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Abstract

We introduce and analyze two new multi-step iterative methods with convergence order four and five
based on modified homotopy perturbation methods, using the system of coupled equations involving an
auxiliary function. We also present the convergence analysis and various numerical examples to demonstrate
the validity and efficiency of our methods. These methods are a good addition and also a generalization of
the existing methods for solving nonlinear equations. (©2016 All rights reserved
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1. Introduction

Most of the problems in diverse fields of mathematics and engineering lead to the nonlinear equations
whose exact solutions are quite difficult or even impossible to find. Accordingly, the development of numerical
techniques to solve the nonlinear equations has gained huge devotion of scientists and engineers. Various
iterative methods involving different techniques including Taylor series, quadrature formulas, decomposition,
homotopy, etc., have been introduced for the purpose, see [I}, 2], 3], 4 5] [6] [8, 9} 10, 15, 18] 19] and references
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therein. These include the methods with quadratic, cubic and higher order convergence. Chun [4] introduced
an iterative method with fourth order convergence, using the technique of decomposition, in 2005.

The homotopy perturbation method (HPM) was first introduced by He [7] in 1999. He further modified
his method in different ways [10} 11} 12} 13, 14]. Afterward, HPM has been used extensively by researchers in
order to solve linear and nonlinear equations. In 2009, Javidi [16] developed fourth and fifth order methods
using modified HPM for solving nonlinear equations.

Shah and Noor [18] have proposed some algorithms, using auxiliary functions and decomposition tech-
nique to find solutions of nonlinear equations. They write the original nonlinear equation in the form of a
coupled system to achieve the results.

In the present paper, we construct two new methods, following the technique of Shah and Noor [I8]
based on HPM with convergence order four and five, for solving nonlinear equations. The methods of Javidi
[16] are particular cases of our iterative schemes. The performance of our proposed methods has revealed
through a comparative study with some known methods, by considering some test examples.

2. Iterative Methods

Consider the nonlinear equation

(2.1)

Let a be a simple zerg of Equ sufficiently close to . Assume that g(x) is
an auxiliary
(2.2)

Using Taylor scrics, we write nonlinear Equation (2.2) in the form of the coupled system as follows:
Fg() + ' (g() + F()g' (M@ =) + h(z) = 0. (2.3)
Equation can be written in the from
h(z) = f(@)g(7) = F(M)9(v) = [F (Mg(v) + f(1)g M@ — 7). (2.4)

Also, Equation ([2.3)) can be rewritten as

r—n f()g() _ h(z) (2.5)
[ (g(y) + Fg ] [ (V)g(y) + F(0)g' (0] '

We write Equation ([2.5)) in the following way

x =c+ N(x), (2.6)
where ( ) ( )
Y)g\y
=TT @) + FgON 27
and
N ()
N = =g + Fag ol (28)

Now, we construct a homotopy [7] ¥(z,n,&) : (R x [0,1]) x R — R for Equation ({2.6]), which satisfies

‘I’(xaﬁvf):x_C_UN(x)_U(l_U)fzoa f,xER, ne [071]? (29)
where 1 is an embedding parameter and £ is an unknown real number. The trivial problem

U(z,0,) =2 —c=0, (2.10)
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is incessantly deformed to the original problem
U(zr,1,§) = —c— N(z) =0, (2.11)

as the embedding parameter 17 monotonically increases from 0 to 1. The modified HMP uses the embedding
parameter 7, as an expanding parameter, to obtain [7].

T = o+ T+ 2wy - (2.12)
Therefore, the approximate solution of Equation (2.1)) can readily be obtained as

¥ =limx=xg+x1 +x2+---. (2.13)

n—1

It has been proved that the Series ([2.13]) is convergent [7].
Using the Taylor series expansion of N(z) about zp and applying the modified HPM to the Equation

(2.1), we can write Equation (2.6)) as

T—c—n N(a:o)—i—(m—a:o)N,(xO) ‘ '} —n(l—=n)¢ =0. (2.14)

Substitution z from

xo + w1 + g + -

N'(x
—w—ﬁwawmwm+%m+m—m>L”
‘ (2.15)
N"(x
+ (zo + nr1 + 12T + - — 20)? 2(' 0) —i—-'-}—n(l—n)é
=0.
Comparing the alike powers of 1 on both sides, we obtain
n’:xg—c=0, (2.16)
0@ — N(zg) — € =0, (2.17)
n?:xy — 1N (zo) + € =0, (2.18)
1
0’ w3 — xaN' (o) — ix%N”(azo) = 0. (2.19)
From Equation ([2.16)), we get Fa)
)9\
2o =c—=~ 2.20
’ et + F (] (220
Thus,
fg()
TR Ty ="7— . 2.21
"= Fa0) + F 0] 221

The above relation enable us to suggest the following iteration process.

Algorithm 2.1. For a given xg, compute the approximate solution x,11, by the following iterative scheme:
l‘n)g($n) + f(xn)g/(zn)]
The iterative method defined in Equation (2.22)) has also been introduced by He [14] and Noor [I7] for

generating various iterative methods for solving nonlinear equations.

. n=0,1,2,.... (2.22)

SRR
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Now we find the value of parameter & by setting o = 0 which provides methods with better convergence

order and high efficiency index.

Hence by substituting 1 = N () + £ from Equation (2.17) into Equation (2.18)), we infer

—(N(20) +&§)N'(z0) + € =0,

and
N (x0)N'(w0)

TN
From Equations (2.4) and (2.20)), it can be easily obtained that
h(xo) = f(z0)9(7)-

From Equations (2.4)), (2.8) and (2.20)), we get

_ f(x0)g(7)
N0 = =590 + F)d ]
and
oy f'(x0)g(v)
N o) =1 = 03900 + 1g )]
Using Equations (2.17]) and ( -, we obtain
x1 = N(z9) + N (o) N'(o) = N(zo)

1—N'(zg) 1—N'(x0)
Thus, by combiming Equations (2.26]) and (2.27) with Equation (2.28]), we get
x
T =— f/( 0) .
f'(o)
Using Equations ([2.20]) and ( -, we obtain

f(g(v) f (o)

56%3304»1171:7—

') + FNF()] o)

This formulation allows us the following recurrence relation for solving nonlinear equations.

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

Algorithm 2.2. For a given xy, compute the approximate solution x,4+1 by the following iterative scheme:

Now, from Equation 1 19)), it can easily be obtained that
1
T3 = 5%‘%]\[”(1‘0)
1 <f(330) )2 f"(@0)g(v)
fxo) ) [ (Mg(y) + f(1)g' ()]
Thus using Equations (2.30)) and -, we get

T~ xg+x1+ T2+ X3

3 f(Mg() ~ f(=@o)
F'(Mg(y) + fF(g (M f(=o)

1 flwo)\® f"(@0)g(v)
(7o) 7

f' (o) g+ fFNg ]

This formulation allows us the following recurrence relation for solving nonlinear equations.

(2.31)

(2.32)

(2.33)
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Algorithm 2.3. For a given xy, compute the approximate solution x,11 by the following iterative scheme:

Tl = Tn — f(an)g(an) _ f(yn)
" " [f'(@n)g(@n) + f(zn)g ()] ' (Yn)
o 1 ( f(yn) >2 f”(yn)g(l’n) (234)
f(yn) [f'(2n)g(xn) + f(zn)g (xn)]
f(@n)g(zn)
fv(wn)g(xn)'+'f(xn)gltnn>y

It is to note that for different values of auxiliary function g(x), several iterative methods with higher order
convergence can be developed from the main iterative scheme, established in this paper, that is, Algorithms
and Implementation of these schemes in an effective manner, the proper selection of the auxiliary
function plays a vital role. We take g(x) = e~ for an illustration. Thus Algorithms and take the
following form:

yn:xn_[

Algorithm 2.4. For a given xy, compute the approximate solution x,11 by the following iterative scheme:

an+1:yn—ff/((::ygn)>’ n:0,1,2,...,
n

f(an)
[f"(@n) — af(zn)]

Algorithm [2.4] is a two-step predictor-corrector method.

For a = 0, Algorithm n is the same as obtained in Javidi ri
Algorithm 2.5. For a given o, comput terative scheme:
//
fl

Yn = Tp —

Tnt+1l = Yn 2 ’ n:071727"‘7

[f'(@n) —af Tn)]

o = [f’(wn) —af(xn)]

Algorithm is also a two-step predictor-corrector method.
For a = 0, Algorithm [2.5]is the same as obtained in Javidi [16, Algorithm 2.2].
Obviously, our proposed methods are a generalization of Javidi’s method [16].

3. Convergence analysis

In this section, convergence criteria of new proposed algorithms is studied in the form of the following
theorem.

Theorem 3.1. Assume that the function f : I C R — R for an open interval I has a simple root a € 1.
Let f(x) be sufficiently differentiable in a neighborhood of a. Then the convergence orders of the methods
defined by Algorithms[2.9 and[2-3 are four and five, respectively.

Proof. Let a be a simple zero of f(x). Since f is sufficiently differentiable, the Taylor series expressions of
f(zy) and f'(x,) about « are given by

f(xn) = fl(@){en + c2e? + c3€3 + caed + c5€> + O (eg)} (3.1)

and
F(zn) = F/(@){1 + 2coe, + 3czel + deael + Sesep + O (€5) 1, (3.2)
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where e, =, —a and ¢; = % (((x) 1=2,3,....
Now, expanding f(x,)g(xn), [ (xn)g(x,) and f(x,)g (z,,) by Taylor series, we get
flan)g(an) = f’(a){g(a)en + (c2g(a) + g'(@))er,
(3.3)
+ (;g”(a) +e2g'(a) + 03g(a)> ey +0 (ep) }
Fanatan) = /@) a(e) + Geagla) + o (@)e,
+ (9"@) + 2029/ (@) + Bcagla) ) 2 (3.4
+ (o) + cag@) + 3eag' (@) + deag(@) )k + 0 (eh)
and
(c2g'( (@))ep
(3.5)
Retracted Pager -
—e, @) ) 2
f'(zn)g (mn) +f($n) "(zn) B < e g(“)) " (3.6)
J@) 0 o o (9@ o |
+ (2ol —2ea= G w22 (F) ) voled),
Using Equation , we get
y”:a+<62+ o e a2 (3.7)
_ 96, o2 o (12 e ery .
+ (-0 + S8 282 (95) ) vorted
The Taylor series expansions of f(y,) and f'(y,) are given by
— f'la c g’(a) o2
F) = @ (e + 20 )2
g0 @) ey (9@ s g (ot
+ (-2 + S5 28 -2 (F) )a+oleh | %
and
/ — 'l o2 c gl(a) o2
P = {1+ (2 + 22220 )l .

+ (40302 - 4c§i’;((2‘)) + 2 g(of‘) — 4¢3 — dey (gg,((s))f)ei +0 (e4) }
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Using Equations (3.8)) and ( ., we find

ffézl (e )

+ (203 - 20299,((3 + gg”(((j)) 222 (gg/((j))f)ei +0 ().

Thus, using Equations (2.31]) and (3.10)), the error term for Algorithm can be obtained as
! / 2
3 29 () (g (a)> ) 4 5
ent1 = | €5+ 2¢ + ¢o e, +0 (e)),
n+ ( 2 2 g a) g(a) n ( n)

which shows that Algorithm [2.2]is of convergence order at least four.
Now expanding f”(y,) and then f”(y,)g(x,) by Taylor series, we get

Fyn) = f’(a){QCQ + (602@, + 6es Z/((z)) ) e

+&££§_ug%_u%<§3)3%+0@9}

J'(a)

g(a)

+ <120§ — 12¢9c3
and

f"(yn)g(@n) = f’(a){%zg(a) + 2029 (@)en + 6eacsg(a) + cag” (@) + 6esg’ (a)er

(6e39' ()

@) 12g(a)c3

1
+ <3czg”/(a) — 6cgeag’ () —

)
+ 6csg” (o) — 12¢5c39(ev) )6 +0 (e )}
g(a

From Equations (2.4 , and ( we get d P an er
)
g'(a)

()9l
4" W) 200 o (TN
+< 26 ) O m>+GQMa>+82+42<ww> )"

f(@n)g(zn) + f(
:202+<—4c%—202
)
LM @) e (SN e
+< *g() 20 "g(a) 183(9(@)) Seace + 1264
) )

J(0) o 20"(0) @) g (@)
gl % gl @)~ % ”z(mm>

166 — 8es @((;‘)))3)3 Lo,

Thus the error term for Algorithm is given by

el = <2c§ P LA <g/(a)>2 + e (g/(a)>3>e;’; +0(e5).

g(e) g(e) 9(a)

+ 6c3 + Teag

This completes the proof.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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4. Numerical examples

In this section, we illustrate the validity and efficiency of our proposed iterative schemes. In Table 1,
we present the comparison of our method defined in Algorithm (AM1) with Newton’s method (NM),
and some other methods with convergence order 4, that is, Chun’s method (CM1) [4, Equation (10)], Shah
and Noor’s method (SN) [I8, Algorithm 2.3] and Javidi’s method (JM1) [16, Algorithm 2.1]. A comparison
of our developed method given in Algorithm (AM2) with Newton’s method (NM) that convergence
quadratically, Chun’s method (CM2) [4, Equation (11)] and Javidi’s method (JM2) [16, Algorithm 2.2]
whose order of convergence is 5, is given in Table 2. Here IV denotes the number of iterations.

We use o = 0.5 and Maple software for numerical computations, ¢ = 1075 as tolerance and the following
stopping criteria:

(i) 6= ’xn—i-l - xn| <g,

(i) |f (zn)| <e,

(ili) Maximum numbers of iterations = 500.

Table 1. Comparison of NM, CM1, SN, JM1 and AM1

f(x) Zo Method N z [K] f(xn) )
NM 5 1.4044916482153412334 1.828320e — 17 3.058070e — 09
CcM1 4 1.404491648 8.710207e — 20 1.287627¢ — 13
sin®z — 2% +1 1.1 SN 3 ‘ 0207e — 20 3.087218e — 09
: '| 0207e — 20 3.058070e — 09
' 10207e — 20 2.018548¢ — 13
: 0.000000e + 00 6.031119e — 12
10 0.000000€e + 00 8.217689¢ — 15
(x—1)°%—-1 1.5 SN 4 2.0000000000000000000 0.000000€e + 00 4.433203¢ — 12
JM1 4 2.0000000000000000000 0.000000¢ + 00 6.031119¢ — 12
AM1 3 2.0000000000000000000 0.000000€e + 00 7.355562¢ — 07
NM 7 2.2041177331716202960 3.305103¢ — 20 1.118049¢ — 13
CM1 17 2.2041177331716202960 3.305103¢ — 20 4.482317¢ — 08
2 —e" +x+2 1.7 SN 4 2.2041177331716202960 3.305103¢ — 20 6.139530e — 13
JM1 4 2.2041177331716202960 3.305103e — 20 1.118049¢ — 13
AM1 3 2.2041177331716202960 3.305103¢ — 20 9.493103¢ — 08
NM 5 3.8695271180759797541 4.150103¢ — 18 5.062765¢ — 10
CM1 3 3.8695271180759797669 3.203428¢ — 16 4.536976e — 05
e —3x—3 3.6 SN 3 3.8695271180759797539 7.904086¢ — 19 3.146929¢ — 10
JM1 3 3.8695271180759797539 7.904086€ — 19 5.062765¢ — 10
AM1 3 3.8695271180759797539 7.904086¢ — 19 3.059515¢ — 14
NM 6 2.1544346900318837218 5.668276e — 19 3.486728¢ — 14
CM1 4 2.1544346900318837218 5.668276¢ — 19 4.211475¢ — 06
23— 1 1.5 SN 3 2.1544346900318837218 5.668276¢ — 19 7.671350¢ — 16
JM1 3 2.1544346900318837218 5.668276e — 19 2.740790e — 07
AM1 2 2.1544346900318837218 5.668276¢ — 19 7.225849¢ — 06
NM 9 —2.8543919810023413339 1.430322¢ — 21 4.636514e — 13
JER CM1 5 —2.8543919810023413339 1.430322e — 21 3.258462¢ — 07
re —smer —25| SN 5 —2.8543919810023413339 1.430322¢ — 21 1.023313e — 08
+3cosx —z JM1 5 —2.8543919810023413339 1.430322¢ — 21 4.636514e — 13
AM1 4 —2.8543919810023308714 8.440064¢ — 16 2.719899¢ — 05
NM 23 0.0000000291733579902 3.404339% — 15 2.917336e — 08
CM1 14 0.0000000210479779344 1.772070e — 15 4.630555¢ — 08
4zt — 4a? 0.5 SN 13 0.0000000201191478099 1.619120e — 15 4.591293¢ — 08
JM1 12 0.0000000145866789951 8.510848¢ — 16 4.376004e — 08
AM1 11 0.0000000181863023840 1.322966¢ — 15 5.455891e — 08
NM 5 1.3652300134140968476 3.037133e — 17 1.937468¢ — 09
CM1 4 1.3652300134140968458 6.472125¢ — 19 2.090766e — 15
2 +42% — 10 0.9 SN 3 1.3652300134140968458 6.472125¢ — 19 3.493290¢ — 15
JM1 3 1.3652300134140968458 6.472125¢ — 19 1.937468¢ — 09
AM1 2 1.3652300134140968458 6.472125¢ — 19 6.652273¢ — 05
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Table 2. Comparison of NM, CM2, JM2 and AM2

f(x) Zo Method N x [K] en) 0
NM 5 1.4044916482153412334 1.828320¢ — 17 3.058070¢ — 09
i 2?41 L1 CM2 4 1.4044916482153412260 8.710207¢ — 20 1.459668¢ — 09
JM2 3 1.4044916482153412260 8.710207¢ — 20 1.550744e — 11
AM2 2 1.4044916482153412185 1.870565¢ — 17 6.449644¢ — 04
NM 7 2.0000000000000000000 0.000000€ + 00 6.031119¢ — 12
(e 1)° 1 s CM2 133 2.0000000000000000000 0.000000¢ + 00 1.416531e — 06
: IM2 30 2.0000000000000000000 0.000000€ + 00 4.037420e — 08
AM2 3 2.0000000000000000000 0.000000€ + 00 1.220248¢ — 06
NM 7 2.2041177331716202960 3.305103¢ — 20 1.118049¢ — 13
RSN e CM2 8 2.2041177331716202960 3.305103¢ — 20 9.844979¢ — 09
JM2 13 2.2041177331716202960 3.305103¢ — 20 4.553875¢ — 15
AM?2 3 2.2041177331716202960 3.305103¢ — 20 2.541180e — 08
NM 5 3.8695271180759797541 4.150103¢ — 18 5.062765¢ — 10
o3y 3 26 CM2 3 3.8695271180759797539 7.904086¢ — 19 4.497358¢ — 05
: JM2 3 3.8695271180759797539 7.904086¢ — 19 8.123636¢ — 13
AM?2 2 3.8695271180759797536 8.201176¢ — 18 3.077979 — 04
NM 6 2.1544346900318837218 5.668276¢ — 19 3.486728¢ — 14
B s CM2 150 2.1544346900318837218 5.668276¢ — 19 7.135475¢ — 05
: IM2 3 2.1544346900318837218 5.668276¢ — 19 2.865678¢ — 08
AM2 2 2.1544346900318837218 5.668276¢ — 19 2.779608¢ — 06
NM 9 —2.8543919810023413339 1.430322¢ — 21 1.636514e — 13
re® —sind o5 | CM2 5 —2.8543919810023413339 1.430322¢ — 21 5.547576¢ — 12
13cosz — ' JM2 4 —2.8543919810023413339 1.430322¢ — 21 2.240722¢ — 06
AM?2 4 —2.8543919810023413339 1.430322¢ — 21 5.255127¢ — 07
NM 23 0.0000000291733579902 3.404339% — 15 2.917336¢ — 08
it 4 05 CM2 12 0.0000000434429282675 7.549152¢ — 15 1.154341e — 07
: JM2 11 0.000000013539524364§ o o 4.835544¢ — 08
AM2 v 7.447503¢ — 08
NM 1.937468¢ — 09
5 ) CM2 . 8.067430¢ — 16
z' 442" — 10 0.9 JM2 6.472125¢ — 19 5.496336¢ — 12
AM2 6.472125¢ — 19 1.506824¢ — 04

5. Conclusions

The present work comprises a development of two new numerical methods for solving nonlinear equations.
The orders of convergence of our proposed methods are four and five. A comparison of these new methods
with some known methods with the same convergence order is presented. The comparison given in Tables
1 and 2 obviously indicate the better performance of the newly developed methods. These methods may
also be viewed as a generalization of some existing methods. The idea and technique of this paper can be
employed to develop and analyze higher order multi-step iterative methods for solving nonlinear equations.
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