L_{p}-dual mixed geominimal surface areas

Yan Lia ${ }^{a}$, Wang Weidong ${ }^{\text {a,* }}$, Si Lin ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, China Three Gorges University, Yichang, 443002, P. R. China.
${ }^{b}$ Department of Mathematics, Beijing Forestry University, Beijing, 100083, P. R. China.
Communicated by R. Saadati

Abstract

Zhu, Zhou and Xu showed an integral formula of L_{p}-mixed geominimal surface area by the p-Petty body. In this paper, we give an integral representation of $L_{p^{\prime}}$-dual mixed geominimal surface area and establish several related inequalities. © 2016 All rights reserved.

Keywords: $\quad L_{p}$-mixed geominimal surface area, L_{p}-dual mixed geominimal surface area, integral representation.
2010 MSC: 52A20, 52A40.

1. Introduction

Let \mathcal{K}^{n} denote the set of convex bodies (compact, convex subsets with nonempty interiors) in Euclidean space \mathbb{R}^{n}. For the set of convex bodies containing the origin in their interiors and the set of convex bodies whose centroid lie at the origin in \mathbb{R}^{n}, we write \mathcal{K}_{o}^{n} and \mathcal{K}_{c}^{n}, respectively. Let \mathcal{S}_{o}^{n} and \mathcal{S}_{c}^{n} respectively denote the set of star bodies (about the origin) and the set of star bodies whose centroid lie at the origin in \mathbb{R}^{n}. Let S^{n-1} denote the unit sphere in \mathbb{R}^{n} and $V(K)$ denote the n-dimensional volume of the body K. For the standard unit ball B in \mathbb{R}^{n}, its volume is written by $\omega_{n}=V(B)$.

The notion of L_{p}-geominimal surface area was given by Lutwak (see [7]). For $K \in \mathcal{K}_{o}^{n}, p \geq 1$, the L_{p}-geominimal surface area, $G_{p}(K)$, of K is defined

$$
\omega_{n}^{\frac{p}{n}} G_{p}(K)=\inf \left\{n V_{p}(K, L) V\left(L^{*}\right)^{\frac{p}{n}}: L \in \mathcal{K}_{o}^{n}\right\} .
$$

Here $V_{p}(K, L)$ denotes L_{p}-mixed volume of $K, L \in \mathcal{K}_{o}^{n}\left(\right.$ see [6, [7) and L^{*} denotes the polar of L. For the case $p=1, G_{p}(K)$ is just classical geominimal surface area which is introduced by Petty ([8]). Some

[^0]affine isoperimetric inequalities related to the classical and L_{p} geominimal surface areas can be found in [1, 4, 17, 8, 9, 10, 11, 12, 14, 15, 16, 17].

In [7], Lutwak gave the infimum in the definition of L_{p}-geominimal surface area.
Proposition 1.1. For $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$, there exists a unique body $T_{p} K \in \mathcal{T}^{n}$ with

$$
G_{p}(K)=n V_{p}\left(K, T_{p} K\right)
$$

Here $\mathcal{T}^{n}=\left\{T \in \mathcal{K}^{n}: s(T)=o, V\left(T^{*}\right)=\omega_{n}\right\}, s(T)$ denotes the Santaló point of T, the body $T_{p} K$ is called the p-Petty body of K and $T_{p}^{*} K$ denotes the polar of $T_{p} K$. When $p=1$, the subscript will often be suppressed and defined by Petty (see [8]).

From Proposition 1.1, Zhu, Zhou and Xu (see [18]) obtained the following fact.
Proposition 1.2. For $K \in \mathcal{F}_{o}^{n}$ and $p \geq 1$, there exists a unique convex body $T_{p} K \in \mathcal{T}^{n}$ with

$$
G_{p}(K)=\int_{S^{n-1}} h_{T_{p} K}^{p}(u) f_{p}(K, u) d S(u)
$$

Here $h_{M}(\cdot)$ denotes the support function of $M \in \mathcal{K}^{n}, f_{p}(K, \cdot)$ denotes the L_{p}-curvature function of $K \in \mathcal{K}_{o}^{n}$ and \mathcal{F}_{o}^{n} denotes the set of \mathcal{K}_{o}^{n} that have a positive continuous L_{p}-curvature function.

Moreover, Zhu, Zhou and Xu (see [18]) studied the L_{p}-mixed geominimal surface area. They defined the L_{p}-mixed geominimal surface areas as follows:

Definition 1.3. Let $K_{i} \in \mathcal{F}_{o}^{n}$ and $p \geq 1$, for each $i(i=1, \cdots, n)$, there exists a unique body (Petty body of $\left.K_{i}\right) T_{i}=T_{p} K_{i} \in \mathcal{T}^{n}$ with

$$
G_{p}\left(K_{1}, \cdots, K_{n}\right)=\int_{S^{n-1}}\left[g_{p}\left(K_{1}, u\right) \cdots g_{p}\left(K_{n}, u\right)\right]^{\frac{1}{n}} d S(u)
$$

Here $g_{p}\left(K_{i}, \cdot\right)=h_{T_{i}}^{p}(\cdot) f_{p}\left(K_{i}, \cdot\right)$.
For the L_{p}-mixed geominimal surface area, they (see [18]) proved the following results.
Theorem 1.4. If $n \neq p>1$, and $K_{1}, \ldots, K_{n} \in \mathcal{F}_{o}^{n}$, then for $1 \leq m \leq n$,

$$
\left[G_{p}\left(K_{1}, \ldots, K_{n}\right)\right]^{m} \leq \prod_{i=0}^{m-1} G_{p}(K_{1}, \cdots, K_{n-m}, \underbrace{K_{n-i}, \cdots, K_{n-i}}_{m})
$$

Equality holds if and only if the K_{j} are dilates of each other for $j=n-m+1, \cdots, n$. If $m=1$ equality holds trivially.

Theorem 1.5. If $K, L \in \mathcal{F}_{o}^{n}, n \neq p \geq 1, i, j, k \in \mathbb{R}$ and $i<j<k$, then

$$
G_{p, j}(K, L)^{k-i} \leq G_{p, i}(K, L)^{k-j} G_{p, k}(K, L)^{j-i}
$$

with equality if and only if K and L are dilates.
Theorem 1.6. If $K, L \in \mathcal{F}_{c}^{n}, n \neq p \geq 1, i \in \mathbb{R}$ and $0<i<n$, then

$$
G_{p, i}(K, L) G_{p, i}\left(K^{*}, L^{*}\right) \leq\left(n \omega_{n}\right)^{2}
$$

with equality if and only if K and L are dilated ellipsoids.

Here \mathcal{F}_{c}^{n} denotes the set of \mathcal{K}_{c}^{n} that have a positive continuous L_{p}-curvature function.
Based on the L_{p}-dual mixed volume, Wang and Qi (see [13]) gave the notion of L_{p}-dual geominimal surface area as follows:

Definition 1.7. For $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$, the L_{p}-dual geominimal surface area, $\widetilde{G}_{-p}(K)$, of K is defined by

$$
\begin{equation*}
\omega_{n}^{-\frac{p}{n}} \widetilde{G}_{-p}(K)=\inf \left\{n \widetilde{V}_{-p}(K, L) V\left(L^{*}\right)^{-\frac{p}{n}} ; L \in \mathcal{K}_{o}^{n}\right\} \tag{1.1}
\end{equation*}
$$

Here $\widetilde{V}_{-p}(K, L)$ denotes L_{p}-dual mixed volume of K and L, and

$$
\begin{equation*}
\widetilde{V}_{-p}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n+p}(u) \rho_{L}^{-p}(u) d S(u) \tag{1.2}
\end{equation*}
$$

where $\rho_{K}(\cdot)$ denotes the radial function of $K \in \mathcal{S}_{o}^{n}$.
In this paper, we firstly obtain the infimum in the above definition as follows:
Proposition 1.8. If $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$, then there exists a unique body $\widetilde{K} \in \widetilde{\mathcal{T}}^{n}$, such that

$$
\begin{equation*}
\widetilde{G}_{-p}(K)=n \widetilde{V}_{-p}(K, \widetilde{K}) \tag{1.3}
\end{equation*}
$$

Here $\widetilde{\mathcal{T}}^{n}=\left\{\widetilde{T} \in \mathcal{K}_{\rho}^{n}: V\left(\widetilde{T}^{*}\right)=\omega_{n}\right\}$.
By Proposition 1.8 and 1.2 , we have the following integral representation of $\widetilde{G}_{-p}(K)$.
Proposition 1.9. For $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$, there exists a unique body $\widetilde{K} \in \widetilde{\mathcal{T}}^{n}$ with

$$
\begin{equation*}
\widetilde{G}_{-p}(K)=\int_{S^{n-1}} \rho(K, u)^{n+p} \rho(\widetilde{K}, u)^{-p} d S(u) \tag{1.4}
\end{equation*}
$$

Next, corresponding to Definition 1.3, we define integral form of L_{p}-dual mixed geominimal surface area by Proposition 1.9 .

Definition 1.10. For each $K_{i} \in \mathcal{K}_{o}^{n}$ and $p \geq 1$, there exists a unique body $\widetilde{K}_{i} \in \widetilde{\mathcal{T}}^{n}(i=1, \cdots, n)$ with

$$
\begin{equation*}
\widetilde{G}_{-p}\left(K_{1}, \ldots, K_{n}\right)=\int_{S^{n-1}}\left[\rho\left(K_{1}, u\right)^{n+p} \rho\left(\widetilde{K}_{1}, u\right)^{-p} \cdots \rho\left(K_{n}, u\right)^{n+p} \rho\left(\widetilde{K}_{n}, u\right)^{-p}\right]^{\frac{1}{n}} d S(u) . \tag{1.5}
\end{equation*}
$$

Let $\widetilde{g}_{-p}\left(K_{i}, \cdot\right)=\rho\left(K_{i}, \cdot\right)^{n+p} \rho\left(\widetilde{K}_{i}, \cdot\right)^{-p}$, then $\widetilde{G}_{-p}\left(K_{1}, \ldots, K_{n}\right)$ can be written as follows:

$$
\begin{equation*}
\widetilde{G}_{-p}\left(K_{1}, \ldots, K_{n}\right)=\int_{S^{n-1}}\left[\widetilde{g}_{-p}\left(K_{1}, u\right) \cdots \widetilde{g}_{-p}\left(K_{n}, u\right)\right]^{\frac{1}{n}} d S(u) \tag{1.6}
\end{equation*}
$$

Let $\underbrace{K_{1}=\cdots=K_{n-i}}_{n-i}=K$ and $\underbrace{K_{n-i+1}=\cdots=K_{n}}_{i}=L(i=0,1, \cdots, n)$ in $\sqrt{1.6}$, we denote $\widetilde{G}_{-p, i}(K, L)=$ $\widetilde{G}_{-p}(\underbrace{K, \cdots, K}_{n-i}, \underbrace{L, \cdots, L}_{i})$. More general, if i is any real, we define that: for $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$, the i th L_{p}-dual mixed geominimal surface area, $\widetilde{G}_{-p, i}(K, L)$, of K and L by

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K, L)=\int_{S^{n-1}} \widetilde{g}_{-p}(K, u)^{\frac{n-i}{n}} \widetilde{g}_{-p}(L, u)^{\frac{i}{n}} d S(u) \tag{1.7}
\end{equation*}
$$

From Proposition 1.8, we easily know $\widetilde{B}=B$. Thus, let $L=B$ in 1.7 and write

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K, B)=\widetilde{G}_{-p, i}(K) \tag{1.8}
\end{equation*}
$$

then 1.7$), 1.8$ and $\rho(B, \cdot)=1$ yield

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K)=\int_{S^{n-1}} \widetilde{g}_{-p}(K, u)^{\frac{n-i}{n}} d S(u) \tag{1.9}
\end{equation*}
$$

Obviously, from (1.6), 1.7) and (1.9), we have

$$
\begin{gather*}
\widetilde{G}_{-p, 0}(K)=\widetilde{G}_{-p}(K) \tag{1.10}\\
\widetilde{G}_{-p, 0}(K, L)=\widetilde{G}_{-p}(K), \quad \widetilde{G}_{-p, n}(K, L)=\widetilde{G}_{-p}(L) . \tag{1.11}
\end{gather*}
$$

Further, associated with the L_{p}-dual mixed geominimal surface areas, we give the following dual results of Theorems 1.41.5 and 1.6, respectively.

Theorem 1.11. If $K_{1}, \cdots, K_{n} \in \mathcal{K}_{o}^{n}, 1 \leq m \leq n$, then for $p \geq 1$,

$$
\begin{equation*}
\left[\widetilde{G}_{-p}\left(K_{1}, \cdots, K_{n}\right)\right]^{m} \leq \prod_{i=0}^{m-1} \widetilde{G}_{-p}(K_{1}, \cdots, K_{n-m}, \underbrace{K_{n-i}, \cdots, K_{n-i}}_{m}) \tag{1.12}
\end{equation*}
$$

with equality if and only if there exist positive constants $c_{1}, c_{2}, \cdots, c_{m}$ such that for all $u \in S^{n-1}$,

$$
c_{1} \rho_{K_{n}}^{n+p}(u) \rho_{\widetilde{K}_{n}}^{-p}(u)=c_{2} \rho_{K_{n-1}}^{n+p}(u) \rho_{\widetilde{K}_{n-1}}^{-p}(u)=\cdots=c_{m} \rho_{K_{n-m+1}}^{n+p}(u) \rho_{\widetilde{K}_{n-m+1}}^{-p}(u)
$$

Theorem 1.12. For $K, L \in \mathcal{K}_{o}^{n}, p \geq 1, i, j, k \in \mathbb{R}$. If $i<j<k$, then

$$
\begin{equation*}
\widetilde{G}_{-p, j}(K, L)^{k-i} \leq \widetilde{G}_{-p, i}(K, L)^{k-j} \widetilde{G}_{-p, k}(K, L)^{j-i} \tag{1.13}
\end{equation*}
$$

with equality if and only if K and L are dilates of each other.
Theorem 1.13. If $K, L \in \mathcal{K}_{c}^{n}, p \geq 1, i \in \mathbb{R}$ and $0 \leq i \leq n$, then

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K, L) \widetilde{G}_{-p, i}\left(K^{*}, L^{*}\right) \leq\left(n \omega_{n}\right)^{2} \tag{1.14}
\end{equation*}
$$

with equality if and only if K and L are dilated ellipsoids of each other.

2. Notation and Background Materials

If $K \in \mathcal{K}^{n}$, then its support function, $h_{K}=h(K, \cdot): \mathbb{R}^{n} \longrightarrow(-\infty,+\infty)$, is defined by (see [3])

$$
\begin{equation*}
h(K, x)=\max \{x \cdot y: y \in K\}, \quad x \in \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

where $x \cdot y$ denotes the standard inner product of x and y.
If K is a compact star-shaped (with respect to the origin) in \mathbb{R}^{n}, then its radial function, $\rho_{K}(\cdot)=\rho(K, \cdot)$: $\mathbb{R}^{n} \backslash\{0\} \rightarrow[0, \infty)$, is defined by (see [3, 10])

$$
\begin{equation*}
\rho(K, u)=\max \{\lambda \geq 0: \lambda u \in K\}, \quad u \in S^{n-1} \tag{2.2}
\end{equation*}
$$

If ρ_{K} is positive and continuous, K will be called a star body (respect to the origin). Two star bodies K and L are said to be dilates (of one another) if $\rho_{K}(u) / \rho_{L}(u)$ is independent of $u \in S^{n-1}$.

If E is a nonempty subset in \mathbb{R}^{n}, the polar set, E^{*}, of E is defined by (see [3, 10])

$$
E^{*}=\left\{x \in \mathbb{R}^{n}: x \cdot y \leq 1, y \in E\right\}
$$

If $K \in \mathcal{K}_{o}^{n}$, it follows that $K^{* *}=K$ and

$$
\begin{equation*}
\rho(K, u)^{-1}=h\left(K^{*}, u\right), \quad \rho\left(K^{*}, u\right)^{-1}=h(K, u) \tag{2.3}
\end{equation*}
$$

for all $u \in S^{n-1}$.
For $K \in \mathcal{K}_{o}^{n}$ and its polar body, the well-known Blaschke-Stantaló inequality can be stated that (see [3]): If $K \in \mathcal{K}_{c}^{n}$, then

$$
\begin{equation*}
V(K) V\left(K^{*}\right) \leq \omega_{n}^{2} \tag{2.4}
\end{equation*}
$$

with equality if and only if K is an ellipsoid centered at the origin.
For $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$ and $\lambda, \mu \geq 0$ (not both zero), the L_{p}-harmonic radial combination, $\lambda \star K_{+_{-p}} \mu \star L \in$ \mathcal{S}_{o}^{n}, of K and L is defined by (see [2, 7])

$$
\begin{equation*}
\rho\left(\lambda \star K \tilde{+}_{-p} \mu \star L, \cdot\right)^{-p}=\lambda \rho(K, \cdot)^{-p}+\mu \rho(L, \cdot)^{-p} \tag{2.5}
\end{equation*}
$$

where the operation ' $\widetilde{+}_{-p}$ ' is called L_{p}-harmonic radial addition and $\lambda \star K$ denotes the L_{p}-harmonic radial scalar multiplication. From (2.5), we can obtain $\lambda \star K=\lambda^{-\frac{1}{p}} K$.

If $K, L \in \mathcal{K}_{o}^{n}$ (rather than being in \mathcal{S}_{o}^{n}), then

$$
\begin{equation*}
\left(\lambda \star K \tilde{+}_{-p} \mu \star L\right)^{*}=\lambda \cdot K^{*}+{ }_{p} \mu \cdot L^{*} . \tag{2.6}
\end{equation*}
$$

For the L_{p}-harmonic radial combinations, Lutwak (see [7]) proved the following dual L_{p}-BrunnMinkowski inequality.

Lemma 2.1. If $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$ and $\lambda, \mu \geq 0$ (not both zero), then

$$
\begin{equation*}
V\left(\lambda \star K \widetilde{+}_{-p} \mu \star L\right)^{\frac{-p}{n}} \geq \lambda V(K)^{\frac{-p}{n}}+\mu V(L)^{\frac{-p}{n}} \tag{2.7}
\end{equation*}
$$

with equality if and only if K and L are dilates of each other.

3. Proof of Proposition 1.8

In order to prove Proposition 1.8, we require the following lemmas.
Lemma 3.1 ($7 \mathbf{7}$). Let \mathcal{C}^{n} denote the set of compact convex subsets of Euclidean n-space \mathbb{R}^{n}. Suppose $K_{i} \in \mathcal{K}_{o}^{n}$ and $K_{i} \rightarrow L \in \mathcal{C}^{n}$. If the sequence $V\left(K_{i}^{*}\right)$ is bounded, then $L \in \mathcal{K}_{o}^{n}$.

Lemma 3.2. Suppose $K_{i} \rightarrow K \in \mathcal{K}_{o}^{n}$ and $L_{i} \rightarrow L \in \mathcal{K}_{o}^{n}$. If $p \geq 1$, then $\widetilde{V}_{-p}\left(K_{i}, L_{i}\right) \rightarrow \widetilde{V}_{-p}(K, L)$.
Proof. Since $K_{i} \rightarrow K \in \mathcal{K}_{o}^{n}$ and $L_{i} \rightarrow L \in \mathcal{K}_{o}^{n}, \rho_{K_{i}} \rightarrow \rho_{K}$ and $\rho_{L_{i}} \rightarrow \rho_{L}$ uniformly on S^{n-1}. Notice that ρ_{K}, ρ_{L} is continuous, the $\rho_{K_{i}}$ and $\rho_{L_{i}}$ are uniformly bounded on S^{n-1}. Hence,

$$
\rho_{K_{i}}^{n+p} \rightarrow \rho_{K}^{n+p}, \rho_{L_{i}}^{-p} \rightarrow \rho_{L}^{-p} .
$$

This yields

$$
\int_{S^{n-1}} \rho\left(K_{i}, u\right)^{n+p} \rho\left(L_{i}, u\right)^{-p} d u \rightarrow \int_{S^{n-1}}\left[\rho(K, u)^{n+p} \rho(L, u)^{-p}\right] d S(u),
$$

i.e.

$$
\widetilde{V}_{-p}\left(K_{i}, L_{i}\right) \rightarrow \widetilde{V}_{-p}(K, L) .
$$

Proof of Proposition 1.8. From the definition of $\widetilde{G}_{-p}(K)$, there exists a sequence $M_{i} \in \mathcal{K}_{o}^{n}$ such that $V\left(M_{i}^{*}\right)=\omega_{n}$, with $V_{p}(K, B) \geq V_{p}\left(K, M_{i}\right)$, for all i, and

$$
\widetilde{V}_{-p}\left(K, M_{i}\right) \rightarrow \widetilde{G}_{-p}(K)
$$

Since $M_{i} \in \mathcal{K}_{o}^{n}$, thus M_{i} are uniformly bounded for all i (see [7]). From this, the Blaschke selection theorem guarantees the existence of a subsequence of the M_{i}, which will also be denoted by M_{i}, and a compact
convex $L \in \mathcal{C}^{n}$, such that $M_{i} \rightarrow L$. Since $V\left(M_{i}^{*}\right)=\omega_{n}$, Lemma 3.1 gives $L \in \mathcal{K}_{o}^{n}$. Now, $M_{i} \rightarrow L$ implies that $M_{i}^{*} \rightarrow L^{*}$, and since $V\left(M_{i}^{*}\right)=\omega_{n}$, it follows that $V\left(L^{*}\right)=\omega_{n}$. Lemma 3.2 can now be used to conclude that L will serve as the desired body \widetilde{K}.

The uniqueness of the minimizing body is easily demonstrated as follows. Suppose $L_{1}, L_{2} \in \mathcal{K}_{o}^{n}$, such that $V\left(L_{1}^{*}\right)=\omega_{n}=V\left(L_{2}^{*}\right)$, and

$$
\widetilde{V}_{-p}\left(K, L_{1}\right)=\widetilde{V}_{-p}\left(K, L_{2}\right)
$$

Define $L \in \mathcal{K}_{o}^{n}$, by

$$
\begin{aligned}
L & =\frac{1}{2} \star L_{1} \tilde{+}_{-p} \frac{1}{2} \star L_{2} \\
\widetilde{V}_{-p}(K, L) & =\widetilde{V}_{-p}\left(K, L_{1}\right)=\widetilde{V}_{-p}\left(K, L_{2}\right)
\end{aligned}
$$

Since obviously,

$$
L^{*}=\frac{1}{2} \cdot L_{1}^{*}+{ }_{p} \frac{1}{2} \cdot L_{2}^{*}
$$

and $V\left(L_{1}^{*}\right)=\omega_{n}=V\left(L_{2}^{*}\right)$, it follows from Lemma 2.1 that $V\left(L^{*}\right) \geq \omega_{n}$, with equality if and only if $L_{1}=L_{2}$. Thus,

$$
\widetilde{V}_{-p}(K, L) V\left(L^{*}\right)^{\frac{p}{n}}<\widetilde{V}_{-p}\left(K, L_{1}\right) V\left(L_{1}^{*}\right)^{\frac{p}{n}}
$$

is the contradiction that would arise if it were the case that $L_{1} \neq L_{2}$. This completes the proof.

4. Proofs of Results

In order to prove Theorem 1.11, we require the following lemma (see [5]).
Lemma 4.1. If $f_{0}, f_{1}, \cdots f_{m}$ are (strictly) positive continuous functions defined on S^{n-1} and $\lambda_{1}, \cdots \lambda_{m}$ are positive constants the sum of whose reciprocals is unity, then

$$
\begin{equation*}
\int_{S^{n-1}} f_{0}(u) \cdots f_{m}(u) d S(u) \leq \prod_{i=1}^{m}\left(\int_{S^{n-1}} f_{0}(u) f_{i}^{\lambda_{i}}(u) d S(u)\right)^{\frac{1}{\lambda_{i}}} \tag{4.1}
\end{equation*}
$$

with equality if and only if there exist positive constants $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ such that $\alpha_{1} f_{1}^{\lambda_{1}}(u)=\cdots=\alpha_{m} f_{m}^{\lambda_{m}}(u)$ for all $u \in S^{n-1}$.

Proof of Theorem 1.11. Let $\lambda_{i}=m(1 \leq i \leq n)$,

$$
\begin{gathered}
f_{0}(u)=\left[\widetilde{g}_{-p}\left(K_{1}, u\right) \ldots \widetilde{g}_{-p}\left(K_{n-m}, u\right)\right]^{\frac{1}{n}} \\
f_{i+1}(u)=\left[\widetilde{g}_{-p}\left(K_{n-i}, u\right)\right]^{\frac{1}{n}}, \quad(0 \leq i \leq m-1)
\end{gathered}
$$

by (1.6) and Lemma 4.1, we get

$$
\begin{aligned}
\widetilde{G}_{-p}\left(K_{1}, \ldots, K_{n}\right) & =\int_{S^{n-1}}\left[\widetilde{g}_{-p}\left(K_{1}, u\right) \cdots \widetilde{g}_{-p}\left(K_{n}, u\right)\right]^{\frac{1}{n}} d S(u) \\
& \leq \prod_{i=0}^{m-1}\left(\int_{S^{n-1}} f_{0}(u) f_{i+1}(u)^{m} d S(u)\right)^{\frac{1}{m}} \\
& =\prod_{i=0}^{m-1}\left(\int_{S^{n-1}}\left[\widetilde{g}_{-p}\left(K_{1}, u\right) \cdots \widetilde{g}_{-p}\left(K_{n-m}, u\right) \widetilde{g}_{-p}\left(K_{n-i}, u\right)^{m}\right]^{\frac{1}{n}} d S(u)\right)^{\frac{1}{m}} \\
& =\prod_{i=0}^{m-1} \widetilde{G}_{-p}(K_{1}, \ldots, K_{n-m}, \underbrace{K_{n-i}, \ldots, K_{n-i}})^{\frac{1}{m}}
\end{aligned}
$$

According to the equality condition of Lemma 4.1, we see that equality holds in inequality 1.12 if and only if there exist positive constants $c_{1}, c_{2}, \cdots, c_{m}$ such that

$$
c_{1} \rho_{K_{n}}^{n+p}(u) \rho_{\widetilde{K}_{n}}^{-p}(u)=c_{2} \rho_{K_{n-1}}^{n+p}(u) \rho_{\widetilde{K}_{n-1}}^{-p}(u)=\cdots=c_{m} \rho_{K_{n-m+1}}^{n+p}(u) \rho_{\widetilde{K}_{n-m+1}}^{-p}(u)
$$

for all $u \in S^{n-1}$.
Corollary 4.2. If $K_{1}, \cdots, K_{n} \in \mathcal{K}_{o}^{n}$, then for $p \geq 1$,

$$
\begin{equation*}
\left[\widetilde{G}_{-p}\left(K_{1}, \cdots, K_{n}\right)\right]^{n} \leq \widetilde{G}_{-p}\left(K_{1}\right) \cdots \widetilde{G}_{-p}\left(K_{n}\right) \tag{4.2}
\end{equation*}
$$

with equality if and only if there exist constants $c_{1}, c_{2}, \cdots, c_{n}$ (not all zero) such that for all $u \in S^{n-1}$,

$$
c_{1} \rho_{K_{n}}^{n+p}(u) \rho_{\widetilde{K}_{n}}^{-p}(u)=c_{2} \rho_{K_{n-1}}^{n+p}(u) \rho_{\widetilde{K}_{n-1}(u)}^{-p}=\cdots=c_{n} \rho_{K_{1}}^{n+p}(u) \rho_{\widetilde{K}_{1}}^{-p}(u)
$$

Proof. Let $m=n$ in Theorem 1.11 and by 1.1 , we easily obtain Corollary 4.2 ,
According to the equality condition of 1.12 , we see that equality holds in (4.2) if and only if there exist constants $c_{1}, c_{2}, \cdots, c_{n}$ (not all zero) such that for all $u \in S^{n-1}$,

$$
c_{1} \rho_{K_{n}}^{n+p}(u) \rho_{\widetilde{K}_{n}}^{-p}(u)=c_{2} \rho_{K_{n-1}}^{n+p}(u) \rho_{\widetilde{K}_{n-1}}^{-p}(u)=\cdots=c_{n} \rho_{K_{1}}^{n+p}(u) \rho_{\widetilde{K}_{1}}^{-p}(u) .
$$

Proof of Theorem 1.12. Since $i<j<k$, thus $\frac{k-i}{k-j}>1$. From 1.6) and Hölder inequality, we obtain

$$
\begin{aligned}
& \widetilde{G}_{-p, i}(K, L)^{\frac{k-j}{k-i}} \widetilde{G}_{-p, k}(K, L)^{\frac{j-i}{k-i}} \\
&= {\left[\frac{1}{n} \int_{S^{n-1}} \widetilde{g}_{-p}(K, u)^{\frac{n-i}{n}} \widetilde{g}_{-p}(L, u)^{\frac{i}{n}} d S(u)\right]^{\frac{k-j}{k-i}} } \\
& \times\left[\frac{1}{n} \int_{S^{n-1}} \widetilde{g}_{-p}(K, u)^{\frac{n-k}{n}} \widetilde{g}_{-p}(L, u)^{\frac{k}{n}} d S(u)\right]^{\frac{j-i}{k-i}} \\
&= {\left[\frac { 1 } { n } \int _ { S ^ { n - 1 } } \left[\widetilde{g}_{-p}(K, u)^{\frac{(n-i)(k-j)}{n(k-i)}} \widetilde{g}_{-p}(L, u)^{\left.\left.\frac{i(k-j)}{n(k-i)}\right]^{\frac{k-i}{k-j}} d S(u)\right]^{\frac{k-j}{k-i}}}\right.\right.} \\
& \times\left[\frac { 1 } { n } \int _ { S ^ { n - 1 } } \left[\widetilde{g}_{-p}(K, u)^{\frac{(n-k)(j-i)}{n(k-i)}} \widetilde{g}_{-p}(L, u)^{\left.\left.\frac{k(j-i)}{n(k-i)}\right]^{\frac{k-i}{j-i}} d S(u)\right]^{\frac{j-i}{k-i}}}\right.\right. \\
& \geq \frac{1}{n} \int_{S^{n-1}} \widetilde{g}_{-p}(K, u)^{\frac{n-j}{n}} \widetilde{g}_{-p}(L, u)^{\frac{j}{n}} d S(u) \\
&= \widetilde{G}_{-p, j}(K, L) .
\end{aligned}
$$

This gives the desired inequality 1.13 . According to the equality conditions of the Hölder inequality, we know that equality holds in 1.13 if and only if there exists a constant $\lambda>0$ such that

$$
\left[\widetilde{g}_{-p}(K, u)^{\frac{(n-i)(k-j)}{n(k-i)}} \widetilde{g}_{-p}(L, u)^{\frac{i(k-j)}{n(k-i)}}\right]^{\frac{k-i}{k-j}}=\lambda\left[\widetilde{g}_{-p}(K, u)^{\frac{(n-k)(j-i)}{n(k-i)}} \widetilde{g}_{-p}(L, u)^{\frac{k(j-i)}{n(k-i)}}\right]^{\frac{k-i}{j-i}}
$$

i.e. $\widetilde{g}_{-p}(K, u)=\lambda \widetilde{g}_{-p}(L, u)$ for all $u \in S^{n-1}$. Thus equality holds in 1.13) if and only if K and L are dilates of each other.

Let $L=B$ in Theorem 1.12 and use 1.8 , we obtain the following corollary.

Corollary 4.3. If $K \in \mathcal{K}_{o}^{n}, p \geq 1, i, j, k \in \mathbb{R}$ and $i<j<k$, then

$$
\begin{equation*}
\widetilde{G}_{-p, j}(K)^{k-i} \leq \widetilde{G}_{-p, i}(K)^{k-j} \widetilde{G}_{-p, k}(K)^{j-i} \tag{4.3}
\end{equation*}
$$

with equality if and only if K and L are dilates of each other.
By Theorem 1.12, we also get the Minkowski inequality for the L_{p}-dual mixed geominimal surface area as follows:

Corollary 4.4. If $K, L \in \mathcal{K}_{o}^{n}, n \neq p \geq 1$ and $i \in \mathbb{R}$, then for $i<0$ or $i>n$,

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K, L)^{n} \geq \widetilde{G}_{-p}(K)^{n-i} \widetilde{G}_{-p}(L)^{i} \tag{4.4}
\end{equation*}
$$

for $0<i<n$,

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K, L)^{n} \leq \widetilde{G}_{-p}(K)^{n-i} \widetilde{G}_{-p}(L)^{i} \tag{4.5}
\end{equation*}
$$

In every case, equality holds if and only if K and L are dilates of each other.
Proof. For $i<0$, take $(i, j, k)=(i, 0, n)$ in Theorem 1.12, we have

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K, L)^{n} \widetilde{G}_{-p, n}(K, L)^{-i} \geq \widetilde{G}_{-p, 0}(K, L)^{n-i} \tag{4.6}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K, L)^{n} \geq \widetilde{G}_{-p}(K)^{n-i} \widetilde{G}_{-p}(L)^{i} \tag{4.7}
\end{equation*}
$$

with equality if and only if K and L are dilates of each other.
In the same way, let $(i, j, k)=(0, n, i)$ for $i>n$ in Theorem 1.12 , we obtain

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K, L)^{n} \geq \widetilde{G}_{-p}(K)^{n-i} \widetilde{G}_{-p}(L)^{i} \tag{4.8}
\end{equation*}
$$

with equality if and only if K and L are dilates of each other.
Similarly, let $(i, j, k)=(0, i, n)$ for $0<i<n$ in Theorem 1.12, we easily get

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K, L)^{n} \leq \widetilde{G}_{-p}(K)^{n-i} \widetilde{G}_{-p}(L)^{i} \tag{4.9}
\end{equation*}
$$

with equality if and only if K and L are dilates of each other.
Let $L=B$ in Corollary 4.4, and notice $G_{-p}(B)=n \omega_{n}$ by (1.9), we have that:
Corollary 4.5. If $K \in \mathcal{K}_{o}^{n}, n \neq p \geq 1, i \in \mathbb{R}$, then for $i<0$ or $i>n$,

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K)^{n} \geq\left(n \omega_{n}\right)^{i} \widetilde{G}_{-p}(K)^{n-i} \tag{4.10}
\end{equation*}
$$

for $0<i<n$

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K)^{n} \leq\left(n \omega_{n}\right)^{i} \widetilde{G}_{-p}(K)^{n-i} \tag{4.11}
\end{equation*}
$$

In each case, equality holds if and only if K is a ball centered at the origin.
In order to prove Theorem 1.13, we require the following result (see [13]).
Lemma 4.6. If $K \in \mathcal{K}_{c}^{n}, n \geq p \geq 1$, then

$$
\widetilde{G}_{-p}(K) \widetilde{G}_{-p}\left(K^{*}\right) \leq\left(n \omega_{n}\right)^{2}
$$

with equality if and only if K is an ellipsoid.
Proof of Theorem 1.13. For $0<i<n, n \geq p \geq 1$, and by (4.5) and Lemma 4.6, we have

$$
\widetilde{G}_{-p, i}(K, L)^{n} \widetilde{G}_{-p, i}\left(K^{*}, L^{*}\right)^{n} \leq\left[\widetilde{G}_{-p}(K) \widetilde{G}_{-p}\left(K^{*}\right)\right]^{n-i}\left[\widetilde{G}_{-p}(L) \widetilde{G}_{-p}\left(L^{*}\right)\right]^{i} \leq\left(n \omega_{n}\right)^{2 n}
$$

with equality if and only if K and L are dilated ellipsoids of each other.

For the L_{p}-dual geominimal surface area, Wang and Qi (see [13]) proved the following result.
Lemma 4.7. If $K \in \mathcal{K}_{c}^{n}, p \geq 1$, then

$$
\begin{equation*}
\widetilde{G}_{-p}(K) \geq n\left(\omega_{n}\right)^{-\frac{p}{n}} V(K)^{\frac{n+p}{n}} \tag{4.12}
\end{equation*}
$$

with equality if and only if K is an ellipsoid centered at the origin.
Combining with 4.12 , we can prove the following fact.
Theorem 4.8. If $K, L \in \mathcal{K}_{c}^{n}, p \geq 1, i \in \mathbb{R}$ and $i<0$, then

$$
\begin{equation*}
\widetilde{G}_{-p, i}(K) \geq n \omega_{n}^{\frac{(n+p) i-p n}{n^{2}}} V(K)^{\frac{(n+p)(n-i)}{n^{2}}} \tag{4.13}
\end{equation*}
$$

with equality if and only if K is a ball centered at the origin.
Proof. For $i<0$, by 4.10 and 4.12, we get

$$
\begin{aligned}
\widetilde{G}_{-p, i}(K)^{n} & \geq\left(n \omega_{n}\right)^{i} \widetilde{G}_{-p}(K)^{n-i} \\
& \geq\left(n \omega_{n}\right)^{i}\left[n\left(\omega_{n}\right)^{-\frac{p}{n}} V(K)^{\frac{n+p}{n}}\right]^{n-i} \\
& =n^{n} \omega_{n}^{\frac{(n+p) i-p n}{n}} V(K)^{\frac{(n+p)(n-i)}{n}}
\end{aligned}
$$

i.e.

$$
\widetilde{G}_{-p, i}(K) \geq n \omega_{n}^{\frac{(n+p) i-p n}{n^{2}}} V(K)^{\frac{(n+p)(n-i)}{n^{2}}}
$$

with equality if and only if K is a ball centered at the origin.

Acknowledgment

Research is supported in part by the Natural Science Foundation of China (Grant No.11371224) and Foundation of Degree Dissertation of Master of China Three Gorges University (Grant No.2015PY070).

References

[1] Y. B. Feng, W. D. Wang, L_{p}-dual geominimal surface area, Glasgow. Math. J., 56 (2014), 229-239. 1
[2] W. J. Firey, p-Means of convex bodies, Math. Scand., 10 (1962), 17-24. 2
[3] R. J. Gardner, Geometric Tomography, 2nd edn, Cambridge Univ. Press, Cambridge, (2006). 2, 2, 2,2
[4] Y. N. Li, W. D. Wang, The L_{p}-dual mixed geominimal surface area for multiple star bodies, J. Inequal. Appl., 2014 (2014), 10 pages. 1
[5] N. Li, B. C. Zhu, Mixed brightness-integrals of convex bodies, J. Korean Math. Soc., 47 (2010), 935-945. 4
[6] E. Lutwak, The Brunn-Minkowski-Firey theory I: mixed volumes and the minkowski problem, J. Differential Geom., 38 (1993), 131-150.1
[7] E. Lutwak, The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas, Adv. Math., 118 (1996), 244-294.1. 2, 2, 3.1, 3
[8] C. M. Petty, Geominimal surface area, Geom. Dedicata, 3 (1974), 77-97.1. 1
[9] C. M. Petty, Affine isoperimetric problems, Discrete Geometry and Convexity, Ann. New York Acad. Sci., 440 (1985), 113-127. 1
[10] R. Schneider, Affine surface area and convex bodies of elliptic type, Periodica Math. Hungar., 69 (2014), 120-125. 1.2.2
[11] R. Schneider, Convex Bodies: The Brunn-Minkowski theory, 2nd edn, Cambridge University Press, Cambridge, (2014). 1
[12] W. D. Wang, Y. B. Feng, A general L_{p}-version of Petty's affine projection inequality, Taiwan. J. Math., 17 (2013), 517-528. 1
[13] W. D. Wang, C. Qi, L_{p}-dual geominimal surface area, J. Inequal. Appl., 2011 2011, 10 pages. $1,4,4$
[14] D. P. Ye, On the L_{p} geominimal surface area and related inequalities, submitted. arXiv:1308.4196.1
[15] D. P. Ye, B. C. Zhu, J. Z. Zhou , The mixed L_{p} geominimal surface areas for multiple convex bodies, arXiv: 1311.5180v1. 1
[16] B. C. Zhu, N. Li, J. Z. Zhou, Isoperimetric inequalities for L_{p} geominimal surface area, Glasgow Math. J., 53 (2011), 717-726.1
[17] C. Zhu, J. Z. Zhou, W. X. Xu, Affine isoperimetric inequalities for Lp geominimal surface area, Springer Proc. Math. Stat., 106 (2014), 167-176. 1
[18] B. C. Zhu, J. Z. Zhou, W. X. Xu, L_{p} Mixed geominimal surface area, J. Math. Anal. Appl., 422 (2015), 1247-1263. 1. 11

[^0]: *Corresponding author
 Email address: wangwd722@163.com (Wang Weidong)

