ(t) = 0 if and only if t = 0. It is obvious that
Definition 2.3 is weaker than the notion of Ψ in [13].

We recall the definition of mixed monotone property and mixed g-monotone property.

Definition 2.7 ([8]). Let (X,≤) be a partially ordered set and F : X ×X → X. The mapping F is said to
have the mixed monotone property if F is monotone non-decreasing in its first argument and is monotone
non-increasing in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y)

and
y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y2) ≤ F (x, y1).

Definition 2.8 ([12]). Let (X,≤) be a partially ordered set and F : X × X → X. The mapping F is
said to have the mixed g-monotone property if F is monotone g-non-decreasing in its first argument and is
monotone g-non-increasing in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, g(x1) ≤ g(x2)⇒ F (x1, y) ≤ F (x2, y)

and
y1, y2 ∈ X, g(y1) ≤ g(y2)⇒ F (x, y2) ≤ F (x, y1).

3. Main results

In this section, we will give some coupled fixed point theorems in partially ordered complete probabilistic
metric spaces.

Theorem 3.1. Let (X,≤) be a partially ordered set and (X,F,∆) be a complete Menger PM -space with
a continuous t-norm. Assume T : X × X → X and g : X → X are mappings such that T has the mixed
g-monotone property and

ψ(
1

FT (x,y),T (u,v)(φ(ct))
− 1) ≤ 1

2
ψ(

1

Fg(x),g(u)(φ(t))
− 1 +

1

Fg(y),g(v)(φ(t))
− 1) (3.1)

for all t > 0 and x, y, u, v ∈ X with g(x) ≤ g(u) and g(y) ≥ g(v), where c ∈ (0, 1), ψ ∈ Ψ and φ ∈ Φ such
that Fg(x),g(u)(φ(t)) > 0 and Fg(y),g(v)(φ(t)) > 0. Suppose T (X ×X) ⊆ g(X), g is continuous and commutes
with T and also suppose either

(a) T is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n,
(ii) if a non-increasing sequence {yn} → y, then yn ≤ y for all n.

If there exist x0, y0 ∈ X such that

g(x0) ≤ T (x0, y0) and g(y0) ≥ T (y0, x0),
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then there exist x, y ∈ X such that

g(x) = T (x, y) and g(y) = T (y, x),

that is, T and g have a coupled coincidence point.

Proof. Let x0, y0 ∈ X such that g(x0) ≤ T (x0, y0) and g(y0) ≥ T (y0, x0). Since T (X × X) ⊆ g(X), we
can choose x1, y1 ∈ X such that g(x1) = T (x0, y0) and g(y1) = T (y0, x0). Continuing this process we can
construct sequences {xn} and {yn} in X such that

g(xn+1) = T (xn, yn) and g(yn+1) = T (yn, xn) for all n ≥ 0. (3.2)

We shall show that
g(xn) ≤ g(xn+1) for all n ≥ 0, (3.3)

g(yn) ≥ g(yn+1) for all n ≥ 0. (3.4)

We shall use the mathematical induction. Let n = 0. Since g(x0) ≤ T (x0, y0), g(y0) ≥ T (y0, x0), and as
g(x1) = T (x0, y0), g(y1) = T (y0, x0), we have g(x0) ≤ g(x1), g(y0) ≥ g(y1). Thus (3.3) and (3.4) hold for
n = 0.

Suppose now that (3.3) and (3.4) hold for some n ≥ 0. Since g(xn) ≤ g(xn+1), g(yn) ≥ g(yn+1) and T
has the mixed g-monotone property, we have

g(xn+2) = T (xn+1, yn+1) ≥ T (xn, yn+1) ≥ T (xn, yn) = g(xn+1),

g(yn+2) = T (yn+1, xn+1) ≤ T (yn, xn+1) ≤ T (yn, xn) = g(yn+1).

Thus by the mathematical induction we conclude that (3.3) and (3.4) hold for all n ≥ 0. Therefore,

g(x0) ≤ g(x1) ≤ g(x2) ≤ · · · ≤ g(xn) ≤ g(xn+1) ≤ · · · , (3.5)

g(y0) ≥ g(y1) ≥ g(y2) ≥ · · · ≥ g(yn) ≥ g(yn+1) ≤ · · · . (3.6)

In view of the fact that sup
t∈R

Fg(x1),g(x0)(t) = 1 and sup
t∈R

Fg(y1),g(y0)(t) = 1, and by (ii) of Definition 2.3,

one can find t > 0, such that

Fg(x1),g(x0)(φ(t)) > 0 and Fg(y1),g(y0)(φ(t)) > 0

for g(x0) ≤ g(x1) and g(y0) ≥ g(y1), which implies that Fg(x1),g(x0)(φ( tc)) > 0 and Fg(y1),g(y0)(φ( tc)) > 0,
then (3.1) gives that

ψ(
1

Fg(x2),g(x1)(φ(t))
− 1) = ψ(

1

FT (x1,y1),T (x0,y0)(φ(t))
− 1)

≤ 1

2
ψ(

1

Fg(x1),g(x0)(φ( tc))
− 1 +

1

Fg(y1),g(y0)(φ( tc))
− 1), (3.7)

ψ(
1

Fg(y2),g(y1)(φ(t))
− 1) ≤ 1

2
ψ(

1

Fg(y1),g(y0)(φ( tc))
− 1 +

1

Fg(x1),g(x0)(φ( tc))
− 1). (3.8)

From (3.7) and (3.8), we have

ψ(
1

Fg(x2),g(x1)(φ(t))
− 1) + ψ(

1

Fg(y2),g(y1)(φ(t))
− 1) ≤ ψ(

1

Fg(x1),g(x0)(φ( tc))
− 1 +

1

Fg(y1),g(y0)(φ( tc))
− 1).

By (ii) of Definition 2.5, we have

ψ(
1

Fg(x2),g(x1)(φ(t))
− 1 +

1

Fg(y2),g(y1)(φ(t))
− 1) ≤ ψ(

1

Fg(x2),g(x1)(φ(t))
− 1) + ψ(

1

Fg(y2),g(y1)(φ(t))
− 1),
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which implies that

ψ(
1

Fg(x2),g(x1)(φ(t))
− 1 +

1

Fg(y2),g(y1)(φ(t))
− 1) ≤ ψ(

1

Fg(x1),g(x0)(φ( tc))
− 1 +

1

Fg(y1),g(y0)(φ( tc))
− 1).

Using the fact that ψ is non-decreasing, we get

1

Fg(x2),g(x1)(φ(t))
− 1 +

1

Fg(y2),g(y1)(φ(t))
− 1 ≤ 1

Fg(x1),g(x0)(φ( tc))
− 1 +

1

Fg(y1),g(y0)(φ( tc))
− 1.

From the above inequality we deduce that

Fg(x2),g(x1)(φ(t)) > 0, Fg(y2),g(y1)(φ(t)) > 0, and soFg(x2),g(x1)(φ(
t

c
)) > 0, Fg(y2),g(y1)(φ(

t

c
)) > 0.

Again, by using (3.1), we have

1

Fg(x3),g(x2)(φ(t))
− 1 +

1

Fg(y3),g(y2)(φ(t))
− 1 ≤ 1

Fg(x2),g(x1)(φ( tc))
− 1 +

1

Fg(y2),g(y1)(φ( tc))
− 1

≤ 1

Fg(x1),g(x0)(φ( t
c2

))
− 1 +

1

Fg(y1),g(y0)(φ( t
c2

))
− 1.

Repeating the above procedure successively, we obtain

1

Fg(xn+1),g(xn)(φ(t))
− 1 +

1

Fg(yn+1),g(yn)(φ(t))
− 1 ≤ 1

Fg(x1),g(x0)(φ( t
cn ))

− 1 +
1

Fg(y1),g(y0)(φ( t
cn ))

− 1.

If we change x0 with xr in the previous inequalities, then for all n > r we get

1

Fg(xn+1),g(xn)(φ(crt))
− 1 +

1

Fg(yn+1),g(yn)(φ(crt))
− 1 ≤ 1

Fg(x1),g(x0)(φ( crt
cn−rt

))
− 1 +

1

Fg(y1),g(y0)(φ( crt
cn−rt

))
− 1.

Since φ( crt
cn−rt

)→∞ as n→∞ for all 0 < r < n, we have

lim
n→∞

Fg(x1),g(x0)(φ(
crt

cn−rt
)) = 1 and lim

n→∞
Fg(y1),g(y0)(φ(

crt

cn−rt
)) = 1.

Thus,

lim
n→∞

(
1

Fg(xn+1),g(xn)(φ(crt))
− 1) ≤ lim

n→∞
(

1

Fg(xn+1),g(xn)(φ(crt))
− 1 +

1

Fg(yn+1),g(yn)(φ(crt))
− 1) ≤ 0,

lim
n→∞

(
1

Fg(yn+1),g(yn)(φ(crt))
− 1) ≤ lim

n→∞
(

1

Fg(xn+1),g(xn)(φ(crt))
− 1 +

1

Fg(yn+1),g(yn)(φ(crt))
− 1) ≤ 0,

which imply that

lim
n→∞

Fg(xn+1),g(xn)(φ(crt)) = 1 and lim
n→∞

Fg(yn+1),g(yn)(φ(crt) = 1. (3.9)

Now, let ε > 0 be given, by (i) and (iv) of Definition 2.3, we can find r ∈ Z+ such that φ(crt) < ε. It follows
from (3.9) that

lim
n→∞

Fg(xn+1),g(xn)(ε) ≥ lim
n→∞

Fg(xn+1),g(xn)(φ(crt)) = 1 and lim
n→∞

Fg(yn+1),g(yn)(ε) ≥ 1.

By using a triangle inequality, we obtain

Fg(xn+p),g(xn)(ε) ≥ ∆(Fg(xn+p),g(xn+p−1)(
ε

p
),∆(Fg(xn+p−1),g(xn+p−2)(

ε

p
), · · · , Fg(xn+1),g(xn)(

ε

p
))).

Thus, letting n→∞ and making use of (3.9), for any integer, we get

lim
n→∞

Fg(xn+p),g(xn)(ε) = 1 for every ε > 0.
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Hence {g(xn)} is a Cauchy sequence.
Similarly, we can also prove that {g(yn)} is also a Caucgy sequence. Since (X,≤, F,∆) is complete, there

exist x, y ∈ X such that
lim
n→∞

g(xn) = x and lim
n→∞

g(yn) = y. (3.10)

From (3.10) and continuity of g, we have

lim
n→∞

g(g(xn)) = g(x) and lim
n→∞

g(g(yn)) = g(y).

From (3.2) and commutativity of T and g, we have

g(g(xn+1)) = g(T (xn, yn)) = T (g(xn), g(yn)) and g(g(yn+1)) = g(T (yn, xn)) = T (g(yn), g(xn)). (3.11)

We now show that g(x) = T (x, y) and g(y) = T (y, x). Suppose that the assumption (a) holds. Taking
the limit as n→∞ in (3.11), by (3.10) and continuity of T we get

g(x) = lim
n→∞

g(g(xn+1)) = lim
n→∞

T (g(xn), g(yn)) = T ( lim
n→∞

g(xn), lim
n→∞

g(yn)) = T (x, y),

g(y) = lim
n→∞

g(g(yn+1)) = lim
n→∞

T (g(yn), g(xn)) = T ( lim
n→∞

g(yn), lim
n→∞

g(xn)) = T (y, x).

Thus we proved that
g(x) = T (x, y) and g(y) = T (y, x).

Suppose now that (b) holds. Since

Fg(x),T (x,y)(ε) ≥ ∆(Fg(x),g(g(xn+1))(
ε

2
), Fg(g(xn+1)),T (x,y)(

ε

2
)). (3.12)

By using (i) of Definition 2.3, we can find s > 0 such that φ(s) < ε
2 . Since lim

n→∞
g(g(xn)) = g(x) and

lim
n→∞

g(g(yn)) = g(y), then there exists n0 ∈ Z+, such that

Fg(g(xn)),g(x)(φ(s)) > 0 and Fg(g(yn)),g(y)(φ(s)) > 0

for all n > n0. Since {g(xn)} is non-decreasing and {g(xn)} → x, and as {g(yn)} is non-increasing and
{g(yn)} → y, by (3.1) and (3.11) we get

ψ(
1

Fg(g(xn+1)),T (x,y)(φ(s))
− 1) = ψ(

1

Fg(T (xn,yn)),T (x,y)(φ(s))
− 1) = ψ(

1

FT (g(xn),g(yn)),T (x,y)(φ(s))
− 1)

≤ 1

2
ψ(

1

Fg(g(xn)),g(x)(φ( sc ))
− 1 +

1

Fg(g(yn)),g(y)(φ( sc ))
− 1),

ψ(
1

Fg(g(yn+1)),T (y,x)(φ(s))
− 1) = ψ(

1

Fg(T (yn,xn)),T (y,x)(φ(s))
− 1) = ψ(

1

FT (g(yn),g(xn)),T (y,x)(φ(s))
− 1)

≤ 1

2
ψ(

1

Fg(g(xn)),g(x)(φ( sc ))
− 1 +

1

Fg(g(yn)),g(y)(φ( sc ))
− 1).

So, by the above inequalities and (ii) of Definition 2.5, we have

1

Fg(g(xn+1)),T (x,y)(
ε
2)
− 1 ≤ 1

Fg(g(xn+1)),T (x,y)(φ(s))
− 1

≤ 1

Fg(g(xn+1)),T (x,y)(φ(s))
− 1 +

1

Fg(g(yn+1)),T (y,x)(φ(s))
− 1

≤ 1

Fg(g(xn)),g(x)(φ( sc ))
− 1 +

1

Fg(g(yn)),g(y)(φ( sc ))
− 1, (3.13)
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1

Fg(g(yn+1)),T (y,x)(
ε
2)
− 1 ≤ 1

Fg(g(yn+1)),T (y,x)(φ(s))
− 1

≤ 1

Fg(g(xn+1)),T (x,y)(φ(s))
− 1 +

1

Fg(g(yn+1)),T (y,x)(φ(s))
− 1

≤ 1

Fg(g(xn)),g(x)(φ( sc ))
− 1 +

1

Fg(g(yn)),g(y)(φ( sc ))
− 1.

Letting n→∞ in (3.13), we obtain

lim
n→∞

Fg(g(xn+1)),T (x,y)(
ε

2
)) = 1. (3.14)

From (3.12) and (3.14), we get Fg(x),T (x,y)(ε) = 1 for every ε > 0, which implies that g(x) = T (x, y).
Similarly, one can show that g(y) = T (y, x). Thus we proved that g and T have a coupled coincidence

point.

Taking g = IX (the identity mapping on X), c = 1
2 and φ(t) = ϕ(t) = t for all t ≥ 0 in Theorem 3.1, we

get the following result.

Corollary 3.2. Let (X,≤) be a partially ordered set and (X,F,∆) be a complete Menger PM -space with a
continuous t-norm. Suppose T : X ×X → X is such that T has the mixed monotone property and

1

FT (x,y),T (u,v)(
1
2 t)
− 1 ≤ 1

2
(

1

Fx,u(t)
− 1 +

1

Fy,v(t)
− 1)

for all t > 0 such that Fx,u(t) > 0 and Fy,v(t) > 0, x, y, u, v ∈ X for which x ≤ u and y ≥ v. Suppose either
(a) T is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n,
(ii) if a non-increasing sequence {yn} → y, then yn ≤ y for all n.

If there exist x0, y0 ∈ X such that

x0 ≤ T (x0, y0) and y0 ≥ T (y0, x0),

then there exist x, y ∈ X such that

x = T (x, y) and y = T (y, x),

that is, T has a coupled fixed point.

Now we shall prove the existence and uniqueness theorem of a coupled fixed point. Note that if (X,≤)
is a partially ordered set, then we endow the product X ×X with the following partial order:

for all (x, y), (u, v) ∈ X ×X, (x, y) ≤ (u, v)⇔ x ≤ u, y ≥ v.

Theorem 3.3. In addition to the hypotheses of Theorem 3.1, suppose that for every (x, y), (x∗, y∗) ∈
X × X there exists a (u, v) ∈ X × X such that (T (u, v), T (v, u)) is comparable to (T (x, y), T (y, x)) and
(T (x∗, y∗), T (y∗, x∗)). Then T and g have a unique coupled common fixed point, that is, there exists a
unique (x, y) ∈ X ×X such that

x = g(x) = T (x, y) and y = g(y) = T (y, x).

Proof. From Theorem 3.1, the set of coupled coincidences is non-empty. We shall first show that if (x, y)
and (x∗, y∗) are coupled coincidence points, that is, if g(x) = T (x, y), g(y) = T (y, x) and g(x∗) = T (x∗, y∗),
g(y∗) = T (y∗, x∗), then
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g(x) = g(x∗) and g(y) = g(y∗). (3.15)

By assumption there exists a (u, v) ∈ X such that (T (u, v), T (v, u)) is comparable to (T (x, y), T (y, x)) and
(T (x∗, y∗), T (y∗, x∗)). Putting u0 = u and v0 = v and choose u1, v1 ∈ X such that g(u1) = T (u0, v0) and
g(v1) = T (v0, u0). Then, similarly as the proof of Theorem 3.1, we can inductively define sequences {g(un)}
and {g(vn)} such that

g(un+1) = T (un, vn) and g(vn+1) = T (vn, un).

Similarly, setting x0 = x, y0 = y, x∗0 = x∗ and y∗0 = y∗, we can define {g(xn)}, {g(yn)} and {g(x∗n)},
{g(y∗n)} . Then it is easy to show that

g(xn) = T (x, y), g(yn) = T (y, x) and g(x∗n) = T (x∗, y∗), g(y∗n) = T (y∗, x∗) for all n ≥ 1.

Since (T (x, y), T (y, x)) = (g(x1), g(y1)) = (g(x), g(y)) and (T (u, v), T (v, u)) = (g(u1), g(v1)) are comparable,
then g(x) ≤ g(u1) and g(y) ≥ g(v1). It is easy to show that ((g(x), g(y))) and (g(un), g(vn)) are comparable,
that is g(x) ≤ g(xn) and g(y) ≥ g(yn) for all n ≥ 1. Following the proof of Theorem 3.1, we can choose a
t > 0 such that Fg(x),g(un)(φ( tc)) > 0 and Fg(y),g(vn)(φ( tc)) > 0 for all n ≥ 0. Thus from (3.1)

ψ(
1

Fg(x),g(un+1)(φ(t))
− 1) = ψ(

1

FT (x,y),T (un,vn)(φ(t))
− 1)

≤ 1

2
ψ(

1

Fg(x),g(un)(φ( tc))
− 1 +

1

Fg(y),g(vn)(φ( tc))
− 1),

ψ(
1

Fg(y),g(vn+1)(φ(t))
− 1) = ψ(

1

FT (y,x),T (vn,un)(φ(t))
− 1)

≤ 1

2
ψ(

1

Fg(x),g(un)(φ( tc))
− 1 +

1

Fg(y),g(vn)(φ( tc))
− 1).

Adding and by (ii) of Definition 2.5, we get

1

Fg(x),g(un+1)(φ(t))
− 1 +

1

Fg(y),g(vn+1)(φ(t))
− 1 ≤ 1

Fg(x),g(un)(φ( tc))
− 1 +

1

Fg(y),g(vn)(φ( tc))
− 1

...

≤ 1

Fg(x),g(u0)(φ( t
cn ))

− 1 +
1

Fg(y),g(v0)(φ( t
cn ))

− 1.

If we change ur with u0 in the previous, then for all n > r we get

1

Fg(x),g(un+1)(φ(crt))
− 1 +

1

Fg(y),g(vn+1)(φ(crt))
− 1 ≤ 1

Fg(x),g(ur)(φ( crt
cn−r ))

− 1 +
1

Fg(y),g(vr)(φ( crt
cn−r ))

− 1.

Letting n→∞, we have

lim
n→∞

Fg(x),g(un+1)(φ(crt)) = 1 and lim
n→∞

Fg(y),g(vn+1)(φ(crt)) = 1.

Now, let ε > 0 be given, by (i) and (iv) of Definition 2.3, we can find a r ∈ Z+ such that φ(crt) < ε
2 . Then

we have

lim
n→∞

Fg(x),g(un+1)(
ε

2
) ≥ lim

n→∞
Fg(x),g(un+1)(φ(crt)) = 1,

lim
n→∞

Fg(y),g(vn+1)(
ε

2
) ≥ lim

n→∞
Fg(y),g(vn+1)(φ(crt)) = 1.

(3.16)
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Similarly, we can prove that

lim
n→∞

Fg(x∗),g(un+1)(
ε

2
) = 1 and lim

n→∞
Fg(y∗),g(vn+1)(

ε

2
) = 1. (3.17)

By using a triangle inequality,(3.16) and (3.17),

Fg(x),g(x∗)(ε) ≥ ∆(Fg(x),g(un+1)(
ε

2
), Fg(x∗),g(un+1)(

ε

2
))→ 1 as n→∞,

Fg(y),g(y∗)(ε) ≥ ∆(Fg(y),g(vn+1)(
ε

2
), Fg(y∗),g(vn+1)(

ε

2
))→ 1 as n→∞.

Hence g(x) = g(x∗) and g(y) = g(y∗). Thus we proved (3.15).
Since g(x) = T (x, y) and g(y) = T (y, x), by commutativity of T and g, we have

g(g(x)) = g(T (x, y)) = T (g(x), g(y)) and g(g(y)) = g(T (y, x)) = T (g(y), g(x)). (3.18)

Denote g(x) = z and g(y) = w. Then from (3.18), we obtain

g(z) = T (z, w) and g(w) = T (w, z). (3.19)

Thus (z, w) is a coupled coincidence point. Then from (3.15) with x∗ = z and y∗ = w it follows g(z) = g(x)
and g(w) = g(y), that is

g(z) = z and g(w) = w. (3.20)

From (3.19) and (3.20), we have

z = g(z) = T (z, w) and w = g(w) = T (w, z).

Therefore, (z, w) is a coupled common fixed point of T and g. To prove the uniqueness, assume that (p, q) is
another coupled common fixed point. Then by (3.15) we have p = g(p) = g(z) = z and q = g(q) = g(w) = w.
This completes the proof.

Corollary 3.4. In addition to the hypotheses of Corollary 3.2, suppose that for every (x, y), (x∗, y∗) ∈
X × X there exist a (u, v) ∈ X × X such that (T (u, v), T (v, u)) is comparable to (T (x, y), T (y, x)) and
(T (x∗, y∗), T (y∗, x∗)). Then T has a unique coupled fixed point, that is, there exists a unique (x, y) ∈ X×X
such that

x = T (x, y) and y = T (y, x).

Corollary 3.5. In addition to the hypotheses of Corollary 3.2, if x0 and y0 are comparable then T has a
fixed point, that is x = T (x, x).

Proof. Following Corollary 3.2, T has a coupled fixed point (x, y). We only have to show that x = y. Since
x0 and y0 are comparable, we may assume that x0 ≥ y0. By using the mathematical induction, one can
show that

xn ≥ yn for all n ≥ 0,

where xn+1 = T (xn, yn) and yn+1 = T (yn, xn), n = 0, 1, 2 · · · . Following the proof of Theorem 3.1, we can
choose a t > 0 such that Fxn,yn(2t) > 0 and Fyn,xn(2t) > 0 for all n ≥ 0. Thus we have

1

Fxn+1,yn+1(t)
− 1 =

1

FT (xn,yn),T (yn,xn)(t)
− 1

≤ 1

2
(

1

Fxn,yn(2t)
− 1 +

1

Fyn,xn(2t)
− 1),

1

Fyn+1,xn+1(t)
− 1 =

1

FT (yn,xn),T (xn,yn)(t)
− 1

≤ 1

2
(

1

Fxn,yn(2t)
− 1 +

1

Fyn,xn(2t)
− 1).

Adding, we get
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1

Fxn+1,yn+1(t)
− 1 +

1

Fyn+1,xn+1(t)
− 1 ≤ 1

Fxn,yn(2t)
− 1 +

1

Fyn,xn(2t)
− 1

...

≤ 1

Fx0,y0(2nt)
− 1 +

1

Fy0,x0(2nt)
− 1

If we change ur with u0 in the previous, then for all n > r we get

1

Fxn+1,yn+1( 1
2r t)
− 1 +

1

Fyn+1,xn+1( 1
2r t)
− 1 ≤ 1

Fxr,yr(2n−2rt)
− 1 +

1

Fyr,xr(2n−2rt)
− 1.

Letting n→∞, we have

lim
n→∞

Fxn+1,yn+1(
1

2r
t) = 1 and lim

n→∞
Fyn+1,xn+1(

1

2r
t) = 1.

Now, let ε > 0 be given, we can find a r ∈ Z+ such that 1
2r <

ε
3 . Then we have

lim
n→∞

Fxn+1,yn+1(
ε

3
) ≥ lim

n→∞
Fxn+1,yn+1(

1

2r
t) = 1. (3.21)

By using a triangle inequality, we have

Fx,y(ε) ≥ ∆(Fx,xn+1(
ε

3
),∆(Fxn+1,yn+1(

ε

3
), Fyn+1,y(

ε

3
))).

Letting n→∞ and using (3.21) we have

Fx,y(ε) = 1 for any ε > 0.

Hence x = y.

4. An application

In this section, we study the existence of a unique solution to a nonlinear integral equation, as an
application to the fixed point theorem proved in section 3.

Consider the integral equation

x(r) =

∫ b

a
(K1(r, s) +K2(r, s))[f(s, x(s)) + g(s, x(s)) + (µ1 − µ2)x(s)]ds r ∈ I = [a, b], µ1, µ2 > 0. (4.1)

We assume that K1, K2, f and g satisfy the following conditions

Assumption 4.1. (i) K1(r, s) ≥ 0 and K2(r, s) ≤ 0 for all r, s ∈ [a, b].
(ii) There exist λ1, λ2, µ1, µ2 > 0 such that for all x, y ∈ R, x ≥ y,

0 ≤ f(r, x)− f(r, y) + µ1(x− y) ≤ λ1(x− y)

and
−λ2(x− y) ≤ g(r, x)− g(r, y) + µ2(y − x) ≤ 0.

(iii) max{λ1, λ2} sup
r∈I

∫ b
a (K1(r, s)−K2(r, s))ds ≤ 1

4 .

Definition 4.2. An element (α, β) ∈ C(I,R) × C(I,R) is called a coupled lower and upper solution of the
integral equation (4.1) if α(r) ≤ β(r),
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α(r) ≤
∫ b

a
K1(r, s)(f(s, α(s)) + g(s, β(s)) + µ1α(s)− µ2β(s))ds

+

∫ b

a
K2(r, s)(f(s, β(s)) + g(s, α(s)) + µ1β(s)− µ2α(s))ds

and

β(r) ≥
∫ b

a
K1(r, s)(f(s, β(s)) + g(s, α(s)) + µ1y(s)− µ2x(s))ds

+

∫ b

a
K2(r, s)(f(s, α(s)) + g(s, β(s)) + µ1x(s)− µ2y(s))ds

for all r ∈ [a, b], µ1, µ2 > 0.

Theorem 4.3. Consider the integral Equation (4.1) with K1,K2 ∈ C(I × I,R), f, g ∈ C(I × R,R) and
h ∈ C(I,R) and suppose that Assumption 4.1 is satisfied. Then the existence of a coupled lower and upper
solution for (4.1) provides the existence of a unique solution of (4.1) in C(I,R).

Proof. Let X := C(I,R). X is a partially ordered set if we define the following order relation in X:

x, y ∈ C(I,R), x ≤ y ⇔ x(r) ≤ y(r) for all r ∈ I.

And (X, d) is a complete metric space with metric

d(x, y) = sup
t∈I
|x(r)− y(r)|, x, y ∈ X.

Then (X,F,∆m) is a complete Menger PM -pace, where

Fx,y(t) =
t

t+ d(x, y)
for all x, y ∈ X, t > 0.

Suppose {un} is a monotone non-decreasing in X that converges to u ∈ X. Then for every r ∈ I, the
sequence of real numbers

u1(r) ≤ u2(r) ≤ · · · ≤ un(r) ≤ · · ·

converges to u(r). Therefore, for all r ∈ I, n ∈ Z+, un(r) ≤ u(r). Hence un ≤ u, for all n.
Similarly, we can verify that limit v(r) of a monotone non-increasing sequence {vn} in X is a lower

bound for all the elements in the sequence. That is, v ≤ vn for all n. Therefore, condition (b) of Corollary
3.2 holds.

Also, X × X = C(I,R) × C(I,R) is a partially ordered set if we define the following order relation in
X ×X

(x, y), (u, v) ∈ X ×X, (x, y) ≤ (u, v)⇔ x(r) ≤ u(r) and y(r) ≥ v(r), for all r ∈ I.

Define T : X ×X → X by

T (x, y)(r) =

∫ b

a
K1(r, s)(f(s, x(s)) + g(s, y(s)) + µ1x(s)− µ2y(s))ds

+

∫ b

a
K2(r, s)(f(s, y(s)) + g(s, x(s)) + µ1y(s)− µ2x(s))ds

for all r ∈ I.
For each r ∈ I, max{T (x, y)(r), T (y, x)(r)} and min{T (x, y)(r), T (y, x)(r)} are the upper and lower

bounds of T (x, y) and T (y, x), respectively. Therefore, for every (x, y), (u, v) ∈ X ×X, there exists a(
max{T (x, y), T (u, v)},min{T (y, x), T (v, u)}

)
∈ X ×X
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that is comparable to (T (x, y), T (y, x)) and (T (u, v), T (v, u)).
Now we shall show that T has the mixed monotone property. Indeed, for x1 ≤ x2, that is, x1(r) ≤ x2(r)

for all r ∈ I, by Assumption 4.1, we have

T (x1, y)(r)− T (x2, y)(r) =

∫ b

a
K1(r, s)(f(s, x1(s)) + g(s, y(s)) + µ1x1(s)− µ2y(s))ds

+

∫ b

a
K2(r, s)(f(s, y(s)) + g(s, x1(s)) + µ1y(s)− µ2x1(s))ds

−
∫ b

a
K1(r, s)(f(s, x2(s)) + g(s, y(s)) + µ1x2(s)− µ2y(s))ds

−
∫ b

a
K2(r, s)(f(s, y(s)) + g(s, x2(s)) + µ1y(s)− µ2x2(s))ds

=

∫ b

a
K1(r, s)(f(s, x1(s))− f(s, x2(s)) + µ1(x1(s)− x2(s)))ds

+

∫ b

a
K2(r, s)(g(s, x1(s))− g(s, x2(s)) + µ2(x2(s)− x1(s)))ds ≤ 0.

Hence T (x1, y)(r) ≤ T (x2, y)(r) for all r ∈ I, that is T (x1, y) ≤ T (x2, y).
Similarly, if y1 ≥ y2, for all r ∈ I, by Assumption 4.1, we have

T (x, y1)(r)− T (x, y2)(r) =

∫ b

a
K1(r, s)(g(s, y1(s))− g(s, y2(s)) + µ2(y2(s)− y1(s)))ds

+

∫ b

a
K2(r, s)(f(s, y1(s))− f(s, y2(s)) + µ1(y1(s)− y2(s)))ds ≤ 0.

Hence T (x, y1)(r) ≤ T (x, y2)(r) for all r ∈ I, that is, T (x, y1) ≤ T (x, y2).
Thus, T (x, y) is monotone non-decreasing in x and monotone non-increasing in y.
Now, for x ≥ u and y ≤ v, that is, x(r) ≥ u(r) and y(r) ≤ v(r) for all r ∈ I, any t > 0, we have

1

FT (x,y),T (u,v)(
1
2)t
− 1 =

2d(T (x, y), T (u, v))

t
=

2

t
sup
r∈I
|T (x, y)(r)− T (u, v)(r)|

=
2

t
sup
r∈I

∣∣∣∣ ∫ b

a
K1(r, s)[(f(s, x(s))− f(s, u(s))

+µ1(x(s)− u(s)))− (g(s, v(s))− g(s, y(s)) + µ2(y(s)− v(s))]ds

−
∫ b

a
K2(r, s)[(f(s, v(s))− f(s, y(s))

+µ1(v(s)− y(s)))− (g(s, x(s))− g(s, u(s)) + µ2(u(s)− x(s))]ds

∣∣∣∣
≤ 2

t
sup
r∈I

∣∣∣∣ ∫ b

a
K1(r, s)[λ1(x(s)− u(s)) + λ2(v(s)− y(s))]ds

−
∫ b

a
K2(r, s)[λ1(v(s)− y(s)) + λ2(x(s)− u(s))]ds

∣∣∣∣
≤ 2

t
max{λ1, λ2} sup

r∈I

∫ b

a
(K1(r, s)−K2(r, s))[(x(s)− u(s)) + (v(s)− y(s))]ds.

As x(s)− u(s) ≤ d(x, u), v(s)− y(s) ≤ d(v, y), for all s ∈ [a, b], we obtain

1

FT (x,y),T (u,v)(
1
2)t
− 1 ≤ 2

t
max{λ1, λ2} sup

r∈I

∫ b

a
(K1(r, s)−K2(r, s))[(x(s)− u(s)) + (v(s)− y(s))]ds
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≤ 2

t
max{λ1, λ2}[d(x, u) + d(v, y)] sup

r∈I

∫ b

a
(K1(r, s)−K2(r, s))ds

≤ 2

t
× 1

4
[d(x, u) + d(v, y)]

≤ 1

2
(
d(x, u)

t
+
d(v, y)

t
) =

1

2
(

1

Fx,u(t)
− 1 +

1

Fy,v(t)
− 1).

Now, let (α, β) be a coupled lower and upper solution of the integral equation (4.1), then we have α(r) ≤
T (α, β)(r) and β(r) ≥ T (β, α)(r) for all r ∈ [a, b], that is, α ≤ T (α, β) and β ≥ T (β, α). Finally, Corollary
3.2 gives that T has a unique coupled fixed point (x, y), that is, there exists a unique solution of (4.1) in
C(I,R).
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