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Abstract

In this paper, we study the existence of positive solutions for the following nonlinear m-point boundary
value problem for an increasing homeomorphism and homomorphism with sign changing nonlinearity:

(φ(u′))′ + a(t)f(t, u(t)) = 0, 0 < t < 1,

u′(0) =
m−2∑
i=1

aiu
′(ξi), u(1) =

k∑
i=1

biu(ξi)−
s∑

i=k+1

biu(ξi)−
m−2∑
i=s+1

biu
′(ξi),

where φ : R −→ R is an increasing homeomorphism and homomorphism and φ(0) = 0. The nonlinear term
f may change sign. As an application, an example to demonstrate our results has given. The conclusions
in this paper essentially extend and improve the known results. c©2016 All rights reserved.
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1. Introduction

In this paper, we study the existence of positive solutions of the following nonlinear m-point boundary
value problem with sign changing nonlinearity:

(φ(u′))′ + a(t)f(t, u(t)) = 0, 0 < t < 1,

u′(0) =
m−2∑
i=1

aiu
′(ξi), u(1) =

k∑
i=1

biu(ξi)−
s∑

i=k+1

biu(ξi)−
m−2∑
i=s+1

biu
′(ξi),

(1.1)

where φ : R −→ R is an increasing homeomorphism and homomorphism and φ(0) = 0; ξi ∈ (0, 1) with
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0 < ξ1 < ξ2 < · · · < ξm−2 < 1 and ai, bi, a and f satisfy

(H1) ai, bi ∈ [0,+∞), 0 <
k∑
i=1

bi −
s∑

i=k+1

bi < 1, 0 <
m−2∑
i=1

ai < 1;

(H2) a(t) : (0, 1)→ [0,+∞) does not vanish identically on any subinterval of [0, 1] and satisfies

0 <

∫ 1

0
a(t)dt <∞;

(H3) f ∈ C([0, 1]× [0,+∞), (−∞,+∞)), f(t, 0) ≥ 0 and f(t, 0) 6= 0.

Definition 1.1. A projection φ : R −→ R is called an increasing homeomorphism and homomorphism, if
the following conditions are satisfied:

(i) if x ≤ y, then φ(x) ≤ φ(y) ∀ x, y ∈ R;
(ii) φ is a continuous bijection and its inverse mapping is also continuous;
(iii) φ(xy) = φ(x)φ(y) ∀ x, y ∈ R.

The study of multi-point boundary value problems for linear second-order ordinary differential equations
was initiated by Il’in and Moiseev [3, 4]. Motivated by the study of [3, 4], Gupta [2] studied certain three-
point boundary value problems for nonlinear ordinary differential equations. Since then, more general
nonlinear multi-point boundary value problems have been studied by several authors. We refer the reader
to [5, 8, 11, 12, 14, 15, 16, 17, 18, 19] and [20] for some references along this line. Multi-point boundary
value problems describe many phenomena in the applied mathematical sciences. For example, the vibrations
of a guy wire of a uniform cross-section and composed of N parts of different densities can be set up as a
multi-point boundary value problems (see Moshinsky [7]); many problems in the theory of elastic stability
can be handle by the method of multi-point boundary value problems(see Timoshenko [13]).

In 2001, Ma [5] studied m-point boundary value problem (BVP)
u′′(t) + h(t)f(u) = 0, 0 ≤ t ≤ 1,

u(0) = 0, u(1) =
m−2∑
i=1

αiu
′(ξi),

where αi > 0 (i = 1, 2, · · · ,m−2),
m−2∑
i=1

αi < 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, f ∈ C([0,+∞), [0,+∞)) and

h ∈ C([0, 1], [0,+∞)). Author established the existence of positive solutions theorems under the condition
that f is either superlinear or sublinear.

Recently, Ma et al. [6] used the monotone iterative technique in cones to prove the existence of at least
one positive solutions for m-point boundary value problem (BVP)

(φp(u
′))′ + a(t)f(t, u(t)) = 0, 0 < t < 1,

u′(0) =
m−2∑
i=1

aiu
′(ξi), u(1) =

m−2∑
i=1

biu(ξi),

where 0 <
m−2∑
i=1

bi < 1, 0 <
m−2∑
i=1

ai < 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, a(t) ∈ L1[0, 1] and

f ∈ C([0, 1]× [0,+∞), [0,+∞)). The main tool is the monotone iterative technique.

In [15], Xu studied the existence of positive solutions for (1.1). However, in all the above mentioned
papers, the authors discuss about the boundary value problem (BVP) under the key conditions that nonlinear
term is positive continuous function. Motivated by the results mentioned above, in this paper we study the
existence of positive solutions of m-point boundary value problem (1.1) for an increasing homeomorphism
and homomorphism with sign changing nonlinearity. We generalize the results in [5, 8, 11, 12, 14].

By a positive solution of BVP (1.1), we understand a function u which is positive on (0, 1) and satisfies
the differential equations as well as the boundary conditions in BVP (1.1).
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2. Preliminaries and Lemmas

In this section, we present some lemmas which are important to our main results.

Lemma 2.1. Let (H1) and (H2) hold. Then for u ∈ C+[0, 1], the problem
(φ(u′))′ + a(t)f(t, u(t)) = 0, 0 < t < 1,

u′(0) =
m−2∑
i=1

aiu
′(ξi), u(1) =

k∑
i=1

biu(ξi)−
s∑

i=k+1

biu(ξi)−
m−2∑
i=s+1

biu
′(ξi),

(2.1)

has a unique solution u(t) if and only if u(t) can be express as the following equation

u(t) = −
∫ 1

t
ωf (s)ds+B,

where A, B satisfy

φ−1(A) =
m−2∑
i=1

aiφ
−1
(
A−

∫ ξi

0
a(s)f(s, u(s))ds

)
, (2.2)

B = − 1

1−
k∑
i=1

bi +
s∑

i=k+1

bi

[ k∑
i=1

bi

∫ 1

ξi

ωf (s)ds−
s∑

i=k+1

bi

∫ 1

ξi

ωf (s)ds

+
m−2∑
i=s+1

biφ
−1
(
A−

∫ ξi

0
a(s)f(s, u(s))ds

)]
,

where

ωf (s) = φ−1
(
−
∫ s

0
a(r)f(τ, u(r))dr +A

)
.

Define l =

φ

(
m−2∑
i=1

ai

)
1− φ

(
m−2∑
i=1

ai

) ∈ (0, 1), then there exists a unique A ∈
[
−l
∫ 1

0
a(s)f(t, u(s))ds, 0

]
satisfying

(2.2).

Proof. The method of the proof is similar to Lemma 2.1 in [7], we omit the details.

Lemma 2.2. Let (H1) and (H2) hold. If u ∈ C+[0, 1], the unique solution of the problem (2.1) satisfies

u(t) ≥ 0, t ∈ [0, 1].

Proof. The method of the proof is similar to Lemma 2.2 in [15], we omit the details.

Lemma 2.3. Let (H1) and (H2) hold. If u ∈ C+[0, 1], the unique solution of the problem (2.1) satisfies

inf
t∈[0,1]

u(t) ≥ γ‖u‖,

where

γ =

(
k∑
i=1

bi −
s∑

i=k+1

bi

)
(1− ξk)

1−
k∑
i=1

biξk +
s∑

i=k+1

biξk

∈ (0, 1) , ‖u‖ = max
t∈[0,1]

|u(t)|.
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Proof. The method of the proof is similar to Lemma 2.3 in [15], we omit the details.

Lemma 2.4 ([1]). Let K be a cone in a Banach space X. Let D be an open bounded subset of X with
DK = D ∩ K 6= φ and DK 6= K. Assume that A : DK −→ K is a compact map such that x 6= AK for
x ∈ ∂DK . Then the following results hold:

(1) if ‖Ax‖ ≤ ‖x‖ for all x ∈ ∂DK , then i(A,DK ,K) = 1;

(2) if there exists x0 ∈ K\{θ} such that x 6= Ax+λx0, for all x ∈ ∂DK and all x > 0, then i(A,DK ,K) =
0;

(3) let U be open in X such that U ⊂ DK . If i(A,DK ,K) = 1 and i(A,DK ,K) = 0,

then A has a fixed point in DK\UK . The same results holds, if i(A,DK ,K) = 0 and i(A,DK ,K) = 1.

Let E = C[0, 1], then E is Banach space, with respect to the norm ‖u‖ = sup
t∈[0,1]

|u(t)|. Denote

K = {u|u ∈ C[0, 1], u(t) ≥ 0, inf
t∈[0,1]

u(t) ≥ γ ‖ u ‖},

where γ is the same as in Lemma 2.3. It is obvious that K is a cone in C[0, 1]. We define ϕ(t) =
min{t, 1− t}, t ∈ (0, 1) and

Kρ = {u(t) ∈ K : ‖u‖ < ρ};

K∗ρ = {u(t) ∈ K : ρϕ(t) < u(t) < ρ};

Ωρ = {u(t) ∈ K : min
ξm−2≤t≤1

u(t) < γρ}

= {u(t) ∈ E : u ≥ 0, γ‖u‖ ≤ min
ξm−2≤t≤1

u(t) < γρ}.

Lemma 2.5 ([7]). Ωρ defined above has the following properties:

(a) Kγρ ⊂ Ωρ ⊂ Kρ;

(b) Ωρ is open relative to K;

(c) X ∈ ∂Ωρ if and only if min
ξm−2≤t≤1

x(t) = γρ

(d) if x ∈ ∂Ωρ, then γρ ≤ x(t) ≤ ρ for t ∈ [ξm−2, 1].

Now, for the convenience, we introduce the following notations,

fργρ = min

{
min

ξm−2≤t≤1

f(t, u)

φ(ρ)
: u ∈ [γρ, ρ]

}
,

fρ0 = max

{
max
0≤t≤1

f(t, u)

φ(ρ)
: u ∈ [0, ρ]

}
,

fρϕ(t)ρ = max

{
max0≤t≤1

f(t, u)

φ(ρ)
: u ∈ [ϕ(t)ρ, ρ]

}
,

fα = lim
u→α

sup max
0≤t≤1

f(t, u)

φ(u)
,

fα = lim
u→α

inf min
ξm−2≤t≤1

f(t, u)

φ(u)
, (α :=∞ or 0+),
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m =



(
1 +

s∑
i=k+1

bi +
m−2∑
i=s+1

bi

)
φ−1

(
(l + 1)

∫ 1

0
a(s)ds

)
1−

k∑
i=1

bi +
s∑

i=k+1

bi



−1

,

M =


k∑
i=1

bi −
s∑

i=k+1

bi

1−
k∑
i=1

bi +
s∑

i=k+1

bi

∫ 1

ξk

φ−1
(∫ s

0
a(r)dr

)
ds


−1

,

3. Main results

In the rest section, we also assume the conditions:

(A1) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < γρ2 such that

(1) f(t, u) > 0, t ∈ [0, 1], u ∈ [ρ1ϕ(t),+∞),

(2) fρ1ϕ(t)ρ1 ≤ φ(m), fρ2γρ2 ≥ φ(Mγ).

(A2) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < ρ2 such that

(3) f(t, u) > 0, t ∈ [0, 1], u ∈ [min{γρ1, ρ2ϕ(t)},+∞),

(4) fρ1γρ1 ≥ φ(Mγ), fρ2ϕ(t)ρ2 ≤ φ(m).

(A3) There exist ρ1, ρ2, ρ3 ∈ (0,+∞) with ρ1 < γρ2 and ρ2 < ρ3 such that

(1) f(t, u) > 0, t ∈ [0, 1], u ∈ [ρ1ϕ(t),+∞),

(2) fρ1ϕ(t)ρ1 ≤ φ(m), fρ2γρ2 ≥ φ(Mγ), fρ3ϕ(t)ρ3 ≤ φ(m).

(A4) There exist ρ1, ρ2, ρ3 ∈ (0,+∞) with ρ1 < ρ2 < γρ3 such that

(3) f(t, u) > 0, t ∈ [0, 1], u ∈ [min{γρ1, ρ2ϕ(t)},+∞),

(4) fρ1γρ1 ≥ φ(Mγ), fρ2ϕ(t)ρ2 ≤ φ(m); fρ3γρ3 ≥ φ(Mγ).

Our main results are following theorems.

Theorem 3.1. Assume that (H1), (H2), (H3), (A3) hold. Then BVP (1.1) have at least three positive solu-
tions.

Proof. Without loss of generality, we suppose that (A3) hold. Denote

f∗(t, u) =

{
f(t, u), u ≥ ρ1ϕ(t),

f(t, ρ1ϕ(t)), 0 ≤ u < ρ1ϕ(t),

it is easy to check that f∗(t, u) ∈ C([0, 1]× [0,+∞), (0,+∞)).
Now define an operator T : K → C[0, 1] by setting

(Tu)(t) = − 1

1−
k∑
i=1

bi +
s∑

i=k+1

bi

[ k∑
i=1

bi

∫ 1

ξi

ω(s)ds−
s∑

i=k+1

bi

∫ 1

ξi

ω(s)ds

+
m−2∑
i=s+1

biφ
−1
(
A−

∫ ξi

0
a(s)f∗(s, u(s))ds

)]
−
∫ 1

t
ω(s)ds,
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where

ω(s) = φ−1
(
−
∫ s

0
a(r)f∗(τ, u(r))dr +A

)
.

By Lemma 2.3, we have T (K) ⊂ K. So by applying Arzela-Ascoli Theorem, we can obtain that T (K) is
relatively compact. In view of Lebesgue’s dominated convergence theorem, it is easy to prove that T is
continuous. Hence, T : K → K is completely continuous.

Now, we consider the following modified BVP (1.1),
(φ(u′))′ + a(t)f∗(t, u(t)) = 0, 0 < t < 1,

u′(0) =
m−2∑
i=1

aiu
′(ξi), u(1) =

k∑
i=1

biu(ξi)−
s∑

i=k+1

biu(ξi)−
m−2∑
i=s+1

biu
′(ξi).

(3.1)

Obviously, BVP (3.1) has a solution u(t) if and only if u is a fixed point of the operator T . From the
condition (A3)(2), we have

f∗ρ1ϕ(t)ρ1
≤ φ(m), f∗ρ2γρ2 ≥ φ(Mγ), f∗ρ3ϕ(t)ρ3

≤ φ(m).

Next, we will show that i(A,K∗ρ1 ,K) = 1.
In fact, by f∗ρ1ϕ(t)ρ1

≤ φ(m) for all u ∈ ∂ K∗ρ1 , we have

(Tu)(t) = − 1

1−
k∑
i=1

bi +
s∑

i=k+1

bi

( k∑
i=1

bi

∫ 1

ξi

ω(s)ds−
s∑

i=k+1

bi

∫ 1

ξi

ω(s)ds

+
m−2∑
i=s+1

biφ
−1
(
A−

∫ ξi

0
a(s)f∗(s, u(s))ds

))
−
∫ 1

t
ω(s)ds

≤ 1

1−
k∑
i=1

bi +
s∑

i=k+1

bi

( k∑
i=1

bi

∫ 1

0
φ−1

(
(l + 1)

∫ 1

0
a(r)f∗(r, u(r))dr

)
ds

+
m−2∑
i=s+1

biφ
−1
(

(l + 1)

∫ 1

0
a(s)f∗(s, u(s))ds

))

+

∫ 1

0
φ−1

(
(l + 1)

∫ 1

0
a(r)f∗(r, u(r))dr

)
ds

≤

(
1 +

s∑
i=k+1

bi +
m−2∑
i=s+1

bi

)
φ−1

(
(l + 1)

∫ 1

0
a(s)ds

)
1−

k∑
i=1

bi +
s∑

i=k+1

bi

φ−1(φ(ρ1)φ(m))

= ρ1 = ‖u‖.

This implies that ‖Tu‖ ≤ ‖u‖ for u ∈ ∂ K∗ρ . By Lemma 2.4 (1), we have

i(A,K∗ρ1 ,K) = 1.

Furthermore, we will show that i(A,Kρ2 ,K) = 1.
Let e(t) ≡ 1, for t ∈ [0, 1], then e ∈ ∂K1. We claim that

u 6= Tu+ λe, u ∈ ∂Ωρ2 , λ > 0.
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In fact, if not, there exist u0 ∈ ∂Ω2 and λ0 > 0 such that u0 = Tu0 + λ0e.
By (A3) and Lemma 2.1, we have for t ∈ [0, 1],

−
∫ s

0
a(τ)f∗(τ, u(τ))dτ +A ≤ −φ(ρ2)φ(Mγ)

(∫ s

0
a(τ)dτ

)
,

so that

−ω(s) = φ−1
(
−
∫ s

0
a(τ)f∗(τ, u(τ))dτ +A

)
≥ ρ2Mγφ−1

[∫ s

0
a(τ)dτ

]
.

Then, we have that

u0(t) = Tu0(t) + λ0e(t)

≥ 1

1−
k∑
i=1

bi +
s∑

i=k+1

bi

k∑
i=1

(
bi

∫ 1

ξk

(−ω(s))ds−
s∑

i=k+1

bi

∫ 1

ξk

(−ω(s))ds

)
+ λ0

≥

k∑
i=1

bi −
s∑

i=k+1

bi

1−
k∑
i=1

bi +
s∑

i=k+1

bi

ρ2Mγ

∫ 1

ξk

φ−1
(∫ s

0
a(r)dr

)
ds+ λ0

= γρ2 + λ0

This implies that γρ2 ≥ γρ2 + λ0, which is a contradiction. Hence, by Lemma 2.4 (2), it follows that

i(A,Ωρ2 ,K) = 0.

Finally, similar to the proof of i(A,K∗ρ1 ,K) = 1, we can show that i(A,K∗ρ3 ,K) = 1.

By Lemma 2.5 (a) and ρ1 < γρ2 and ρ2 < ρ3, we have Kρ1 ⊂ Kγρ2 ⊂ Ωρ2 ⊂ Kρ2 ⊂ Kρ3 . It follows
from Lemma 2.4 (3) that T have three positive fixed point u1, u2, u3 in K∗ρ1 , Ωρ2\K∗ρ1 , K∗ρ3 respectively.

Therefore, BVP (3.1) have three positive solution u1, u2, u3 in K∗ρ1 , Ωρ2\K∗ρ1 , K∗ρ3 respectively.
Then, BVP (3.1) have three positive solution u1, u2, u3 ∈ [ρ1ϕ(t),∞), which means that u1, u2, u3 is

also the positive solution of BVP (3.1).

Similar to the proof of Theorem 3.1, we can obtain the following Theorems.

Theorem 3.2. Assume that (H1), (H2), (H3), (A4) hold. Then BVP (1.1) have at least two positive solu-
tions.

Theorem 3.3. Assume that (H1), (H2), (H3) hold and also assume that (A1) or (A2) hold. Then BVP (1.1)
has at least a positive solution.

4. Application

Example 4.1. Consider the following five-point boundary value problem with p-Laplacian

(φ(u′))′ + f(t, u) = 0, 0 < t < 1,

u′(0) =
1

128
u′(

1

4
) +

1

256
u′(

1

2
) +

1

64
u′(

3

4
),

u(1) =
1

8
u(

1

4
)− 1

64
u(

1

2
),

(4.1)
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where a1 =
1

128
, a2 =

1

256
, a3 =

1

64
, b1 =

1

8
, b2 =

1

64
, b3 = 0, ξ1 =

1

4
, ξ2 =

1

2
, ξ3 =

3

4
,

φ(u) =

{
−u2, u ≤ 0,
u2, u > 0,

f(t, u) =


1

5
(1 + t)

(
u(t)− ϕ(t)

2

)30

, (t, u) ∈ [0, 1]× (0, 2],

1

5
(1 + t)

(
2− ϕ(t)

2

)30

, (t, u) ∈ [0, 1]× (2,+∞).

It is easy to check that f : [0, 1]× [0,+∞) −→ [0,+∞) is continuous. It follows from a direct calculation
that

m =



(
1 +

s∑
i=k+1

bi +
m−2∑
i=s+1

bi

)
φ−1

(
(l + 1)

∫ 1

0
a(s)ds

)
1−

k∑
i=1

bi +
s∑

i=k+1

bi



−1

= 0.96,

γ =

(
k∑
i=1

bi −
s∑

i=k+1

bi

)
(1− ξk)

1−
k∑
i=1

biξk +
s∑

i=k+1

biξk

=
21

250
.

M =


k∑
i=1

bi −
s∑

i=k+1

bi

1−
k∑
i=1

bi +
s∑

i=k+1

bi

∫ 1

ξk

φ−1
(∫ s

0
a(r)dr

)
ds


−1

= 0.76.

Choose ρ1 = 1, ρ2 = 250, it is easy to check that ρ1 < γρ2, and

f(t, u) > 0, t ∈ [0, 1], u ∈ [ϕ(t),+∞);

fρ1ρ1ϕ(t) = max

{
max
0≤t≤1

1
5(1 + t)(u(t)− ϕ(t)

2 )30

12

}
=

1
5(1 + 1)130

12
=

2

5

< φ(m) = m2 = 0.92, t ∈ [0, 1], u ∈ [ϕ(t)ρ1, ρ1];

fρ2γρ2 = min

{
min
3
4
≤t≤1

1
5(1 + t)(2− ϕ(t)

2 )30

2502

}
=

1
5(1 + 3

4)(2− 1
2)30

2502
= 1.074

> φ(Mγ) = (Mγ)2 = 0.004, t ∈ [
3

4
, 1], u ∈ [γρ2, ρ2].

It follows that f satisfies the conditions (A1) of Theorem 3.3, then problems (1.1) and (2.1) have at least
two positive solutions.

Remark 4.2. Let ϕ(u) = u, the problem is second order m-point boundary value problem.

Remark 4.3. Let φp(s) = |s|p−2s, p > 1, the problem is boundary value problem with p-Laplacian operators.
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