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Abstract

Zhu, Zhou and Xu showed an integral formula of Lp-mixed geominimal surface area by the p-Petty body.
In this paper, we give an integral representation of Lp-dual mixed geominimal surface area and establish
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1. Introduction

Let Kn denote the set of convex bodies (compact, convex subsets with nonempty interiors) in Euclidean
space Rn. For the set of convex bodies containing the origin in their interiors and the set of convex bodies
whose centroid lie at the origin in Rn, we write Kno and Knc , respectively. Let Sno and Snc respectively denote
the set of star bodies (about the origin) and the set of star bodies whose centroid lie at the origin in Rn.
Let Sn−1 denote the unit sphere in Rn and V (K) denote the n-dimensional volume of the body K. For the
standard unit ball B in Rn, its volume is written by ωn = V (B).

The notion of Lp-geominimal surface area was given by Lutwak (see [7]). For K ∈ Kno , p ≥ 1, the
Lp-geominimal surface area, Gp(K), of K is defined

ω
p
n
n Gp(K) = inf{nVp(K,L)V (L∗)

p
n : L ∈ Kno }.

Here Vp(K,L) denotes Lp-mixed volume of K,L ∈ Kno (see [6, 7]) and L∗ denotes the polar of L. For
the case p = 1, Gp(K) is just classical geominimal surface area which is introduced by Petty ([8]). Some
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affine isoperimetric inequalities related to the classical and Lp geominimal surface areas can be found in
[1, 4, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17].

In [7], Lutwak gave the infimum in the definition of Lp-geominimal surface area.

Proposition 1.1. For K ∈ Kno and p ≥ 1, there exists a unique body TpK ∈ T n with

Gp(K) = nVp(K,TpK).

Here T n = {T ∈ Kn : s(T ) = o, V (T ∗) = ωn}, s(T ) denotes the Santaló point of T , the body TpK is
called the p-Petty body of K and T ∗

pK denotes the polar of TpK. When p = 1, the subscript will often be
suppressed and defined by Petty (see [8]).

From Proposition 1.1, Zhu, Zhou and Xu (see [18]) obtained the following fact.

Proposition 1.2. For K ∈ Fno and p ≥ 1, there exists a unique convex body TpK ∈ T n with

Gp(K) =

∫
Sn−1

hpTpK(u)fp(K,u)dS(u).

Here hM (·) denotes the support function of M ∈ Kn, fp(K, ·) denotes the Lp-curvature function of
K ∈ Kno and Fno denotes the set of Kno that have a positive continuous Lp-curvature function.

Moreover, Zhu, Zhou and Xu (see [18]) studied the Lp-mixed geominimal surface area. They defined the
Lp-mixed geominimal surface areas as follows:

Definition 1.3. Let Ki ∈ Fno and p ≥ 1, for each i (i = 1, · · · , n), there exists a unique body (Petty body
of Ki) Ti = TpKi ∈ T n with

Gp(K1, · · · ,Kn) =

∫
Sn−1

[gp(K1, u) · · · gp(Kn, u)]
1
ndS(u).

Here gp(Ki, ·) = hpTi(·)fp(Ki, ·).
For the Lp-mixed geominimal surface area, they (see [18]) proved the following results.

Theorem 1.4. If n 6= p > 1, and K1, . . . ,Kn ∈ Fno , then for 1 ≤ m ≤ n,[
Gp(K1, . . . ,Kn)

]m
≤

m−1∏
i=0

Gp(K1, · · · ,Kn−m,Kn−i, · · · ,Kn−i︸ ︷︷ ︸
m

).

Equality holds if and only if the Kj are dilates of each other for j = n −m + 1, · · · , n. If m = 1 equality
holds trivially.

Theorem 1.5. If K,L ∈ Fno , n 6= p ≥ 1, i, j, k ∈ R and i < j < k, then

Gp,j(K,L)k−i ≤ Gp,i(K,L)k−jGp,k(K,L)j−i

with equality if and only if K and L are dilates.

Theorem 1.6. If K,L ∈ Fnc , n 6= p ≥ 1, i ∈ R and 0 < i < n, then

Gp,i(K,L)Gp,i(K
∗, L∗) ≤ (nωn)2

with equality if and only if K and L are dilated ellipsoids.
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Here Fnc denotes the set of Knc that have a positive continuous Lp-curvature function.
Based on the Lp-dual mixed volume, Wang and Qi (see [13]) gave the notion of Lp-dual geominimal

surface area as follows:

Definition 1.7. For K ∈ Kno and p ≥ 1, the Lp-dual geominimal surface area, G̃−p(K), of K is defined by

ω
− p
n

n G̃−p(K) = inf{nṼ−p(K,L)V (L∗)−
p
n ;L ∈ Kno }. (1.1)

Here Ṽ−p(K,L) denotes Lp-dual mixed volume of K and L, and

Ṽ−p(K,L) =
1

n

∫
Sn−1

ρn+pK (u)ρ−pL (u)dS(u), (1.2)

where ρK(·) denotes the radial function of K ∈ Sno .
In this paper, we firstly obtain the infimum in the above definition as follows:

Proposition 1.8. If K ∈ Kno and p ≥ 1, then there exists a unique body K̃ ∈ T̃ n, such that

G̃−p(K) = nṼ−p(K, K̃). (1.3)

Here T̃ n = {T̃ ∈ Kno : V (T̃ ∗) = ωn}.
By Proposition 1.8 and (1.2), we have the following integral representation of G̃−p(K).

Proposition 1.9. For K ∈ Kno and p ≥ 1, there exists a unique body K̃ ∈ T̃ n with

G̃−p(K) =

∫
Sn−1

ρ(K,u)n+pρ(K̃, u)−pdS(u). (1.4)

Next, corresponding to Definition 1.3, we define integral form of Lp-dual mixed geominimal surface area
by Proposition 1.9.

Definition 1.10. For each Ki ∈ Kno and p ≥ 1, there exists a unique body K̃i ∈ T̃ n (i = 1, · · · , n) with

G̃−p(K1, . . . ,Kn) =

∫
Sn−1

[ρ(K1, u)n+pρ(K̃1, u)−p · · · ρ(Kn, u)n+pρ(K̃n, u)−p]
1
ndS(u). (1.5)

Let g̃−p(Ki, ·) = ρ(Ki, ·)n+pρ(K̃i, ·)−p, then G̃−p(K1, . . . ,Kn) can be written as follows:

G̃−p(K1, . . . ,Kn) =

∫
Sn−1

[g̃−p(K1, u) · · · g̃−p(Kn, u)]
1
ndS(u). (1.6)

Let K1 = · · · = Kn−i︸ ︷︷ ︸
n−i

= K and Kn−i+1 = · · · = Kn︸ ︷︷ ︸
i

= L (i = 0, 1, · · · , n) in (1.6), we denote G̃−p,i(K,L) =

G̃−p(K, · · · ,K︸ ︷︷ ︸
n−i

, L, · · · , L︸ ︷︷ ︸
i

). More general, if i is any real, we define that: for K,L ∈ Kno , p ≥ 1, the ith

Lp-dual mixed geominimal surface area, G̃−p,i(K,L), of K and L by

G̃−p,i(K,L) =

∫
Sn−1

g̃−p(K,u)
n−i
n g̃−p(L, u)

i
ndS(u). (1.7)

From Proposition 1.8, we easily know B̃ = B. Thus, let L = B in (1.7) and write

G̃−p,i(K,B) = G̃−p,i(K), (1.8)
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then (1.7), (1.8) and ρ(B, ·) = 1 yield

G̃−p,i(K) =

∫
Sn−1

g̃−p(K,u)
n−i
n dS(u). (1.9)

Obviously, from (1.6), (1.7) and (1.9), we have

G̃−p,0(K) = G̃−p(K), (1.10)

G̃−p,0(K,L) = G̃−p(K), G̃−p,n(K,L) = G̃−p(L). (1.11)

Further, associated with the Lp-dual mixed geominimal surface areas, we give the following dual results
of Theorems 1.4,1.5 and 1.6, respectively.

Theorem 1.11. If K1, · · · ,Kn ∈ Kno , 1 ≤ m ≤ n, then for p ≥ 1,[
G̃−p(K1, · · · ,Kn)

]m
≤

m−1∏
i=0

G̃−p(K1, · · · ,Kn−m,Kn−i, · · · ,Kn−i︸ ︷︷ ︸
m

) (1.12)

with equality if and only if there exist positive constants c1, c2, · · · , cm such that for all u ∈ Sn−1,

c1ρ
n+p
Kn

(u)ρ−p
K̃n

(u) = c2ρ
n+p
Kn−1

(u)ρ−p
K̃n−1

(u) = · · · = cmρ
n+p
Kn−m+1

(u)ρ−p
K̃n−m+1

(u).

Theorem 1.12. For K,L ∈ Kno , p ≥ 1, i, j, k ∈ R. If i < j < k, then

G̃−p,j(K,L)k−i ≤ G̃−p,i(K,L)k−jG̃−p,k(K,L)j−i (1.13)

with equality if and only if K and L are dilates of each other.

Theorem 1.13. If K,L ∈ Knc , p ≥ 1, i ∈ R and 0 ≤ i ≤ n, then

G̃−p,i(K,L)G̃−p,i(K
∗, L∗) ≤ (nωn)2 (1.14)

with equality if and only if K and L are dilated ellipsoids of each other.

2. Notation and Background Materials

If K ∈ Kn, then its support function, hK = h(K, ·) : Rn −→ (−∞,+∞), is defined by (see [3])

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn, (2.1)

where x · y denotes the standard inner product of x and y.
If K is a compact star-shaped (with respect to the origin) in Rn, then its radial function, ρK(·) = ρ(K, ·) :

Rn \ {0} → [0,∞), is defined by (see [3, 10])

ρ(K,u) = max{λ ≥ 0 : λu ∈ K}, u ∈ Sn−1. (2.2)

If ρK is positive and continuous, K will be called a star body (respect to the origin). Two star bodies K
and L are said to be dilates (of one another) if ρK(u)/ρL(u) is independent of u ∈ Sn−1.

If E is a nonempty subset in Rn, the polar set, E∗, of E is defined by (see [3, 10])

E∗ = {x ∈ Rn : x · y ≤ 1, y ∈ E}.

If K ∈ Kno , it follows that K∗∗ = K and

ρ(K,u)−1 = h(K∗, u), ρ(K∗, u)−1 = h(K,u) (2.3)
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for all u ∈ Sn−1.
For K ∈ Kno and its polar body, the well-known Blaschke-Stantaló inequality can be stated that (see [3]):

If K ∈ Knc , then
V (K)V (K∗) ≤ ω2

n (2.4)

with equality if and only if K is an ellipsoid centered at the origin.
For K,L ∈ Sno , p ≥ 1 and λ, µ ≥ 0 (not both zero), the Lp-harmonic radial combination, λ?K+̃−pµ?L ∈

Sno , of K and L is defined by (see [2, 7])

ρ(λ ? K+̃−pµ ? L, ·)−p = λρ(K, ·)−p + µρ(L, ·)−p, (2.5)

where the operation ’+̃−p’ is called Lp-harmonic radial addition and λ ? K denotes the Lp-harmonic radial

scalar multiplication. From (2.5), we can obtain λ ? K = λ
− 1
pK.

If K,L ∈ Kno (rather than being in Sno ), then

(λ ? K+̃−pµ ? L)∗ = λ ·K∗ +p µ · L∗. (2.6)

For the Lp-harmonic radial combinations, Lutwak (see [7]) proved the following dual Lp-Brunn-
Minkowski inequality.

Lemma 2.1. If K,L ∈ Sno , p ≥ 1 and λ, µ ≥ 0 (not both zero), then

V (λ ? K+̃−pµ ? L)
−p
n ≥ λV (K)

−p
n + µV (L)

−p
n (2.7)

with equality if and only if K and L are dilates of each other.

3. Proof of Proposition 1.8

In order to prove Proposition 1.8, we require the following lemmas.

Lemma 3.1 ([7]). Let Cn denote the set of compact convex subsets of Euclidean n-space Rn. Suppose
Ki ∈ Kno and Ki → L ∈ Cn. If the sequence V (K∗

i ) is bounded, then L ∈ Kno .

Lemma 3.2. Suppose Ki → K ∈ Kno and Li → L ∈ Kno . If p ≥ 1, then Ṽ−p(Ki, Li)→ Ṽ−p(K,L).

Proof. Since Ki → K ∈ Kno and Li → L ∈ Kno , ρKi → ρK and ρLi → ρL uniformly on Sn−1. Notice that
ρK , ρL is continuous, the ρKi and ρLi are uniformly bounded on Sn−1. Hence,

ρn+pKi
→ ρn+pK , ρ−pLi → ρ−pL .

This yields ∫
Sn−1

ρ(Ki, u)n+pρ(Li, u)−pdu→
∫
Sn−1

[ρ(K,u)n+pρ(L, u)−p]dS(u),

i.e.
Ṽ−p(Ki, Li)→ Ṽ−p(K,L).

Proof of Proposition 1.8. From the definition of G̃−p(K), there exists a sequence Mi ∈ Kno such that
V (M∗

i ) = ωn, with Vp(K,B) ≥ Vp(K,Mi), for all i, and

Ṽ−p(K,Mi)→ G̃−p(K)

Since Mi ∈ Kno , thus Mi are uniformly bounded for all i (see [7]). From this, the Blaschke selection theorem
guarantees the existence of a subsequence of the Mi, which will also be denoted by Mi, and a compact
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convex L ∈ Cn, such that Mi → L. Since V (M∗
i ) = ωn, Lemma 3.1 gives L ∈ Kno . Now, Mi → L implies

that M∗
i → L∗, and since V (M∗

i ) = ωn, it follows that V (L∗) = ωn. Lemma 3.2 can now be used to conclude

that L will serve as the desired body K̃.
The uniqueness of the minimizing body is easily demonstrated as follows. Suppose L1, L2 ∈ Kno , such

that V (L∗
1) = ωn = V (L∗

2), and

Ṽ−p(K,L1) = Ṽ−p(K,L2).

Define L ∈ Kno , by

L =
1

2
? L1+̃−p

1

2
? L2,

Ṽ−p(K,L) = Ṽ−p(K,L1) = Ṽ−p(K,L2).

Since obviously,

L∗ =
1

2
· L∗

1+p
1

2
· L∗

2,

and V (L∗
1) = ωn = V (L∗

2), it follows from Lemma 2.1 that V (L∗) ≥ ωn, with equality if and only if L1 = L2.
Thus,

Ṽ−p(K,L)V (L∗)
p
n < Ṽ−p(K,L1)V (L∗

1)
p
n

is the contradiction that would arise if it were the case that L1 6= L2. This completes the proof.

4. Proofs of Results

In order to prove Theorem 1.11, we require the following lemma (see [5]).

Lemma 4.1. If f0, f1, · · · fm are (strictly) positive continuous functions defined on Sn−1 and λ1, · · ·λm are
positive constants the sum of whose reciprocals is unity, then∫

Sn−1

f0(u) · · · fm(u)dS(u) ≤
m∏
i=1

(∫
Sn−1

f0(u)fλii (u)dS(u)

) 1
λi

(4.1)

with equality if and only if there exist positive constants α1, α2, · · · , αm such that α1f
λ1
1 (u) = · · · = αmf

λm
m (u)

for all u ∈ Sn−1.

Proof of Theorem 1.11. Let λi = m (1 ≤ i ≤ n),

f0(u) = [g̃−p(K1, u) . . . g̃−p(Kn−m, u)]
1
n ,

fi+1(u) = [g̃−p(Kn−i, u)]
1
n , (0 ≤ i ≤ m− 1),

by (1.6) and Lemma 4.1, we get

G̃−p(K1, . . . ,Kn) =

∫
Sn−1

[g̃−p(K1, u) · · · g̃−p(Kn, u)]
1
ndS(u)

≤
m−1∏
i=0

(∫
Sn−1

f0(u)fi+1(u)mdS(u)

) 1
m

=

m−1∏
i=0

(∫
Sn−1

[g̃−p(K1, u) · · · g̃−p(Kn−m, u)g̃−p(Kn−i, u)m]
1
ndS(u)

) 1
m

=

m−1∏
i=0

G̃−p(K1, . . . ,Kn−m,Kn−i, . . . ,Kn−i︸ ︷︷ ︸) 1
m .
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According to the equality condition of Lemma 4.1, we see that equality holds in inequality (1.12) if and
only if there exist positive constants c1, c2, · · · , cm such that

c1ρ
n+p
Kn

(u)ρ−p
K̃n

(u) = c2ρ
n+p
Kn−1

(u)ρ−p
K̃n−1

(u) = · · · = cmρ
n+p
Kn−m+1

(u)ρ−p
K̃n−m+1

(u)

for all u ∈ Sn−1.

Corollary 4.2. If K1, · · · ,Kn ∈ Kno , then for p ≥ 1,[
G̃−p(K1, · · · ,Kn)

]n
≤ G̃−p(K1) · · · G̃−p(Kn) (4.2)

with equality if and only if there exist constants c1, c2, · · · , cn (not all zero) such that for all u ∈ Sn−1,

c1ρ
n+p
Kn

(u)ρ−p
K̃n

(u) = c2ρ
n+p
Kn−1

(u)ρ−p
K̃n−1(u)

= · · · = cnρ
n+p
K1

(u)ρ−p
K̃1

(u).

Proof. Let m = n in Theorem 1.11 and by (1.1), we easily obtain Corollary 4.2.
According to the equality condition of (1.12), we see that equality holds in (4.2) if and only if there exist

constants c1, c2, · · · , cn (not all zero) such that for all u ∈ Sn−1,

c1ρ
n+p
Kn

(u)ρ−p
K̃n

(u) = c2ρ
n+p
Kn−1

(u)ρ−p
K̃n−1

(u) = · · · = cnρ
n+p
K1

(u)ρ−p
K̃1

(u).

Proof of Theorem 1.12. Since i < j < k, thus k−i
k−j > 1. From (1.6) and Hölder inequality, we obtain

G̃−p,i(K,L)
k−j
k−i G̃−p,k(K,L)

j−i
k−i

=

[
1

n

∫
Sn−1

g̃−p(K,u)
n−i
n g̃−p(L, u)

i
ndS(u)

] k−j
k−i

×
[

1

n

∫
Sn−1

g̃−p(K,u)
n−k
n g̃−p(L, u)

k
ndS(u)

] j−i
k−i

=

[
1

n

∫
Sn−1

[g̃−p(K,u)
(n−i)(k−j)
n(k−i) g̃−p(L, u)

i(k−j)
n(k−i) ]

k−i
k−j dS(u)

] k−j
k−i

×
[

1

n

∫
Sn−1

[g̃−p(K,u)
(n−k)(j−i)
n(k−i) g̃−p(L, u)

k(j−i)
n(k−i) ]

k−i
j−i dS(u)

] j−i
k−i

≥ 1

n

∫
Sn−1

g̃−p(K,u)
n−j
n g̃−p(L, u)

j
ndS(u)

= G̃−p,j(K,L).

This gives the desired inequality (1.13). According to the equality conditions of the Hölder inequality, we
know that equality holds in (1.13) if and only if there exists a constant λ > 0 such that[

g̃−p(K,u)
(n−i)(k−j)
n(k−i) g̃−p(L, u)

i(k−j)
n(k−i)

] k−i
k−j

= λ

[
g̃−p(K,u)

(n−k)(j−i)
n(k−i) g̃−p(L, u)

k(j−i)
n(k−i)

] k−i
j−i
,

i.e. g̃−p(K,u) = λg̃−p(L, u) for all u ∈ Sn−1. Thus equality holds in (1.13) if and only if K and L are dilates
of each other.

Let L = B in Theorem 1.12 and use (1.8), we obtain the following corollary.
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Corollary 4.3. If K ∈ Kno , p ≥ 1, i, j, k ∈ R and i < j < k, then

G̃−p,j(K)k−i ≤ G̃−p,i(K)k−jG̃−p,k(K)j−i (4.3)

with equality if and only if K and L are dilates of each other.

By Theorem 1.12, we also get the Minkowski inequality for the Lp-dual mixed geominimal surface area
as follows:

Corollary 4.4. If K,L ∈ Kno , n 6= p ≥ 1 and i ∈ R, then for i < 0 or i > n,

G̃−p,i(K,L)n ≥ G̃−p(K)n−iG̃−p(L)i; (4.4)

for 0 < i < n,
G̃−p,i(K,L)n ≤ G̃−p(K)n−iG̃−p(L)i. (4.5)

In every case, equality holds if and only if K and L are dilates of each other.

Proof. For i < 0, take (i, j, k) = (i, 0, n) in Theorem 1.12, we have

G̃−p,i(K,L)nG̃−p,n(K,L)−i ≥ G̃−p,0(K,L)n−i, (4.6)

i.e.
G̃−p,i(K,L)n ≥ G̃−p(K)n−iG̃−p(L)i (4.7)

with equality if and only if K and L are dilates of each other.
In the same way, let (i, j, k) = (0, n, i) for i > n in Theorem 1.12, we obtain

G̃−p,i(K,L)n ≥ G̃−p(K)n−iG̃−p(L)i (4.8)

with equality if and only if K and L are dilates of each other.
Similarly, let (i, j, k) = (0, i, n) for 0 < i < n in Theorem 1.12, we easily get

G̃−p,i(K,L)n ≤ G̃−p(K)n−iG̃−p(L)i (4.9)

with equality if and only if K and L are dilates of each other.

Let L = B in Corollary 4.4, and notice G−p(B) = nωn by (1.9), we have that:

Corollary 4.5. If K ∈ Kno , n 6= p ≥ 1, i ∈ R, then for i < 0 or i > n,

G̃−p,i(K)n ≥ (nωn)iG̃−p(K)n−i; (4.10)

for 0 < i < n
G̃−p,i(K)n ≤ (nωn)iG̃−p(K)n−i. (4.11)

In each case, equality holds if and only if K is a ball centered at the origin.

In order to prove Theorem 1.13, we require the following result (see [13]).

Lemma 4.6. If K ∈ Knc , n ≥ p ≥ 1, then

G̃−p(K)G̃−p(K
∗) ≤ (nωn)2

with equality if and only if K is an ellipsoid.

Proof of Theorem 1.13. For 0 < i < n, n ≥ p ≥ 1, and by (4.5) and Lemma 4.6, we have

G̃−p,i(K,L)nG̃−p,i(K
∗, L∗)n ≤ [G̃−p(K)G̃−p(K

∗)]n−i[G̃−p(L)G̃−p(L
∗)]i ≤ (nωn)2n

with equality if and only if K and L are dilated ellipsoids of each other.
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For the Lp-dual geominimal surface area, Wang and Qi (see [13]) proved the following result.

Lemma 4.7. If K ∈ Knc , p ≥ 1, then

G̃−p(K) ≥ n(ωn)−
p
nV (K)

n+p
n (4.12)

with equality if and only if K is an ellipsoid centered at the origin.

Combining with (4.12), we can prove the following fact.

Theorem 4.8. If K,L ∈ Knc , p ≥ 1, i ∈ R and i < 0, then

G̃−p,i(K) ≥ nω
(n+p)i−pn

n2
n V (K)

(n+p)(n−i)
n2 (4.13)

with equality if and only if K is a ball centered at the origin.

Proof. For i < 0, by (4.10) and (4.12), we get

G̃−p,i(K)n ≥ (nωn)iG̃−p(K)n−i

≥ (nωn)i[n(ωn)−
p
nV (K)

n+p
n ]n−i

= nnω
(n+p)i−pn

n
n V (K)

(n+p)(n−i)
n ,

i.e.

G̃−p,i(K) ≥ nω
(n+p)i−pn

n2
n V (K)

(n+p)(n−i)
n2

with equality if and only if K is a ball centered at the origin.
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