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Communicated by B. Samet

Abstract
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1. Introduction and Preliminaries

Recently, in [27], Samet et al. proved some fixed point results for (α− ψ)−contractive and α− admissible
mapping. Asl et al. in [4], generalize these notions by introducing the notions of (α∗ − ψ)− contractive and
α∗−admissible mapping and proved some fixed point results in complete metric spaces. Ali and Kamran,
in [1], generalized the notion of (α∗ − ψ)− contractive mappings.

For more details about the (α− ψ)− contractions, α−admissible mappings, (α∗ − ψ)−contractions and
α∗−admissible mappings, see e.g. [1, 2, 3, 8, 15, 17, 18, 20, 26, 28].
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The purpose of this paper is to introduce the notion of generalized (α∗ − ψ)−contractive multivalued
mapping and to prove some fixed point results in b-metric spaces.

Let us recall now some essential definitions and fundamental results. We begin with the definition of a
b-metric space.

Definition 1.1 ([12]). Let X be a set and let s ≥ 1 be a given real number. A functional d : X×X → [0,∞)
is said to be a b-metric if the following conditions are satisfied:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ s[d(x, y) + d(y, z)]

for all x, y, z ∈ X. In this case the pair (X, d) is called a b-metric space.

Remark 1.2. The class of b-metric spaces is larger than the class of metric spaces since a b-metric space is
a metric space when s=1. For more details and examples on b-metric spaces, see e.g. [5, 10, 11, 12, 13, 16].

For the sake of completeness we state the following examples.

Example 1.3 ([5]). Let X be a set with the cardinal card(X) ≥ 3. Suppose that X = X1∪X2 is a partition
of X such that card(X1) ≥ 2. Let s > 1 be arbitrary. Then, the functional d : X ×X → [0,∞) defined by:

d(x, y) :=


0, x = y
2s, x, y ∈ X1

1, otherwise

is a b-metric on X with coefficient s > 1.

Example 1.4. Let X={0, 1, 2} and d : X × X → R+ such that d (0, 1) = d (1, 0) = d (0, 2) = d (2, 0) =
1, d (1, 2) = d (2, 1) = α ≥ 2, d (0, 0) = d (1, 1) = d (2, 2) = 0. Then

d (x, y) ≤ α

2
[d (x, z) + d (z, y)] for x, y, z ∈ X.

Then (X, d) is a b-metric space. If α > 2 the ordinary triangle inequality does not hold and (X, d) is not
a metric space.

Definition 1.5. Let (X, d) be a b−metric space with constant s. Then the sequence (xn)n∈N ⊂ X is called:

1. convergent if and only if there exists x ∈ X such that d (xn, x)→ 0, as n→∞;

2. Cauchy if and only if d (xn, xm)→ 0, as n,m→∞.

Definition 1.6. The b−metric space (X, d) is complete if every Cauchy sequence in X converges.

Let us consider the following families of subsets of a b-metric space (X, d):

P(X) = {Y |Y ⊂ X } , P (X) := {Y ∈ P (X) |Y 6= ∅} , Pb(X) := {Y ∈ P (X)| Y is bounded} ,

Pcl(X) := {Y ∈ P (X)| Y is closed} , Pcp(X) := {Y ∈ P (X)| Y is compact} .

Let us define the gap functional D : P (X)× P (X)→ R+ ∪ {+∞}, as:

D(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}.

In particular, if x0 ∈ X, then D (x0, B) := D ({x0} , B) .
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The excess generalized functional ρ : P (X)× P (X)→ R+ ∪ {+∞}, as:

ρ(A,B) = sup{D(a,B) | a ∈ A}.

The Pompeiu-Hausdorff generalized functional: H : P (X)× P (X)→ R+ ∪ {+∞}, as:

H(A,B) = max{ρ(A,B), ρ (B,A)}.

The generalized diameter functional : δ : P (X)× P (X)→ R+ ∪ {∞}, as:

δ(A,B) = sup{d(a, b) | a ∈ A, b ∈ B}.

In particular δ(A) := δ(A,A) is the diameter of the set A.
It is known (see Czerwik [12]) that (Pb,cl(X), H) is a complete b-metric space implies that (X, d) is a

complete b-metric space. In the sequel, the following results are useful for some of the proofs in the paper.

Lemma 1.7 ([12]). Let (X, d) be a b-metric space with constant s > 1 and let A,B ∈ P (X). We suppose
that there exists η > 0 such that:

(i) for each a ∈ A there is b ∈ B such that d(a, b) ≤ η;

(ii) for each b ∈ B there is a ∈ A such that d(a, b) ≤ η.

Then, H(A,B) ≤ η.

Lemma 1.8 ([12]). Let (X, d) be a b-metric space with constant s > 1, A ∈ P (X) and x ∈ X. Then
D(x,A) = 0 if and only if x ∈ A.

Lemma 1.9 ([12]). Let (X, d) be a b-metric space with constant s and let {xk}nk=0 ⊂ X. Then

1. D(x,A) ≤ s[d(x, y) +D(y,A)] for all x, y ∈ X and A ⊂ X.
2. d(xn, x0) ≤ sd(x0, x1) + ...+ sn−1d(xn−2, xn−1) + snd(xn−1, xn).

3. H(A,C) ≤ s[H(A,B) +H(B,C)] for all A,B,C ∈ P (X).

Lemma 1.10. Let (X, d) be a b-metric space with constant s > 1 and B ∈ Pcl(X). Assume that there exists
x ∈ X such that D(x,B) > 0. Then there exists y ∈ B such that

d(x, y) < qD(x,B),

where q > 1.

Proof. Because D(x,B) =inf{d(x, y) | y ∈ B} we have that for ε > 0, there exists y ∈ B such that

d(x, y) < D(x,B) + ε.

If we choose ε = (q − 1)D(x,B) > 0 then we reach the conclusion.

A mapping ϕ : [0,∞)→ [0,∞) is called a comparison function if it is increasing and ϕn(t)→ 0, n→∞,
for any t ∈ [0,∞). We denote by Φ, the class of the comparison functions ϕ : [0,∞) → [0,∞). For more
details and examples see e.g. [7, 23].

We recall the following essential result.

Lemma 1.11 ([7, 23]). If ϕ : [0,∞)→ [0,∞) is a comparison function, then:

(1) each iterate ϕk of ϕ, k ≥ 1, is also a comparison function;

(2) ϕ is continuous at 0;

(3) ϕ(t) < t, for any t > 0.
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Later, Berinde [7] introduced the concept of (c)-comparison function in the following way.

Definition 1.12 ([7]). A function ϕ : [0,∞)→ [0,∞) is said to be a (c)-comparison function if

(1) ϕ is increasing;

(2) there exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∑∞

k=1 vk such that
ϕk+1(t) ≤ aϕk(t) + vk for k ≥ k0 and any t ∈ [0,∞).

The notion of a (c)-comparison function was improved as a (b)-comparison function by Berinde [6], in
order to extend some fixed point results to the class of b-metric spaces.

Definition 1.13 ([6]). Let s ≥ 1 be a real number. A mapping ϕ : [0,∞)→ [0,∞) is called a (b)-comparison
function if the following conditions are fulfilled:

(1) ϕ is monotone increasing;

(2) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∑∞

k=1 vk such that
sk+1ϕk+1(t) ≤ askϕk(t) + vk, for k ≥ k0 and any t ∈ [0,∞).

We denote by Ψb the class of (b)-comparison functions. It is obvious that the concept of (b)-comparison
function reduces to that of (c)-comparison function when s = 1.

The following lemma has a crucial role in the proof of our main result.

Lemma 1.14 ([5]). If ϕ : [0,∞)→ [0,∞) is a (b)-comparison function, then we have the followings:

(1) the series
∑∞

k=0 s
kϕk(t) converges for any t ∈ R+;

(2) the function sb : [0,∞) → [0,∞) defined by sb(t) =
∑∞

k=0 s
kϕk(t), t ∈ [0,∞), is increasing and

continuous at 0.

We note that any (b)-comparison function is a comparison function due to the above Lemma.
We will need the following Generalized Cauchy lemma proved by Păcurar in [21].

Lemma 1.15. Let ϕ : R+ → R+ be a b−comparison function with constant s ≥ 1 and an ∈ R+, n ∈ N such
that an → 0, as n→∞ then

∞∑
k=0

sn−kϕn−k(ak)→ 0, as n→∞.

Let us denote by Ψ the family of nondecreasing functions ψ : [0,∞)→ [0,∞) such that
∑∞

n=1 ψ
n(t) <∞

for each t > 0, where ψn is the n-th iterate of ψ. It is clear that if Ψ ⊂ Φ (see e.g. [14]) and hence, by
Lemma 1.11, (3), for ψ ∈ Ψ we have ψ(t) < t, for any t > 0.

Let (X, d) be a b-metric space with constant s > 1 and let T : X → P (X) a multivalued operator. x ∈ X
is called fixed point for T if and only if x ∈ Tx. The set Fix (T ) = {x ∈ X : x ∈ Tx} is called the fixed
point set of T.

Definition 1.16 ([4]). Let T : X → P (X) and α : X ×X → [0,∞). We say that T is α∗-admissible if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α∗(T (x), T (y)) ≥ 1,

where α∗(A,B) = inf{α(a, b), a ∈ A, b ∈ B}.

Definition 1.17 ([4]). Let (X, d) be a metric space and T : X → P (X) be a multivalued operator. We say
that T is an (α∗ − ψ)-contractive multivalued operator if there exist two functions α : X ×X → [0,∞) and
ψ ∈ Ψ, such that

α∗(T (x), T (y))H(T (x), T (y)) ≤ ψ(d(x, y)) for all x, y ∈ X, (1.1)

where α∗(A,B) = inf{α(a, b), a ∈ A, b ∈ B}.
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Inspired from Definition 1.17 we introduce the following contraction types.

Definition 1.18. Let (X, d) be a b-metric space and T : X → Pcl(X) be a multivalued operator. We say
that T is an generalized (α∗ − ψ)-contractive multivalued operator of type (b) if there exist two functions
α : X ×X → [0,∞) and ψ ∈ Ψb, such that

α∗(T (x), T (y))H(T (x), T (y)) ≤ ψ(M(x, y)) for all x, y ∈ X, (1.2)

where

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(y, Tx)

2s

}
,

and α∗(A,B) = inf{α(a, b), a ∈ A, b ∈ B}.

Definition 1.19. Let (X, d) be a b-metric space and T : X → Pcl(X) be a multivalued operator. We say that
T is an (α∗ − ψ)-contractive multivalued operator of type (b) if there exist two functions α : X×X → [0,∞)
and ψ ∈ Ψb, such that

α∗(T (x), T (y))H(T (x), T (y)) ≤ ψ(d(x, y)), for all x, y ∈ X, (1.3)

where α∗(A,B) = inf{α(a, b), a ∈ A, b ∈ B}.

2. Fixed point results

Theorem 2.1. Let (X, d) be a complete b-metric space with constant s > 1 and d : X × X → R+ a
continuous b-metric. Let T : X → Pcl(X) be a generalized (α∗ − ψ)-contractive multivalued operator of
type-(b) with ψ(t) < t

s ,∀t > 0, satisfying the following conditions:

(i) T is α∗-admissible;

(ii) there exist x0 ∈ X and x1 ∈ T (x0) such that α(x0, x1) ≥ 1;

(iii) if (xn)n∈N is a sequence in X such that α(xn, xn+1) ≥ 1 and xn → x then α(xn, x) ≥ 1 for all n ∈ N.

Then T has a fixed point.

Proof. From (ii) we have that there exist x0 ∈ X and x1 ∈ T (x0) such that α(x0, x1) ≥ 1. Then by the
generalized (α∗ − ψ)-contraction condition we have

α∗(T (x0), T (x1))H(T (x0), T (x1)) ≤ ψ(M(x0, x1)), (2.1)

where

M(x0, x1) = max

{
d(x0, x1), D(x0, Tx0), D(x1, Tx1),

D(x0, Tx1) +D(x1, Tx0)

2s

}
.

Because x1 ∈ T (x0), we have that D(x1, Tx0) = 0. On the other hand D(x0, Tx0) ≤ d(x0, x1) hence,

M(x0, x1) = max

{
d(x0, x1), D(x1, Tx1),

D(x0, Tx1)

2s

}
.

We have
D(x0, Tx1)

2s
≤ 1

2
(d(x0, x1) +D(x1, Tx1)) ≤ max {d(x0, x1), D(x1, Tx1)} .

Thus, we obtain that
M(x0, x1) = max {d(x0, x1), D(x1, Tx1)} .
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Suppose that M(x0, x1) = D(x1, Tx1).

0 < D(x1, Tx1) ≤ H(T (x0), T (x1))

≤ α∗(T (x0), T (x1))H(T (x0), T (x1))

≤ ψ(M(x0, x1)) = ψ(D(x1, Tx1)),

which is a contradiction. Hence, we have that M(x0, x1) = d(x0, x1), and (2.1) becomes

α∗(T (x0), T (x1))H(T (x0), T (x1)) ≤ ψ(d(x0, x1)). (2.2)

Using Lemma 1.10, for q > 1, there exists x2 ∈ T (x1) such that

d(x1, x2) < qD(x1, T (x1)),

and hence

d(x1, x2) < qH(T (x0), T (x1))

≤ qα∗(T (x0), T (x1))H(T (x0), T (x1)).
(2.3)

From (2.2) and (2.3) we obtain that
d(x1, x2) < qψ(d(x0, x1)). (2.4)

Because ψ is increasing, from (2.4) we have

ψ(d(x1, x2)) < ψ (qψ(d(x0, x1))) . (2.5)

Let us consider q1 = ψ(qψ(d(x0,x1)))
ψd(x1,x2))

> 1.

Since T is α∗-admissible we have α∗(T (x0), T (x1)) ≥ 1. Using the definition of α∗ and the fact that
x1 ∈ T (x0) and x2 ∈ T (x1), we shall obtain that

α (x1, x2) ≥ 1,

and because T is α∗-admissible we shall have

α∗(T (x1), T (x2)) ≥ 1.

By the generalized (α∗ − ψ)-contraction condition we have

α∗(T (x1), T (x2))H(T (x1), T (x2)) ≤ ψ(M(x1, x2)), (2.6)

where

M(x1, x2) = max

{
d(x1, x2), D(x1, Tx1), D(x2, Tx2),

D(x1, Tx2) +D(x2, Tx1)

2s

}
.

It easy to see that M(x1, x2) = d(x1, x2), and (2.6) becomes

α∗(T (x1), T (x2))H(T (x1), T (x2))) ≤ ψ(d(x1, x2))).

For q1 > 1, there exists x3 ∈ T (x2) such that

d(x2, x3) < q1D(x2, T (x2)) ≤ q1H(T (x1), T (x2))

≤ q1α∗(T (x1), T (x2))H(T (x1), T (x2))

≤ q1ψ(d(x1, x2)).

From the definition of q1 we shall obtain that

d(x2, x3) < ψ (qψ(d(x0, x1))) .
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Hence, using the monotonicity of ψ we shall have

ψ (d(x2, x3)) < ψ2 (qψ(d(x0, x1))) .

Let us, now, consider q2 = ψ2(qψ(d(x0,x1)))
ψ(d(x2,x3))

> 1.

Since T is α∗-admissible we have α∗(T (x1), T (x2)) ≥ 1. Using the definition of α∗ and the fact that
x2 ∈ T (x1) and x3 ∈ T (x2), we shall obtain that

α (x2, x3) ≥ 1,

and because T is α∗-admissible we shall have

α∗(T (x2), T (x3)) ≥ 1.

By the generalized (α∗ − ψ)-contraction condition we have

α∗(T (x2), T (x3))H(T (x2), T (x3)) ≤ ψ(d(x2, x3)). (2.7)

For q2 > 1, there exists x4 ∈ T (x3) such that

d(x3, x4) < q2D(x3, T (x3)) ≤ q2H(T (x2), T (x3))

≤ q2α∗(T (x2), T (x3))H(T (x2), T (x3))

≤ q2ψ(M(x2, x3)).

Again, as above, it is easy to see that M(x2, x3) = d(x2, x3). Hence

d(x3, x4) < q2ψ(d(x2, x3)) ≤ ψ2 (qψ(d(x0, x1))) .

Using the monotonicity of ψ we shall have

ψ (d(x2, x3)) ≤ ψ3 (qψ(d(x0, x1))) .

By an inductive procedure we have that there exists xn+1 ∈ T (xn) such that α(xn, xn+1) ≥ 1 and

d(xn, xn+1) < ψn−1(qψ(d(x0, x1))) for each n ∈ N.

We shall prove that (xn)n∈N∗ is a Cauchy sequence.

d(xn, xn+p) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . .+ sp · d(xn+p−1, xn+p)

< s · ψn−1(qψ(d(x0, x1))) + s2 · ψn(qψ(d(x0, x1))) + . . .+ sp · ψn+p−2(qψ(d(x0, x1)))

=
1

sn−2
{
sn−1ψn−1(qψ(d(x0, x1))) + . . .+ sn+p−2 · ψn+p−2(qψ(d(x0, x1)))

}
=

1

sn−2
·
n+p−2∑
k=n−1

sk · ψk(qψ(d(x0, x1))).

Denoting Sn =
∑n

k=0 s
kψk(qψ(d(x0, x1))), n ≥ 1 we obtain:

d(xn, xn+p) ≤
1

sn−2
[Sn+p−2 − Sn−2], n ≥ 2, p ≥ 2. (2.8)

Using Lemma 1.14 we conclude that the series
∑∞

k=0 s
kψk(qψ(d(x0, x1))) is convergent.

Thus, there exists S = lim
n→∞

Sn and this will imply d(xn, xn+p)→ 0, as n→∞.
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In this way we obtain that (xn)n∈N∗ is a Cauchy sequence in the b-metric space (X, d). Since (X, d) is
complete, there exists x∗ ∈ X such that xn → x∗ as n→∞.

D(x∗, T (x∗)) ≤ sd(x∗, xn+1) + sD(xn+1, T (x∗))

≤ sd(x∗, xn+1) + sH(T (xn), T (x∗))

≤ sd(x∗, xn+1) + sψ(M(xn, x
∗),

where

M(xn, x
∗) = max

{
d(xn, x

∗), D(xn, Txn), D(x∗, Tx∗),
D(xn, Tx

∗) +D(x∗, Txn)

2s

}
.

Letting n → ∞ we obtain that d(xn, x
∗) → 0, D(xn, Txn) < d(xn, xn+1) → 0, D(x∗, Txn) → 0. Hence

M(xn, x
∗)→ D(x∗, Tx∗), as n→∞.

From the properties of ψ we have that

D(x∗, T (x∗)) ≤ sψ(D(x∗, Tx∗)) < s
D(x∗, Tx∗)

s
= D(x∗, Tx∗),

which is a contradiction, so D(x∗, T (x∗)) = 0 and since T (x∗) is closed we obtain x∗ ∈ T (x∗).

Theorem 2.2. Adding to the hypotheses of Theorem 2.1, the condition: α (x∗, y∗) ≥ 1 for all x∗, y∗ ∈
Fix(T ), we obtain that x∗ = y∗.

Proof. From the conditions of Theorem 2.1. we have that T has a fixed point.
Suppose now that there exist x∗, y∗ ∈ Fix(T ), x∗ 6= y∗. Hence d(x∗, y∗) 6= 0. Moreover D(x∗, T (y∗)) > 0.
Using Lemma 1.10, with q = s, we obtain

d(x∗, y∗) < sD(x∗, T (y∗)) (2.9)

We have that α (x∗, y∗) ≥ 1, and because T is α∗-admissible we shall obtain that α∗ (T (x∗) , T (y∗)) ≥ 1.
Now from 2.9 we have

d(x∗, y∗) < sD(x∗, T (y∗)) ≤ sH(T (x∗) , T (y∗))

≤ sα∗(T (x∗) , T (y∗))H(T (x∗) , T (y∗))

≤ sψ(M(x∗, y∗)),

where

M(x∗, y∗) = max

{
d(x∗, y∗), D(x∗, T (x∗)), D(y∗, T y∗),

D(x∗, Ty∗) +D(y∗, Tx∗)

2s

}
= max

{
d(x∗, y∗),

d(x∗, y∗)

s

}
= d(x∗, y∗).

Hence, we obtain
d(x∗, y∗) ≤ sψ(d(x∗, y∗)) < d(x∗, y∗),

which is a contradiction. Hence x∗ = y∗ and, thus, T has a unique fixed point.

We now state the following consequences of our results.

Corollary 2.3. Let (X, d) be a complete b-metric space with constant s > 1, and d : X × X → R+ a
continuous b-metric. Let T : X → Pcl(X) be a generalized (α∗ − ψ)-contractive multivalued operator of
type-(b) with ψ(t) < t

s ,∀t > 0, satisfying the following conditions:

(i) T is α∗-admissible;
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(ii) There exist x0 ∈ X and x1 ∈ T (x0) such that α(x0, x1) ≥ 1;

(iii) If (xn)n∈N is a sequence in X such that α(xn, xn+1) ≥ 1 and xn → x then α(xn, x) ≥ 1, for all n ∈ N.

Then T has a fixed point.

The proof is verbatim of Theorem 2.1, and hence we omitted.

Theorem 2.4. Adding to the hypotheses of Corollary 2.3, the condition: α (x∗, y∗) ≥ 1 for all x∗, y∗ ∈
Fix(T ), we obtain that x∗ = y∗.

In what follows, we state the consequence of in the context of metric space. For this purpose, we state
the following notion that is inspired from Definition 1.18 we introduce the following contraction types.

Definition 2.5. Let (X, d) be a b-metric space and T : X → Pcl(X) be a multivalued operator. We say that
T is an generalized (α∗ − ψ)-contractive multivalued operator if there exist two functions α : X×X → [0,∞)
and ψ ∈ Ψ, such that

α∗(T (x), T (y))H(T (x), T (y)) ≤ ψ(M(x, y)), for all x, y ∈ X, (2.10)

where

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(y, Tx)

2

}
,

and α∗(A,B) = inf{α(a, b), a ∈ A, b ∈ B}.

If s = 1 in Theorem 2.1, then we get the following result in the context of metric space.

Corollary 2.6. Let (X, d) be a complete metric space. Let T : X → Pcl(X) be a generalized (α∗ − ψ)-
contractive multivalued operator. Suppose also that it satisfying the following conditions:

(i) T is α∗-admissible;

(ii) there exist x0 ∈ X and x1 ∈ T (x0) such that α(x0, x1) ≥ 1;

(iii) if (xn)n∈N is a sequence in X such that α(xn, xn+1) ≥ 1 and xn → x, then α(xn, x) ≥ 1 for all n ∈ N.

Then T has a fixed point.

The following results (which is a main result of [4]) follows immediately.

Corollary 2.7. Let (X, d) be a complete metric space. Let T : X → Pcl(X) be a (α∗ − ψ)-contractive
multivalued operator. Suppose also that it satisfying the following conditions:

(i) T is α∗-admissible;

(ii) there exist x0 ∈ X and x1 ∈ T (x0) such that α(x0, x1) ≥ 1;

(iii) if (xn)n∈N is a sequence in X such that α(xn, xn+1) ≥ 1 and xn → x, then α(xn, x) ≥ 1 for all n ∈ N.

Then T has an fixed point.

Example 2.8. Let X = {−1,−2,−3} ∪ [0,∞) and d : X × X → R+ such that d(x, y) = |x − y| for all
x, y ∈ [0,∞) and d(x,−1) = d(x,−2) = 0 for all x ∈ [0,∞) and d (−3,−1) = d (−1,−3) = d (−3,−2) =
d (−2,−3) = 1, d (−1,−2) = d (−2,−1) = A ≥ 2, d (−3,−3) = d (−1,−1) = d (−2,−2) = 0. Then

d (x, y) ≤ A

2
[d (x, z) + d (z, y)] for x, y, z ∈ X.
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Then (X, d) is a b-metric space. If A > 2 the ordinary triangle inequality does not hold and (X, d) is not a
metric space.

Let ψ(t) = t
4 and define now Tx =

{
[0, x8 ] if 0 ≤ x ≤ 1,

(x2 ,
x
4 ) otherwise,

and α(x, y) =

{
1 if x, y ∈ [0, 1]
0 otherwise.

It is enough to examine two cases:
Case (I). Suppose x, y ∈ [0, 1]. Then,

α∗(T (x), T (y))H(T (x), T (y)) = |x
8
− y

8
| ≤ |x− y|

4
= ψ(d(x, y)) ≤ ψ(M(x, y)), for all x, y ∈ X, (2.11)

Case (II). Suppose x, y ∈ X ⊂ [0, 1]. Then,

α∗(T (x), T (y))H(T (x), T (y)) = 0 ≤ ψ(M(x, y)), for all x, y ∈ X, (2.12)

T is an (α∗ − ψ)-contractive multivalued operator of type (b). On the other hand, for α(x, y) ≥ 1, we
have x, y ∈ [0, 1) and hence α∗(x, y) ≥ 1. That is, T is α∗-admissible. For any sequence {xn} with xn → x
and α(xn, xn+1) ≥ 1, we have xn, x ∈ [0, 1] and hence α(xn, x) ≥ 1. So all hypothesis of Theorem 2.1 are
satisfied and T has a fixed point.

3. Well-posedness of the fixed point problem

In this section we present a well-posedness result for the fixed point problem.

Definition 3.1. Let (X, d) be a b-metric space with constant s > 1 and T : X → Pcl(X) be a multivalued
operator. The fixed point problem for T with respect to D is well-posed if

(a) FixT = {x∗} ;

(b) If (xn)n∈N is a sequence such that D (xn, T (xn))→ 0, as n→∞, then xn → x∗, as n→∞.

Theorem 3.2. Let (X, d) be a complete b-metric space with constant s > 1. Suppose that all the hypotheses
of Theorem 2.2 hold. Additionally we suppose that

(i) the function ψ is continuous;

(ii) for any sequence (xn)n∈N, with D (xn, T (xn)) → 0, as n → ∞, we have α (xn, x
∗) ≥ 1 for all n ∈ N,

where x∗ ∈ FixT.

In these conditions the fixed point problem for T with respect to D is well-posed.

Proof. Let (xn)n∈N is a sequence such that D (xn, T (xn))→ 0, as n→∞. We are in conditions of Theorem
2.2. Thus FixT = {x∗} .

From (ii) we have that α (xn, x
∗) ≥ 1 for all n ∈ N, and because T is α∗-admissible we shall obtain that

α∗ (T (xn) , T (x∗)) ≥ 1.
We shall prove that xn → x∗, as n→∞.
We have

d (xn, x
∗) ≤ sH(T (xn) , T (x∗)) + sD(xn, T (xn))

≤ sα∗ (T (xn) , T (x∗))H(T (xn) , T (x∗)) + sD(xn, T (xn))

≤ sψ(M(xn, x
∗)) + sD(xn, T (xn)).

Hence we have
d (xn, x

∗) ≤ sψ(M(xn, x
∗)) + sD(xn, T (xn)), (3.1)

where
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M(xn, x
∗) = max

{
d(xn, x

∗), D(xn, Txn), D(x∗, Tx∗),
D(xn, Tx

∗) +D(x∗, Txn)

2s

}
.

Because D(xn,Tx∗)+D(x∗,Txn)
2s ≤ d(xn, x

∗) + 1
2D(xn, Txn), we shall obtain that

M(xn, x
∗) ≤ max

{
d(xn, x

∗), D(xn, Txn), d(xn, x
∗) +

1

2
D(xn, Txn)

}
.

Let us suppose that there exists δ > 0 such that d(xn, x
∗)→ δ, as n→∞. Hence lim

n→∞
M(xn, x

∗) ≤ δ.
If in (3.1), n→∞, then using the continuity of the function ψ, we have

δ ≤ sψ (δ) < δ,

which is a contradiction.
Thus δ = 0 which implies that xn → x∗, as n→∞.

4. Ulam-Hyers stability

Definition 4.1. Let (X, d) be a b-metric space and T : X → P (X) be a multivalued operator. The fixed
point inclusion

x ∈ T (x), x ∈ X (4.1)

is called generalized Ulam-Hyers stable if and only if there exists ς : R+ → R+ which is increasing and
continuous in 0 and ς(0) = 0, such that for each ε > 0 and for each solution y∗ ∈ X of the inequality

D(y, T (y)) ≤ ε, (4.2)

there exists a solution x∗ of the fixed point inclusion (4.1) such that

d(y∗, x∗) ≤ ς(ε).

If there exists c > 0 such that ς(t) := c · t, for each t ∈ R+, then the fixed point inclusion (4.1) is said to
be Ulam-Hyers stable.

Remark 4.2. The definition of generalized Ulam-Hyers stability uses a function ψ instead of ς. We work with
ς because ψ is used to denote (α∗ − ψ)-contraction.

For other results regarding the Ulam-Hyers stability see also [9], [19], [22], [24], [25].

Theorem 4.3. Let (X, d) be a complete b-metric space with constant s > 1. Suppose that all the hypotheses
of Theorem 2.1 hold. Additionally we suppose that

(i) ψ(t) < t
2s and the function β : [0,∞)→ [0,∞), β(r) := r − 2sψ(r) is increasing and onto;

(ii) for any solution y∗ ∈ X of (18) we have α (x∗, y∗) ≥ 1, where x∗ ∈ Fix (T ) .

In this conditions the fixed point inclusion (4.1) is generalized Ulam-Hyers stable.

Proof. We are in the conditions of Theorem 2.1, hence there exists x∗ ∈ Fix (T ) . Let ε > 0 and y∗ be a
solution of (4.2).

From (ii) we have that α (x∗, y∗) ≥ 1, and because T is α∗-admissible we shall obtain that
α∗ (T (x∗) , T (y∗)) ≥ 1.

We have

d(x∗, y∗) ≤ sH(T (x∗) , T (y∗)) + sD(y∗, T (y∗))

≤ sα∗(T (x∗) , T (y∗))H(T (x∗) , T (y∗)) + sD(y∗, T (y∗))

≤ sψ(M(x∗, y∗)) + sε,
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where

M(x∗, y∗) = max

{
d(x∗, y∗), D(x∗, T (x∗)), D(y∗, T y∗),

D(x∗, Ty∗) +D(y∗, Tx∗)

2s

}
.

We have

D(x∗, T y∗) +D(y∗, Tx∗)

2s
≤ 1

2s
(sd(x∗, y∗) + sD(y∗, Ty∗) + d(x∗, y∗))

=
s+ 1

2s
d(x∗, y∗) +

1

2
D(y∗, Ty∗)

≤ d(x∗, y∗) +
1

2
ε

≤ max {2d(x∗, y∗), ε} .

From here we have
M(x∗, y∗) ≤ max {2d(x∗, y∗), ε} .

It is obvious that if 2d(x∗, y∗) ≤ ε the result is proved. Suppose that max {2d(x∗, y∗), ε} = 2d(x∗, y∗). Hence
M(x∗, y∗) ≤ 2d(x∗, y∗) and

2d(x∗, y∗) ≤ 2sψ(2d(x∗, y∗))) + 2sε

2d(x∗, y∗)− 2sψ(2d(x∗, y∗)) ≤ 2sε. (4.3)

From (4.3) we get that
β (2d(x∗, y∗)) ≤ 2sε,

and hence

d(x∗, y∗) ≤ 1

2
β−1 (2sε) .

Hence (4.1) is generalized Ulam-Hyers stable.
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Iaşi. Mat., 57 (2011), 65–74. 4
[10] N. Bourbaki, General Topology, springer-verlage, Paris, (1974). 1.2
[11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. 1.2
[12] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46

(1998), 263–276. 1.1, 1.2, 1, 1.7, 1.8, 1.9



M.-F. Bota, C. Chifu, E. Karapinar, J. Nonlinear Sci. Appl. 9 (2016), 1165–1177 1177

[13] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, (2001). 1.2
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