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1. Introduction and Preliminaries

Recently, in [27], Samet et al. proved some fixed point results for (o — 1)) —contractive and a— admissible
mapping. Asl et al. in [4], generalize these notions by introducing the notions of («, — 1)) — contractive and
a,—admissible mapping and proved some fixed point results in complete metric spaces. Ali and Kamran,
in [I], generalized the notion of (. — 1)) — contractive mappings.

For more details about the (« — 1)) — contractions, a—admissible mappings, (. — 1)) —contractions and

a,—admissible mappings, see e.g. [I], 2, 3 8, [15], 17, 18], 20, 26}, 28].
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The purpose of this paper is to introduce the notion of generalized (au — 1)) —contractive multivalued
mapping and to prove some fixed point results in b-metric spaces.

Let us recall now some essential definitions and fundamental results. We begin with the definition of a
b-metric space.

Definition 1.1 ([12]). Let X be a set and let s > 1 be a given real number. A functional d : X x X — [0, c0)
is said to be a b-metric if the following conditions are satisfied:

1. d(z,y) =0 if and only if x = y;
2. d(z,y) = d(y, v);
3. d(z,z) < sld(x,y) + d(y, 2)]

for all z,y,z € X. In this case the pair (X,d) is called a b-metric space.

Remark 1.2. The class of b-metric spaces is larger than the class of metric spaces since a b-metric space is
a metric space when s=1. For more details and examples on b-metric spaces, see e.g. [5], 10, 11, 12} 13} 16].

For the sake of completeness we state the following examples.

Example 1.3 ([5]). Let X be a set with the cardinal card(X) > 3. Suppose that X = X;UX> is a partition
of X such that card(X;) > 2. Let s > 1 be arbitrary. Then, the functional d : X x X — [0, 00) defined by:

0, =y
d(:c,y) = 287 :E7y€X1
1, otherwise

is a b-metric on X with coefficient s > 1.

Example 1.4. Let X={0,1,2} and d : X x X — R4 such that d(0,1) = d(1,0) = d(0,2) = d(2,0) =
1,d(1,2) =d(2,1) = a >2,d(0,0) = d(1,1) = d (2,2) = 0. Then

d(z,y) < E[d(x,z)—i—d(z,y)] for z,y,z € X.

Then (X, d) is a b-metric space. If o > 2 the ordinary triangle inequality does not hold and (X, d) is not
a metric space.

Definition 1.5. Let (X, d) be a b—metric space with constant s. Then the sequence (z,),eny C X is called:

1. convergent if and only if there exists x € X such that d (x,,x) — 0, as n — oc;
2. Cauchy if and only if d (2, ;) — 0, as n,m — oo.

Definition 1.6. The b — metric space (X, d) is complete if every Cauchy sequence in X converges.

Let us consider the following families of subsets of a b-metric space (X, d):
PX)={Y|YCX},PX)={YeP(X)|Y #0},Py(X):={Y € P(X)| Y is bounded},

Py(X):={Y € P(X)| Y is closed} , P,,(X) :={Y € P(X)| Y is compact}.
Let us define the gap functional D : P(X) x P(X) — Ry U {400}, as:

D(A, B) = inf{d(a,b) | a € A, b€ B}.

In particular, if zy € X, then D (zo, B) := D ({xo}, B) .
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The excess generalized functional p : P(X) x P(X) — Ry U {+o0}, as:
p(A, B) = Sup{D(a> B) ’ ac A}
The Pompeiu-Hausdorff generalized functional: H : P(X) x P(X) — Ry U{+oc}, as:

H(A, B) = max{p(4, B), p (B, 4)}.
The generalized diameter functional: § : P(X) x P(X) — R4 U {oc}, as:
d(A, B) =sup{d(a,b) | a € A, b e B}.

In particular 6(A) := §(A, A) is the diameter of the set A.
It is known (see Czerwik [12]) that (P, (X)), H) is a complete b-metric space implies that (X,d) is a
complete b-metric space. In the sequel, the following results are useful for some of the proofs in the paper.

Lemma 1.7 ([12]). Let (X,d) be a b-metric space with constant s > 1 and let A, B € P(X). We suppose
that there exists n > 0 such that:

(i) for each a € A there is b € B such that d(a,b) < n;
(ii) for each b € B there is a € A such that d(a,b) <.
Then, H(A, B) <.
Lemma 1.8 ([12]). Let (X,d) be a b-metric space with constant s > 1, A € P(X) and x € X. Then

D(z,A) =0 if and only if x € A.
Lemma 1.9 ([12]). Let (X,d) be a b-metric space with constant s and let {xy}7_, C X. Then

1. D(z, A) < sld(z,y) + D(y, A)] forallz,y € X and A C X.
2. d(xn,x0) < sd(x0,71) + ... + 8" (20, 7p_1) + $"d(Tn_1,Tn).
3. H(A,C) < s[H(A, B) + H(B,C)| for all A,B,C € P(X).

Lemma 1.10. Let (X, d) be a b-metric space with constant s > 1 and B € P, (X). Assume that there exists
x € X such that D(x,B) > 0. Then there exists y € B such that

d(z,y) < ¢D(z, B),
where ¢ > 1.
Proof. Because D(z, B) =inf{d(x,y) | y € B} we have that for ¢ > 0, there exists y € B such that
d(z,y) < D(z,B) +¢.
If we choose ¢ = (¢ — 1)D(x, B) > 0 then we reach the conclusion. O

A mapping ¢ : [0,00) — [0, 00) is called a comparison function if it is increasing and ¢"(t) — 0, n — oo,
for any t € [0,00). We denote by ®, the class of the comparison functions ¢ : [0,00) — [0,00). For more
details and examples see e.g. [7, 23].

We recall the following essential result.

Lemma 1.11 ([7,23]). If ¢ : [0,00) — [0,00) is a comparison function, then:
(1) each iterate ©* of o, k > 1, is also a comparison function;
(2) ¢ is continuous at 0;

(3) p(t) <t, for any t > 0.



M.-F. Bota, C. Chifu, E. Karapinar, J. Nonlinear Sci. Appl. 9 (2016), 1165-1177 1168

Later, Berinde [7] introduced the concept of (¢)-comparison function in the following way.
Definition 1.12 ([7]). A function ¢ : [0,00) — [0, 00) is said to be a (¢)-comparison function if

(1) ¢ is increasing;
(2) there exists kg € N, a € (0,1) and a convergent series of nonnegative terms » p, vj such that
O HL(t) < apf(t) + vy, for k > ko and any ¢ € [0, 00).

The notion of a (¢)-comparison function was improved as a (b)-comparison function by Berinde [6], in
order to extend some fixed point results to the class of b-metric spaces.

Definition 1.13 ([6]). Let s > 1 be a real number. A mapping ¢ : [0,00) — [0, 00) is called a (b)-comparison
function if the following conditions are fulfilled:

(1) ¢ is monotone increasing;

(2) there exist kg € N, a € (0,1) and a convergent series of nonnegative terms » .-, vy such that
sFHLOFHL(t) < asFeP(t) 4 vy, for k > ko and any ¢ € [0, 00).

We denote by ¥, the class of (b)-comparison functions. It is obvious that the concept of (b)-comparison
function reduces to that of (¢)-comparison function when s = 1.
The following lemma has a crucial role in the proof of our main result.

Lemma 1.14 ([5]). If ¢ : [0,00) — [0,00) is a (b)-comparison function, then we have the followings:

(1) the series > v s (t) converges for anyt € Ry;
(2) the function sp : [0,00) — [0,00) defined by sp(t) = S 70 ,5*0*(t), t € [0,00), is increasing and
continuous at 0.

We note that any (b)-comparison function is a comparison function due to the above Lemma.
We will need the following Generalized Cauchy lemma proved by Pacurar in [21].

Lemma 1.15. Let ¢ : Ry — Ry be a b—comparison function with constant s > 1 and a, € Ry, n € N such

that a,, — 0, as n — oo then
oo

Z sk "R (q) = 0, as n — oo.
k=0
Let us denote by ¥ the family of nondecreasing functions 1 : [0, 00) — [0, 00) such that Y 7, ¥"™(t) < oo
for each ¢t > 0, where 9" is the n-th iterate of ¥. It is clear that if ¥ C ® (see e.g. [14]) and hence, by
Lemmam, (3), for ¢ € ¥ we have 9(t) < t, for any ¢ > 0.
Let (X, d) be a b-metric space with constant s > 1 and let 7' : X — P(X) a multivalued operator. z € X
is called fixed point for T if and only if x € Txz. The set Fix (T) = {x € X : x € Tz} is called the fixed
point set of T

Definition 1.16 ([4]). Let T: X — P(X) and a: X x X — [0,00). We say that T is a,-admissible if
z,y € X, a(z,y) > 1= a.(T(2),T(y)) > 1,
where a. (A, B) = inf{a(a,b), a € A, b€ B}.

Definition 1.17 ([4]). Let (X, d) be a metric space and 7' : X — P(X) be a multivalued operator. We say
that 7" is an (o — 1)-contractive multivalued operator if there exist two functions a: X x X — [0, 00) and
1 € ¥, such that

ax(T(z), T(y))H(T(z),T(y)) < ¢(d(z,y)) for all z,y € X, (1.1)

where . (A, B) = inf{a(a,b), a € A, b € B}.
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Inspired from Definition [1.17] we introduce the following contraction types.

Definition 1.18. Let (X, d) be a b-metric space and T': X — P, (X) be a multivalued operator. We say
that 7" is an generalized (o — 1)-contractive multivalued operator of type (b) if there exist two functions
a: X x X —[0,00) and ¥ € Uy, such that

a.(T(2), T(y)) H(T(z),T(y)) < (M(z,y)) for all z,y € X, (1.2)

where

M(z,y) = max {d(x, y), D(z,Tx), D(y, Ty), D(z,Ty) + D(y, T'z) } 7

2s
and a. (A, B) = inf{a(a,b), a € A, b € B}.

Definition 1.19. Let (X, d) be a b-metric space and T': X — P.(X) be a multivalued operator. We say that
T is an (au — 1)-contractive multivalued operator of type (b) if there exist two functions « : X x X — [0, 00)
and 1 € Uy, such that

ax(T (), T(y) H(T(2), T(y)) < ¢(d(z,y)), forall z,y € X, (1.3)

where a. (A, B) = inf{a(a,b), a € A, b€ B}.

2. Fixed point results

Theorem 2.1. Let (X,d) be a complete b-metric space with constant s > 1 and d : X x X — Ry a
continuous b-metric. Let T : X — Py(X) be a generalized (a, — )-contractive multivalued operator of
type-(b) with 1(t) < g,Vt > 0, satisfying the following conditions:

(i) T is a-admissible;

(i1) there exist o € X and x1 € T(zg) such that a(xg,z1) > 1;

(iii) if (Tn) ey @5 a sequence in X such that a(zy, xny1) > 1 and x, — x then a(x,,x) > 1 for all n € N.
Then T has a fized point.

Proof. From (ii) we have that there exist 9 € X and z; € T'(zo) such that a(zg,x1) > 1. Then by the
generalized (o, — 1)-contraction condition we have

(T (20), T(21))H(T (x0), T (1)) < (M (x0,21)), (2.1)
where D T D T
M (zg,21) = max{d(mo,xl),D(xo,T:ro),D(:I:l,Txl), (20, xl); (21, T20) } .
Because 1 € T'(xq), we have that D(x;,Txo) = 0. On the other hand D(xo, Txo) < d(xo, 1) hence,
D T
M(xg,x1) = max {d(azo,xl), D(x1,Txy), (3302’1:1)} .
s
We have D T )
(z0, T21) < — (d(zo, 1) + D(x1,Tx1)) < max{d(zo,x1), D(x1,Tx1)} .

Thus, we obtain that
M(xg,x1) = max {d(zg,x1), D(x1,T21)}.
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Suppose that M (xo,z1) = D(z1, Tx1).

0 < D(21,Tz1) < H(T(z0),T(21))
< a,(T(xo), T(21))H (T (x0), T(21))
< (M (2o, 71)) = (D (z1, T1)),

which is a contradiction. Hence, we have that M (zg,x1) = d(xo, 1), and (2.1]) becomes
0 (T (o), T(w1) H(T(0), T(21)) < (d(o,21)). (2.2)
Using Lemma for ¢ > 1, there exists o € T'(z1) such that

d(x1,22) < qD(x1,T(x1)),

and hence
d(,2) < H(T(x0), T(a1)) 2.3
< qou(T(20), T(@1)) H(T (w0), T(x1))- |
From (2.2)) and ({2.3)) we obtain that
d(z1,22) < q(d(wo, 71)). (2.4)
Because 1 is increasing, from ([2.4) we have
Y(d(z1, 22)) < ¢ (q¥(d(zo,21))) - (2.5)
: _ Y(ay(d(z0,71)))
Let us consider ¢; = Wﬁvz)l) > 1.

Since T is a,-admissible we have (T (z¢),T(x1)) > 1. Using the definition of «, and the fact that
x1 € T'(xo) and x2 € T'(z1), we shall obtain that

a(xy,xg) > 1,
and because T is ax-admissible we shall have
(T (x1), T (z2)) > 1.
By the generalized (c. — 1)-contraction condition we have
oy (T(21), T(2)) H(T (1), T(22)) < (M (21, %2)), (2.6)

where

D T D T
M(ml,xg):max{d(ml,xz),D(xl,Txl),D(mg,TmQ), (1, Twp) + D(x2, $1)}

2s
It easy to see that M(z1,x2) = d(x1,z2), and (2.6 becomes

oy (T (1), T(22)) H(T (21), T(22))) < tp(d(w1,22))).
For ¢; > 1, there exists x3 € T'(z2) such that

d(x2,13) < 1D (22, T(22)) < u H(T (1), T(22))
< qrow(T(z1), T(22)) H(T (1), T (2))
< qp(d(w1, x2)).

From the definition of ¢; we shall obtain that
d(x2,23) < ¥ (q¥(d(zo,21))) -
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Hence, using the monotonicity of 1) we shall have

¥ (d(z2,23)) < ¥? (qv(d(z0,21))) -

Let us, now, consider qo = % > 1.

Since T is ay-admissible we have o (T'(x1),T(x2)) > 1. Using the definition of a, and the fact that
x9 € T(z1) and x3 € T'(x2), we shall obtain that

a(xg,x3) > 1,
and because T is as-admissible we shall have
(T (x2), T (z3)) > 1.
By the generalized (aw. — v)-contraction condition we have
ax(T(22), T(23)) H(T (x2), T (23)) < 9(d(w2, 73)). (2.7)
For g2 > 1, there exists x4 € T'(x3) such that

d(z3,24) < @2D(x3,T(23)) < o H (T (22), T (23))
< gau(T(w2), T'(w3)) H (T (w2), T'(3))
< qop(M (w2, 73)).

Again, as above, it is easy to see that M (z2,x3) = d(z2,x3). Hence
d(z3,24) < @o(d(w2, 23)) < ¥ (qo(d(20, 21))) .
Using the monotonicity of ¢ we shall have
¥ (d(w2,23)) < ¢° (q(d(wo,21))) -
By an inductive procedure we have that there exists x,4+1 € T'(zy,) such that a(xy,, zp41) > 1 and
d(y, Tni1) < Y"1 (qp(d(zo, 1)) for each n € N.
We shall prove that (x,),en+ is a Cauchy sequence.

d(Tn, Tpip) < 8d(Tn, Tpg1) + 82d(Tng1, Toso) + oo+ 8P d(Tngp—1, Tnip)
< s " Hgp(d(wo, 1)) + 57 - 9" (g (d(w0, 21))) + - 4 87 P2 (qyp(d(wo, 1))

= U a0, ) 5P R g, )
1 n+p—2
=z Z s* - *(qu(d(zo, 21))).
k=n—1

Denoting S, = S_1_, s*9*(qp(d(z0,71))), n > 1 we obtain:

1
n—2

A& tnip) < g lSntp2 — Sual n =2 p>2. (2.8)

S

Using Lemma we conclude that the series Y o, s**(qy(d(wo, 21))) is convergent.
Thus, there exists S = li_)In Sy, and this will imply d(xy,, zp4p) — 0, as n — oco.
n—oo
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In this way we obtain that (z,)nen+ is a Cauchy sequence in the b-metric space (X, d). Since (X,d) is
complete, there exists £* € X such that z, — «* as n — oo.

D(z*,T(z")) < sd(z", zpt1) + sD(xng1, T (7))
sd(a”, zpy1) + sH(T(xn), T (27))

sd(x*, xpi1) + s(M(xp, %),

IN N IA

where

D Tx* D(z*, T
M(xp, x¥) :max{d(a:n,x*),D(wn,Txn),D(w*,Taj*), (2n, T2") + D(a”, xn)}

2s

Letting n — oo we obtain that d(x,,z*) — 0, D(xn, Tx,) < d(zn,pn+1) — 0, D(z*,Tx,) — 0. Hence
M(xp,x*) = D(x*, Tz*), as n — oo.
From the properties of ¢ we have that

D(x*,T(z")) < sy(D(z*,Tz")) < SM = D(z*,Tx"),

S

which is a contradiction, so D(z*,T'(z*)) = 0 and since T'(z*) is closed we obtain z* € T'(z*). O

Theorem 2.2. Adding to the hypotheses of Theorem the condition: o (x*,y*) > 1 for all z*,y* €
Fixz(T), we obtain that x* = y*.

Proof. From the conditions of Theorem we have that T has a fixed point.
Suppose now that there exist z*,y* € Fiz(T), z* # y*. Hence d(z*,y*) # 0. Moreover D(z*,T(y*)) > 0.
Using Lemma [1.10} with ¢ = s, we obtain

d(a*,y*) < sD(z", T (y%)) (2.9)

We have that o (z*,y*) > 1, and because T is a,-admissible we shall obtain that o, (T (z*),T (y*)) > 1.
Now from [2.9] we have

da”,y") < sD(", T (y") < sH(T («"), T (y7))
< sau(T («7), T (y")H(T («), T (y7))
< sp(M(2",y7)),

where

M(x*,y") = max {d(w*, y*), D(z*, T (z*)), D(y*, Ty"), 55

= max {d(m*,y*), d(x*’y*)} =d(z",y").

S

D(z*,Ty") + D(y*,Tiv*)}

Hence, we obtain
d(z®,y") < sp(d(a”,y")) < d(z",y),

which is a contradiction. Hence z* = y* and, thus, T has a unique fixed point. O
We now state the following consequences of our results.

Corollary 2.3. Let (X,d) be a complete b-metric space with constant s > 1, and d : X x X — R4 a
continuous b-metric. Let T : X — Py(X) be a generalized (o, — 1)-contractive multivalued operator of
type-(b) with ¥ (t) < LVt > 0, satisfying the following conditions:

(i) T is a-admissible;
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(i1) There exist xo € X and x1 € T'(zo) such that a(xg,z1) > 1;

(iii) If (z5),cn 95 a sequence in X such that a(xp, ny1) > 1 and x,, — = then a(z,,x) > 1, for alln € N.

Then T has a fized point.
The proof is verbatim of Theorem and hence we omitted.

Theorem 2.4. Adding to the hypotheses of Corollary the condition: o (x*,y*) > 1 for all z*,y* €
Fiz(T), we obtain that x* = y*.

In what follows, we state the consequence of in the context of metric space. For this purpose, we state
the following notion that is inspired from Definition [1.18| we introduce the following contraction types.

Definition 2.5. Let (X, d) be a b-metric space and T': X — P, (X) be a multivalued operator. We say that
T is an generalized (o, — 1)-contractive multivalued operator if there exist two functions o : X x X — [0, 00)
and 1 € U, such that

0 (T(2), T(y)) H(T(2), T(y)) < $(M(z,y)), for all 2,y € X, (2.10)

where

M(a.9) = ma (e, ), Do, Ta), Dy, 1), PO IO,

and o, (A, B) = inf{a(a,b), a € A, b € B}.
If s =1 in Theorem then we get the following result in the context of metric space.

Corollary 2.6. Let (X,d) be a complete metric space. Let T : X — Py(X) be a generalized (a — 1)-
contractive multivalued operator. Suppose also that it satisfying the following conditions:

(i) T is a-admissible;
(i) there exist xo € X and xy € T'(zo) such that a(xg,x1) > 1;

(iii) if (Tn)pen 45 a sequence in X such that oz, ni1) > 1 and x, — x, then a(xy, x) > 1 for alln € N.

Then T has a fixed point.
The following results (which is a main result of [4]) follows immediately.

Corollary 2.7. Let (X,d) be a complete metric space. Let T : X — Py(X) be a (. — 1)-contractive
multivalued operator. Suppose also that it satisfying the following conditions:

(i) T is a-admissible;
(ii) there exist xog € X and x1 € T'(xg) such that oz, 1) > 1;

(iii) if (Tn)pen 95 a sequence in X such that a(xpn, ni1) > 1 and x, — x, then a(xy,x) > 1 for alln € N.

Then T has an fixed point.

Example 2.8. Let X = {-1,-2,-3} U [0,00) and d : X x X — Ry such that d(z,y) = |z — y| for all
z,y € [0,00) and d(z,—1) = d(z,—2) = 0 for all x € [0,00) and d(—3,—1) = d(—1,-3) = d(-3,-2) =
d(—2,-3)=1,d(~1,-2) =d(-2,-1) = A >2,d(~3,-3) =d(~1,—1) = d (-2, —2) = 0. Then

d(z,y) < o [d(z,2) +d(zy)] for z,y,z € X.
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Then (X,d) is a b-metric space. If A > 2 the ordinary triangle inequality does not hold and (X, d) is not a
metric space.

) <zx<
Let 9(t) = % and define now Tz = { 0,51 if0<e<l,

§ 1 ifz,ye|0,1]
(5,%) otherwise,

and o(z,y) = { 0 otherwise.
It is enough to examine two cases:
Case (I). Suppose z,y € [0,1]. Then,

ax(T(2), T(y)) H(T(x),T(y)) = I* *I = ¢(d(z,y)) < P(M(z,y)), forall z,y € X, (2.11)

Case (II). Suppose z,y € X C [0,1]. Then,
ax(T(z), T(y)H(T(z), T(y)) =0 < p(M(z,y)), for all z,y € X, (2.12)

T is an (o — 1)-contractive multivalued operator of type (b). On the other hand, for a(z,y) > 1, we
have z,y € [0,1) and hence ax(z,y) > 1. That is, T is a,-admissible. For any sequence {z,} with z,, —
and a(xn, Tpy1) > 1, we have x,,x € [0,1] and hence a(x,,x) > 1. So all hypothesis of Theorem are
satisfied and T has a fixed point.

3. Well-posedness of the fixed point problem
In this section we present a well-posedness result for the fixed point problem.

Definition 3.1. Let (X, d) be a b-metric space with constant s > 1 and T': X — P.(X) be a multivalued
operator. The fixed point problem for T with respect to D is well-posed if

(a) FizT = {z*};
(b) If (zp)nen is a sequence such that D (z,,T (x,)) — 0, as n — oo, then x,, — z*, as n — oc.

Theorem 3.2. Let (X,d) be a complete b-metric space with constant s > 1. Suppose that all the hypotheses
of Theorem [2.2] hold. Additionally we suppose that

(i) the function 1 is continuous;
(ii) for any sequence (Tpn)nen, with D (zy,,T (x,)) — 0, as n — 0o, we have a (xy,x*) > 1 for alln € N,
where * € FixT.

In these conditions the fixed point problem for T with respect to D is well-posed.

Proof. Let (xn)nen is a sequence such that D (z,,, T (x,)) — 0, as n — co. We are in conditions of Theorem
Thus FizT = {z*}.

From (i7) we have that « (z,,,2*) > 1 for all n € N, and because T is a,-admissible we shall obtain that
oy (T (xy), T (z*)) > 1.

We shall prove that x, — z*, as n — oc.

We have

d(zp,2*) < sH(T (z,),T (z")) + sD(xn, T(xy))
< sou (T () , T (7)) H(T (x0) , T (27)) + sD(2n, T'(xn))
< stp(M(zp, x*)) + sD(xy, T(zy)).
Hence we have

d(xp, %) < stp(M(xp, %)) + sD(xp, T(x4)), (3.1)

where



M.-F. Bota, C. Chifu, E. Karapinar, J. Nonlinear Sci. Appl. 9 (2016), 1165-1177 1175

D ’VLJT* D *,Tn
My 2%) = max { ey, Dl T Dl 13, P LV EDELTE

2s

Because D(x"’Tz*);sD(x*’Tw") < d(zp,z*) + %D(wn, T'x,), we shall obtain that
1
M (xp, z¥) < max {d(acn, x*), D(xy, Txy), d(x,, %) + 2D(l‘n,T£I}n)} .

Let us suppose that there exists § > 0 such that d(x,,2*) — 6, as n — oco. Hence lim M (z,,x*) <.
n—oo
If in (3.1)), n — oo, then using the continuity of the function 1, we have

§<sp(5) <

which is a contradiction.
Thus § = 0 which implies that z,, — z*, as n — oo. O

4. Ulam-Hyers stability

Definition 4.1. Let (X, d) be a b-metric space and T': X — P(X) be a multivalued operator. The fixed
point inclusion
reT(x), zeX (4.1)

is called generalized Ulam-Hyers stable if and only if there exists ¢ : Ry — R, which is increasing and
continuous in 0 and ¢(0) = 0, such that for each ¢ > 0 and for each solution y* € X of the inequality

D(y,T(y)) <, (4.2)

there exists a solution z* of the fixed point inclusion (4.1} such that

d(y*, z%) < <(e).

If there exists ¢ > 0 such that ¢(t) := c¢- t, for each t € Ry, then the fixed point inclusion (4.1)) is said to
be Ulam-Hyers stable.

Remark 4.2. The definition of generalized Ulam-Hyers stability uses a function ¢ instead of ¢. We work with
¢ because v is used to denote (aw — 1)-contraction.
For other results regarding the Ulam-Hyers stability see also [9], [19], [22], [24], [25].

Theorem 4.3. Let (X,d) be a complete b-metric space with constant s > 1. Suppose that all the hypotheses
of Theorem hold. Additionally we suppose that

(i) ¥(t) < & and the function f3: [0,00) — [0,00), B(r) := 1 — 2s3(r) is increasing and onto;
(ii) for any solution y* € X of (18) we have o (z*,y*) > 1, where x* € Fix (T).

In this conditions the fixed point inclusion (4.1)) is generalized Ulam-Hyers stable.

Proof. We are in the conditions of Theorem hence there exists x* € Fiz (T). Let ¢ > 0 and y* be a

solution of (4.2)).

From (i) we have that a(z*,y*) > 1, and because T is as-admissible we shall obtain that
a. (T (z7), T (y")) = 1.
We have

( ( ), (v") +sD(y" T(y"))

*))H( (@), T (y")) + sD(y", T(y"))

NN
<
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where

M) = max {d("’”*’y*% D(*, T (&), D(y*, Ty"), 2 Lv) + DUy™. T) } |

2s
We have

D(x*,Ty*) + D(y*, Tz* 1 . % " « £ %

( )23 ( )SZS(sd(iv,stD(y,Ty)er(w,y))
s+1 1

55 4@ y) + 5D Ty")

1
S d(ﬂ?*,y*) =+ 55

< max {2d(z*,y*),e}.

From here we have
M(z*,y*) < max{2d(z*,y"),e}.

It is obvious that if 2d(x*, y*) < e the result is proved. Suppose that max {2d(z*,y*), e} = 2d(z*,y*). Hence
M (", y*) < 2d(z*,y") and
2d(z%,y") < 2s9(2d(27,y"))) + 2s¢

2d(x*, y*) — 259 (2d(z*, y*)) < 2se. (4.3)

From (4.3) we get that
B (2d(z*,y")) < 2se,

and hence ]

A y") < 57" (252)
Hence (4.1)) is generalized Ulam-Hyers stable. O
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