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aDepartment of Mathematics, Duzce University, 81620, Duzce, Turkey.
bDepartment of Mathematics, Ege University, 35100, Izmir, Turkey.

Communicated by R. Saadati

Abstract

First we introduce a new structure of uniform spaces, called se-uniform spaces, and provide some of
their basic properties. Next, we present the notion of a soft E-distance in se-uniform spaces, which is a
soft version of E-distance of Aamri and El Moutawakil [M. Aamri, D. El Moutawakil, Acta Math. Acad.
Peadegog. Nyhazi., 20 (2004), 83–91]. Then, by using the soft E-distance, we establish some fixed soft
element theorems for various mappings on se-uniform spaces, which are the main results of the paper. This
is the first kind of such results in this direction. c©2016 All rights reserved.
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1. Introduction

In 1999, Molodtsov [27] introduced the concept of soft set theory as a new approach for coping with
uncertainties and also presented the basic results of the new theory. In [27], he successfully applied soft set
theory in several directions, such as smoothness of functions, game theory, operations research, Riemann
integration, Perron integration and theory of measurement. After presentation of the operations of soft sets
[24], the properties and applications of this theory have been studied increasingly [6, 28, 32].

Aktaş and Çağman [5] introduced soft groups and also compared soft sets to fuzzy sets and rough sets.
Shabir and Naz [36] initiated the study of soft topological spaces. Das and Samanta [15] presented the
notion of a soft metric space by employing soft elements introduced in [13] and investigated some of its
fundamental properties. Recently, many papers concerning soft set theory have been published [4, 10, 11,
14, 18, 23, 25, 29].
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The first systematic exposition of uniform spaces was given by Bourbaki in [12]. This structure is a
suitable tool for investigations in topology. Also, there exist its remarkable analogies with metrics, but the
scope of its applicability is much wider. Therefore, it can be considered as a bridge between metric and
topology. Hence, there exists a considerable literature on fixed point theory dealing with results on fixed or
common fixed points in uniform spaces.

Fixed point theory plays a fundamental role in mathematics and applied sciences, such as optimization,
mathematical models and economic theories. Also, this theory have been applied to show the existence
and uniqueness of the solutions of differential equations, integral equations and many other branches of
mathematics [16, 30, 31]. A basic result in fixed point theory is the Banach contraction principle. Since the
appearance of this principle, there has been a lot of activity in this area. Some authors such as Jachymski [19],
Rhoades [34], Suzuki [37], and Wang [41] studied the fixed point or common fixed point theory for contractive
selfmappings in complete metric spaces or Banach spaces. Kada et al. [21] introduced the concept of a W -
distance on metric spaces and generalized some important results in nonconvex minimizations and in fixed
point theory for both W -contractive and W -expansive mappings.

An exact analogue of that principle in uniform spaces was obtained independently by Acharya [3] and
Tarafdar [38]. Using the ideas of Kang [22], Montes and Charris [35] established some results on fixed
points of mappings by means of appropriate W -contractive or W -expansive assumptions in uniform spaces.
Later, Aamri and El Moutawakil [1] proved some common fixed point theorems for some new contractive
or expansive mappings in uniform spaces by introducing the notion of E-distance. Altun and Imdad [8]
introduced an order relation on uniform spaces by utilizing E-distance mappings and presented some fixed
point theorems. Existence and uniqueness of fixed points for various contractive mappings in the setting of
uniform spaces, have been investigated by several authors [2, 7, 9, 17, 26, 33, 39, 40].

In this work, with the help of soft elements, we define the concept of se-uniform spaces and investigate
some of its properties. We consider the concept of soft E-distance in se-uniform spaces, which is a soft
version of the E-distance introduced by Aamri and El Moutawakil [1]. By using the soft E-distance, we
prove some fixed soft element theorems for various mappings in se-uniform spaces. Also, we give a soft
order relation on se-uniform spaces and utilize this relation to prove some fixed soft element theorems in
se-uniform spaces. Moreover, we furnish some examples to demonstrate the validity of the obtained results.

2. Preliminaries

In this section, we recollect some basic notions regarding soft sets.
Throughout this work, let X be an initial universe set and E the set of all parameters for X. Let P (X)

denote the power set of X and A,B ⊆ E.

Definition 2.1 ([27]). A soft set (F,A) over the universe X with the set A of parameters is defined by the
set of ordered pairs

(F,A) = {(a, F (a)) : a ∈ A,F (a) ∈ P (X)},

where F is a mapping F : A→ P (X).

Definition 2.2 ([32]). Let (F,A) and (G,B) be two soft sets over a common universe X. Then,

(i) (F,A) is called a soft subset of (G,B) if A ⊆ B and F (a) ⊆ G(a) for all a ∈ A. It is denoted by
(F,A) ⊆ (G,B);

(ii) (F,A) and (G,B) are called soft equal if (F,A) ⊆ (G,B) and (G,B) ⊆ (F,A). It is denoted by
(F,A) = (G,B).

Definition 2.3 ([24]). Let E = {e1, e2, ..., en} be a set of parameters. The NOT set of E, denoted by eE,
is defined by eE = {ee1, ee2, ..., een} where eei = not ei, for all i ∈ {1, 2, ..., n}.

Definition 2.4 ([24]). Let E be a set of parameters and A,B ⊆ E. Then,
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(i) e(eA) = A.

(ii) e(A ∪B) =eA∪eB.
(iii) e(A ∩B) =eA∩eB.

Definition 2.5 ([24]). The complement of a soft set (F,A) is denoted by (F,A)c and is defined by (F,A)c =
(F c, eA), where F c :eA→ P (X) is a mapping given by F c(a) = X − F (ea) for all a ∈eA.

Definition 2.6 ([6]). The relative complement of a soft set (F,A) is denoted by (F,A)r and is defined by
(F,A)r = (F r, A), where F r : A→ P (X) is a mapping given by F r(a) = X − F (a) for all a ∈ A.

Definition 2.7 ([24]). Let (F,A), (G,B) be two soft sets over a common universe X. Then,

(i) The soft set (F,A) is called a null soft set, denoted by Φ, if F (e) = ∅ for all e ∈ A.

(ii) The soft set (F,A) is called an absolute soft set, denoted by Ã, if F (e) = X for all e ∈ A.

Note that we use the notation X̃ instead of Ã as in [15] throughout this paper.

Definition 2.8 ([24]). Let (F,A), (G,B) be two soft sets over a common universe X. Then,

(i) The union of (F,A) and (G,B) is the soft set (H,C) where C = A ∪B and for all e ∈ C,

H(e) =


F (e), if e ∈ A−B,

G(e), if e ∈ B −A,

F (e) ∪G(e), if e ∈ A ∩B.

We write (F,A)∪̃(G,B) = (H,C).

(ii) The intersection of (F,A) and (G,B) is the soft set (H,C) where C = A ∩ B and for all e ∈ C,
H(e) = F (e) or G(e) (as both are the same set). We write (F,A)∩̃(G,B) = (H,C).

Pei and Miao [32] gave an alternative definition for intersection of soft sets as follows.

Definition 2.9 ([32]). Let (F,A) and (G,B) be two soft sets over a common universe X. The intersection of
(F,A) and (G,B) is denoted by (F,A)∩(G,B), and is defined by (F,A)∩(G,B) = (H,C), where C = A∩B
and for all c ∈ C, H(c) = F (c) ∩G(c).

Remark 2.10. In the above definitions, the set of parameters may vary from soft set to soft set. However,
in order to efficiently discuss, we consider only soft sets (F,A) over a universe X in which all the parameter
sets A are the same. The above definitions are also valid for these type of soft sets as a particular case of
those definitions. We denote the family of these soft sets by SS(X,A)

Definition 2.11 ([13]). Let X be a nonempty set and A be a nonempty parameter set. Then a function
ε : A → X is said to be a soft element of X. A soft element ε of X is said to belong to a soft set (F,A)
of X, denoted by ε ∈̃ (F,A), if ε(a) ∈ F (a) for each a ∈ A. Thus a soft set (F,A) can be expressed as
F (a) = {ε(a) : ε ∈̃ F} for each a ∈ A.

Let XA be the family of all soft elements in X with the set A of parameters.

Remark 2.12 ([13]). It is to be noted that every singleton soft set (F,A) (that is, for each a ∈ A, F (a) is a
singleton set) can be identified with a soft element by simply identifying the singleton set with the element
that it contains for each a ∈ A.

Definition 2.13 ([13]). Let R be the set of real numbers, B(R) the collection of all nonempty bounded
subsets of R, and A a set of parameters. Then,

(F,A) = {(a, F (a)) : a ∈ A,F (a) ∈ B(R)}

is called a soft real set. If specifically (F,A) is a singleton soft set, then after identifying (F,A) with the

corresponding soft element, it will be called a soft real number.
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Definition 2.14 ([13]). Let (F,A), (G,A) be soft real numbers. Then,

(i) The sum is defined by (F +G)(a) = F (a)G(a), for each a ∈ A.

(ii) The difference is defined by (F −G)(a) = F (a)−G(a), for each a ∈ A.

(iii) The product is defined by (F.G)(a) = F (a).G(a), for each a ∈ A.

(iv) The modulus of (F,A) is denoted by (|F |, A) and is defined by |F |(a) = |F (a)|, for each a ∈ A.

From the above definition of soft real numbers it follows that (F +G,A), (F −G,A), (F.G,A), and (|F |, A)
are soft real numbers.

Definition 2.15 ([13]). Let (F,A) be a soft real number. Then, (F,A) is said to be a nonnegative soft real
number if F (a) is a nonnegative real number for every a ∈ A.

Let R(A)∗ denote the set of all nonnegative soft real numbers.

We use the notations x̃, ỹ, z̃ to denote soft elements of a soft set and α̃, β̃, γ̃ to denote soft real numbers
whereas ᾱ, β̄, γ̄ will denote a particular type of soft real numbers such that ᾱ(a) = α, for all a ∈ A etc. For
example 0 is the soft real number where 0̄(a) = 0, for all a ∈ A [15].

Definition 2.16 ([15]). Let α̃ and β̃ be two soft real numbers. Then,

(i) α̃ ≤̃ β̃ if α̃(a) ≤ β̃(a), for every a ∈ A.

(ii) α̃ ≥̃ β̃ if α̃(a) ≥ β̃(a), for every a ∈ A.

(iii) α̃ <̃ β̃ if α̃(a) < β̃(a), for every a ∈ A.

(iv) α̃ >̃ β̃ if α̃(a) > β̃(a), for every a ∈ A.

Definition 2.17 ([15]). Let X be a set and A a set of parameters. A mapping d : XA ×XA → R(A)∗ is
called a soft metric on X if it satisfies the following axioms:

(sm1) d(x̃, ỹ) ≥̃ 0, for all x̃, ỹ ∈̃ X̃.

(sm2) d(x̃, ỹ) = 0 if and only if x̃ = ỹ.

(sm3) d(x̃, ỹ) = d(ỹ, x̃), for all x̃, ỹ ∈̃ X̃.

(sm4) d(x̃, ỹ) ≤̃ d(x̃, z̃)d(z̃, ỹ), for all x̃, ỹ, z̃ ∈̃ X̃.

The triplet (X, d,A) is called a soft metric space on X.

Example 2.18 ([15]). Let X = A = R. Then, d : XA ×XA → R(A)∗, where

d(x̃, ỹ) = |x̃− ỹ| for every x̃, ỹ ∈̃ X̃

is a soft metric on X.

Definition 2.19 ([29]). Let X and Y be two nonempty sets and f : X → Y a mapping. Then,

(i) the image of a soft set (F,A) ∈ SS(X,A) under the mapping f is the soft set f(F,A) = (f(F ), A)
defined by

f(F )(a) = f(F (a)) for each a ∈ A.

(ii) the inverse image of a soft set (G,A) ∈ SS(Y,A) under the mapping f is the soft set f−1(G,A) =
(f−1(G), A) defined by

f−1(G)(a) = f−1(G(a)) for each a ∈ A.

Definition 2.20 ([14]). A sequence {α̃n} of soft real numbers is said to soft converge to α̃, and we write
limn→∞ α̃n = α̃, if for every ε̃ >̃ 0, there exists an n0 ∈ N such that |α̃n − α̃| <̃ ε̃ for all n ≥ n0.

Definition 2.21. A sequence {α̃n} of soft real numbers is said to be a soft Cauchy sequence if for every
ε̃ >̃ 0, there exists an n0 ∈ N such that |α̃n − α̃m| <̃ ε̃ for all m,n ≥ n0.
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3. se-uniform spaces and soft E-distance

Now, on the basis of the notion of soft elements, we introduce se-uniform spaces and give the concept of
a soft E-distance in se-uniform spaces, which is a soft version of the E-distance which is proposed by Aamri
and El Moutawakil [1].

Definition 3.1. (i) The set ∆ ⊂ XA ×XA is said to be an se-diagonal, which is defined by

∆ = {(x̃, x̃) : x̃ ∈̃ X̃}.

(ii) Let U ⊂ XA ×XA. Then,
U−1 = {(x̃, ỹ) : (ỹ, x̃) ∈ U}.

If U = U−1, then U is said to be soft symmetric.

(iii) Let U, V ⊂ XA ×XA. Then,

U ◦ V = {(x̃, ỹ) : for some z̃ ∈̃ X̃, (x̃, z̃) ∈ V and (z̃, ỹ) ∈ U}.

Remark 3.2. Let U, V,W ⊂ XA ×XA. Then, the following statements are satisfied:

(i) If U ⊆ V , then U−1 ⊆ V −1 and U ◦W ⊆ V ◦W .

(ii) (U ◦ V )−1 = V −1 ◦ U−1.
(iii) (U ◦ V ) ◦W = U ◦ (V ◦W ).

Definition 3.3. Let X be a set and A a set of parameters. An se-uniformity on X is a structure given by
a set U of subsets of XA ×XA which satisfies the following axioms:

(u1) If U ∈ U , then ∆ ⊆ U .

(u2) If U ∈ U , then there is a V ∈ U such that V ◦ V ⊆ U
(u3) If U ∈ U , then there is a V ∈ U such that V −1 ⊆ U .

(u4) If U, V ∈ U , then U ∩ V ∈ U .

(u5) If U ∈ U and U ⊆ V , then V ∈ U .

The triplet (X,U , A) is called an se-uniform space on X.

Definition 3.4. An se-uniform space (X,U , A) is called a Hausdorff space if the intersection of all the
U ∈ U is equal to ∆, that is, if (x̃, ỹ) ∈ U for all U ∈ U implies x̃ = ỹ.

Example 3.5. Let X = {x, y}, A = {a1, a2} and let x̃1, x̃2, x̃3, x̃4 ∈̃ X̃ where

x̃1(a1) = x, x̃1(a2) = x, x̃2(a1) = y, x̃2(a2) = y,
x̃3(a1) = x, x̃3(a2) = y, x̃4(a1) = y, x̃4(a2) = x.

Then, U = {U ⊆ XA × XA : ∆ ⊆ U} is an se-uniformity on X and therefore (X,U , A) is an se-uniform
space. Moreover, it is a Hausdorff space.

Definition 3.6. A nonvoid subfamily B of an se-uniformity U is called an se-base of U if for any U ∈ U
there is a V ∈ B such that V ⊆ U .

Theorem 3.7. A nonvoid family B ⊆ P(XA×XA) is an se-base of some se-uniformity on X if it satisfies
the following axioms:

(b1) If B ∈ B, then ∆ ⊆ B.

(b2) If B ∈ B, then there is a C ∈ B such that C ◦ C ⊆ B.

(b3) If B ∈ B, then there is a C ∈ B such that C−1 ⊆ B.

(b4) If B1, B2 ∈ B, then there is a B3 ∈ B such that B3 ⊆ B1 ∩B2.
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Proof. It is easy to see that a nonvoid family B satisfying (b1)− (b4) generates an se-uniformity U = {U ⊆
XA ×XA : for some B ∈ B, B ⊆ U}.

Example 3.8. Let (X, d,A) be a soft metric space. Then, Bd = {Dε̃ : ε̃ >̃ 0} is a se-base for some
se-uniformity Ud on X such that

Dε̃ = {(x̃, ỹ) : d(x̃, ỹ) <̃ ε̃} ⊂ XA ×XA.

Let us prove that Bd satisfies axioms (b1)− (b4).

(b1) Let ε̃ >̃ 0. For all x̃ ∈̃ X̃, since d(x̃, x̃) = 0, we have (x̃, x̃) ∈ Dε̃.

(b2) For every ε̃ >̃ 0, we have Dε̃/2 ◦ Dε̃/2 ⊆ Dε̃. Indeed, let (x̃, ỹ) ∈ Dε̃/2 ◦ Dε̃/2. Then, there exists a

z̃ ∈̃ X̃ such that (x̃, z̃) ∈ Dε̃/2 and (z̃, ỹ) ∈ Dε̃/2. Hence, d(x̃, ỹ) ≤̃ d(x̃, z̃) + d(z̃, ỹ) <̃ ε̃/2 + ε̃/2 = ε̃.
So, (x̃, ỹ) ∈ Dε̃.

(b3) It is clear because Dε̃ = D−1ε̃ for any ε̃ >̃ 0.

(b4) Let ε̃1, ε̃2 >̃ 0. Now, let us take ε̃ >̃ 0 such that ε̃(a) = min{ε̃1(a), ε̃2(a)} for each a ∈ A. Therefore, it
is easy to see that Dε̃ ⊆ Dε̃1 ∩Dε̃2 .

This se-uniformity Ud is called the se-uniformity generated by the soft metric d. Also, one can readily check
that (X,Ud, A) is a Hausdorff space.

Definition 3.9. Let (X,U , A) be an se-uniform space. If U ∈ U and (x̃, ỹ) ∈ U, (ỹ, x̃) ∈ U , then x̃ and ỹ
are said to be soft U -close.

Remark 3.10. Let (X,U , A) be an se-uniform space. Clearly, if U ∈ U , then U−1 ∈ U . Hence, each U ∈ U
contains a soft symmetric element V ∈ U . In fact, let U ∈ U . From (u4) it follows that V = U ∩ U−1 is a
soft symmetric element of U contained in U . Therefore, if (x̃, ỹ) ∈ V , then x̃ and ỹ are both soft V - and
soft U -close and so for our purpose one may assume that each U ∈ U is soft symmetric.

Definition 3.11. Let (X,U , A) be an se-uniform space. A mapping p : XA × XA → R(A)+, where
R(A)+ = {α̃ ∈̃ R̃ : α̃ >̃ 0 or α̃ = 0}, is called a soft E-distance on X if

(p1) for any U ∈ U , there exists a δ̃ >̃ 0 such that p(z̃, x̃) <̃ δ̃ and p(z̃, ỹ) <̃ δ̃ for some z̃ ∈̃ X̃, imply (x̃, ỹ) ∈ U .

(p2) p(x̃, ỹ) ≤̃ p(x̃, z̃) + p(z̃, ỹ) for all x̃, ỹ, z̃ ∈̃ X̃.

Example 3.12. Let (X, d,A) be a soft metric space, where X = A = [0, 1] and d(x̃, ỹ) = |x̃− ỹ| for every
x̃, ỹ ∈̃ X̃. It is easy to see that (X,Ud, A) is an se-uniform space, where Ud is the se-uniformity generated
by the soft metric d. Define a mapping p : XA ×XA → R(A)+ by

p(x̃, ỹ) =


0, if ỹ = 0;

ỹ, if 0 <̃ ỹ <̃ 1

1, otherwise

for all x̃, ỹ ∈̃ X̃. Then, p is a soft E-distance on X. In fact, since for all x̃, ỹ, z̃ ∈̃ X̃, p(x̃, ỹ) = p(z̃, ỹ), (p2)
holds. Let U ∈ Ud. Then, there exists an ε̃ >̃ 0 such that Dε̃ ⊆ U . If p(z̃, x̃) <̃ ε̃ and p(z̃, ỹ) <̃ ε̃, then we have

d(x̃, ỹ) = |x̃− ỹ| <̃ ε̃.

Therefore, we get (x̃, ỹ) ∈ Dε̃ and so (x̃, ỹ) ∈ U . This shows that p satisfies (p1).

Example 3.13. Let (X,U , A) be an se-uniform space which is defined in Example 3.5. Let a mapping
p : XA ×XA → R(A)+ be defined by p(x̃i, x̃i) = 0, for i = 1, 2, 3, 4,

p(x̃i, x̃i+1) = p(x̃i+1, x̃i) = 1
4 , for i = 1, 2, 3,

p(x̃i, x̃i+2) = p(x̃i+2, x̃i) = 1
3 , for i = 1, 2 and

p(x̃i, x̃i+3) = p(x̃i+3, x̃i) = 1
2 , for i = 1.

Then, one can easily verify that p is a soft E-distance on X.
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Definition 3.14. Let (X,U , A) be an se-uniform space and p a soft E-distance on X.

(i) A sequence {x̃n} of soft elements in X is said to soft p-converge to x̃ ∈̃ X̃ if for every ε̃ >̃ 0, there exists
an n0 ∈ N such that p(x̃n, x̃) <̃ ε̃ for all n ≥ n0. We denote this by limn→∞ p(x̃n, x̃) = 0.

(ii) A sequence {x̃n} of soft elements in X is said to be a soft p-Cauchy sequence if for every ε̃ >̃ 0, there
exists an n0 ∈ N such that p(x̃n, x̃m) <̃ ε̃ for all m,n ≥ n0.

(iii) (X,U , A) is said to be a soft S-complete space if for every soft p-Cauchy sequence {x̃n} in X there
exists an x̃ ∈̃ X̃ such that limn→∞ p(x̃n, x̃) = 0.

(iv) (X,U , A) is said to be a soft p-bounded space if

δp(X̃)(a) = sup{p(x̃, ỹ)(a) | x̃, ỹ ∈̃ X̃} <∞ for every a ∈ A.

Definition 3.15. Let (X,U , A) be an se-uniform space, p a soft E-distance on X, and Z a nonempty subset
of X. Z is said to be a soft S-complete subspace of X if for every soft p-Cauchy sequence {z̃n} in Z there
exists a z̃ ∈̃ Z̃ such that limn→∞ p(z̃n, z̃) = 0.

Definition 3.16. Let (X,U , A) be an se-uniform space. A sequence {x̃n} of soft elements in X is said to be
a soft Cauchy sequence for U if for any U ∈ U , there exists an n0 ≥ 1 such that x̃n and x̃m are soft U -close
for all m,n ≥ n0.

Jungck and Rhoades [20] defined the concept of weak compatibility. We introduce this concept in soft
setting as follows:

Definition 3.17. Let (X,U , A) be a Hausdorff se-uniform space and p a soft E-distance on X. Two
mappings f, g : (X,U , A) → (X,U , A) are said to be soft weakly compatible if f(g(x̃)) = g(f(x̃)) for all
x̃ ∈̃ X̃ which satisfy f(x̃) = g(x̃).

Example 3.18. Consider Example 3.12. Let us define mappings f, g : [0, 1]→ [0, 1] by

f(x) =

{
x, if x ∈ [0, 13);

1, if x ∈ [13 , 1].
g(x) =

{
1− x, if x ∈ [0, 13);

1, if x ∈ [13 , 1].

Then for every x̃ satisfying 1
3 ≤̃ x̃ ≤̃ 1, we have f(g(x̃)) = g(f(x̃)), showing that f, g are soft weakly compatible

mappings.

Definition 3.19. Let (X,U , A) be a Hausdorff se-uniform space and let f : (X,U , A) → (X,U , A) be a
mapping. A soft element x̃ ∈̃ X̃ is called a fixed soft element of f if f(x̃) = x̃.

Example 3.20. Let f be the mapping defined in Example 3.18. Then every x̃ satisfying 0 ≤̃ x̃ <̃ 1
3 and

x̃ = 1 is a fixed soft element of f .

Definition 3.21. Let X be a set, A a set of parameters, and R a soft relation on X, i.e., a subset of
XA ×XA. We say that R is a soft order in X if it has the following properties (we write x̃R ỹ instead of
(x̃, ỹ) ∈ R):

(so1) For every x̃ ∈̃ X̃, x̃R x̃.

(so2) If x̃R ỹ and ỹR x̃, then x̃ = ỹ.

(so3) If x̃R ỹ and ỹR z̃, then x̃R z̃.

A set X together with a soft order R in X is called a soft ordered set, denoted by (X,R, A). For example,
(R, ≤̃, A) is a soft ordered set.

Definition 3.22. Let (X, �̃, A) and (Y, �̃′, A) be two soft ordered sets. A mapping f : (X, �̃, A) →
(Y, �̃′, A) is said to be a soft nondecreasing if f(x̃) �̃′ f(ỹ) for every pair x̃, ỹ of soft elements in X satisfying
x̃ �̃ ỹ.
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4. Main Results

In this section, inspired by the works [2, 7, 8], we prove some fixed soft element theorems for various
mappings with the help of soft E-distance. We begin with the following lemma that will play a crucial role
in the proofs of the main theorems.

Lemma 4.1. Let (X,U , A) be a Hausdorff se-uniform space and p a soft E-distance on X. Let {x̃n} and
{ỹn} be arbitrary sequences of soft elements in X and {α̃n}, {β̃n} sequences of nonnegative soft real numbers
soft converging to 0. Then, for x̃, ỹ, z̃ ∈̃ X̃, the following results hold:

(a) If p(x̃n, ỹ) ≤̃ α̃n and p(x̃n, z̃) ≤̃ β̃n for all n ∈ N, then ỹ = z̃. In particular, if p(x̃, ỹ) = 0 and
p(x̃, z̃) = 0, then ỹ = z̃.

(b) If p(x̃n, x̃m) ≤̃ α̃n for all m > n, then {x̃n} is a soft Cauchy sequence for U .

Proof. (a) Let p(x̃n, ỹ) ≤̃ α̃n and p(x̃n, z̃) ≤̃ β̃n for all n ∈ N. Then, for every ε̃ >̃ 0, there exists an n0 ∈ N
such that p(x̃n, ỹ) <̃ ε̃ and p(x̃n, z̃) <̃ ε̃ for all n ≥ n0 since {α̃n} and {β̃n} soft converge to 0. From the
condition (p1) of Definition 3.11 it follows that (ỹ, z̃) ∈ U for every U ∈ U . Thus, since (X,U , A) is a
Hausdorff space, we have ỹ = z̃. (b) Let U ∈ U . Then, there exists a δ̃ >̃ 0 such that p(z̃, x̃) <̃ δ̃ and

p(z̃, ỹ) <̃ δ̃ for some z̃ ∈̃ X̃ imply (x̃, ỹ) ∈ U . Since {α̃n} soft converge to 0, there exists an n0 ∈ N such that
α̃n <̃ δ̃ for all n ≥ n0. By hypothesis, we have p(x̃n, x̃m) ≤̃ α̃n <̃ δ̃ for all m > n ≥ n0. Now, choose an m ≥ 1
with m > n ≥ n0. From the fact that p(x̃n, x̃u) <̃ δ̃ and p(x̃n, x̃v) <̃ δ̃ for every u, v ≥ m it follows that x̃u
and x̃v are soft U -close.

Let ψ : (R+, ≤̃, A)→ (R+, ≤̃, A) be a soft nondecreasing mapping satisfying the following conditions:

(ψ1) 0 <̃ ψ(α̃) <̃ α̃, for each α̃ >̃ 0.

(ψ2) limn→∞ ψ
n(α̃) = 0, for each α̃ >̃ 0, where ψn is the nth iterate of ψ.

Theorem 4.2. Let (X,U , A) be a Hausdorff se-uniform space and p be a soft E-distance on X such that
(X,U , A) is a soft p-bounded space. Let f, g : (X,U , A)→ (X,U , A) be two soft weakly compatible mappings
satisfying the following conditions:

(i) f(X) ⊆ g(X),

(ii) p(f(x̃), f(ỹ)) ≤̃ψ
(
p(g(x̃), g(ỹ))

)
, for all x̃, ỹ ∈̃ X̃,

(iii) Either f(X) or g(X) is a soft S-complete subspace of X. Then f and g have a unique common fixed
soft element.

Proof. Let x̃0 ∈̃ X̃. Since f(X) ⊆ g(X), we can choose a x̃1 ∈̃ X̃ such that f(x̃0) = g(x̃1). Again, we
can choose a x̃2 ∈̃ X̃ such that f(x̃1) = g(x̃2). Continuing this process, we can choose a x̃n ∈̃ X̃ such that
f(x̃n−1) = g(x̃n). Now, we shall show that the sequence {f(x̃n)} of soft elements in f(X) is a soft p-Cauchy
sequence. Let ε̃ >̃ 0. Since δp(X̃) >̃ 0, by (ψ2), there exists an n0 ∈ N such that ψn(δp(X̃)) <̃ ε̃ for all n ≥ n0.
Then, by using the condition (ii), we get

p(f(x̃n), f(x̃m)) ≤̃ψ
(
p(g(x̃n), g(x̃m))

)
= ψ

(
p(f(x̃n−1), f(x̃m−1))

)
≤̃ψ2

(
p(g(x̃n−1), g(x̃m−1))

)
= ψ2

(
p(f(x̃n−2), f(x̃m−2))

)
...

≤̃ψn
(
p(f(x̃0), f(x̃m−n))

)
for m ≥ n ≥ n0. From the fact that the mapping ψ is soft nondecreasing, it follows that

p(f(x̃n), f(x̃m)) ≤̃ψn
(
p(f(x̃0), f(x̃m−n))

)
≤̃ψn(δp(X̃)) <̃ ε̃.

Since p is not symmetrical, by repeating the same argument we get

p(f(x̃m), f(x̃n)) ≤̃ψn(δp(X̃)) <̃ ε̃.
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Hence the sequence {f(x̃n)} is a soft p-Cauchy sequence.
Suppose that g(X) is a soft S-complete space. Then, there exists an r̃ ∈̃ X̃ such that limn→∞ p(f(x̃n), g(r̃)) =

0. Therefore, we have limn→∞ p(g(x̃n), g(r̃)) = 0. Since

p(f(x̃n), f(r̃)) ≤̃ψ
(
p(g(x̃n), g(r̃))

)
,

we obtain
lim
n→∞

p(f(x̃n), f(r̃)) = lim
n→∞

p(f(x̃n), g(r̃)) = 0.

By applying Lemma 4.1(a), we get f(r̃) = g(r̃). Since f and g are soft weakly compatible mappings, we
have f(g(r̃)) = g(f(r̃)). Also, f(f(r̃)) = f(g(r̃)) = g(f(r̃)) = g(g(r̃)). Suppose that p

(
f(r̃), f(f(r̃))

)
>̃ 0.

From (ii) and (ψ1), it follows that

p
(
f(r̃), f(f(r̃))

)
≤̃ψ

(
p
(
g(r̃), g(f(r̃))

))
= ψ

(
p
(
f(r̃), f(f(r̃))

))
<̃ p
(
f(r̃), f(f(r̃))

)
,

which yields a contradiction. Thus, p
(
f(r̃), f(f(r̃))

)
= 0. Similarly, it can be shown that p

(
f(r̃), f(r̃)

)
=

0. Because p
(
f(r̃), f(f(r̃))

)
= p

(
f(r̃), f(r̃)

)
= 0, by Lemma 4.1(a), we get f(r̃) = f(f(r̃)). Therefore,

g(f(r̃)) = f(f(r̃)) = f(r̃), which implies that f(r̃) is a common fixed soft element of f and g.
If f(X) is a soft S-complete space, then there exists a ũ ∈̃ X̃ such that limn→∞ p(f(x̃n), f(ũ)) = 0. Since

f(X) ⊆ g(X), there exists an r̃ ∈̃ X̃ such that f(ũ) = g(r̃) and the proof that g(r̃) is a common fixed soft
element of f and g is the same as that given when g(X) is soft S-complete space.

To investigate the uniqueness of the common fixed soft element of f and g, suppose that there exist
ũ, ṽ ∈̃ X̃ such that f(ũ) = g(ũ) = ũ and f(ṽ) = g(ṽ) = ṽ. If p(ũ, ṽ) >̃ 0, then from (ii) and (ψ1), we have

p(ũ, ṽ) = p(f(ũ), f(ṽ)) ≤̃ψ
(
p(g(ũ), g(ṽ))

)
= ψ(p(ũ, ṽ)) <̃ p(ũ, ṽ)

which is a contradiction. Consequently, we have p(ũ, ṽ) = 0. Analogously, one can show that p(ũ, ũ) = 0.
Thus, by Lemma 4.1(a), we obtain ũ = ṽ. Hence, f and g have a unique common fixed soft element.

Condition (ii) and the assumption concerning soft weak compatibility of f and g in Theorem 4.2 is not
superfluous. To see this, consider the following example.

Example 4.3. Consider Example 3.12. Clearly, (X,Ud, A) is a soft p-bounded space. Next, let mappings
f and g be defined by

f(x) =

{
0, if x ∈ [0, 13) and x = 1;
1
5 , if x ∈ [13 , 1).

g(x) =


1
3 − x, if x ∈ [0, 13);
1
2 , if x ∈ [13 , 1);

0, if x = 1.

It is easy to see that f(X) ⊆ g(X) and f(X) is a soft S-complete space. But

f(g(1)) = f(0) = 0 and g(f(1)) = g(0) =
1

3

and so f and g are not soft weakly compatible mappings. Consider the soft nondecreasing mapping ψ
defined by

ψ(x) =

{
x2, if x ∈ [0, 13);
x
3 , if x ∈ [13 , 1].

Then, it satisfies (ψ1) and (ψ2). On the other hand, for x̃ ∈̃ X̃, we have

p(f(x̃), f(
1

3
)) =

1

5
>̃ ψ

(
p(g(x̃), g(

1

3
))
)

=
1

6
,

which implies that condition (ii) in Theorem 4.2 does not hold for all x̃, ỹ ∈̃ X̃. Then, f and g do not have
a common fixed soft element.
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Next, we recall the following example to show the validity of Theorem 4.2.

Example 4.4. Consider Example 3.13. It is obvious that (X,U , A) is a soft p-bounded space. Take
mappings f, g : X → X such that

f(x) = f(y) = x and g(x) = x, g(y) = y.

One can readily verify that f(X) ⊆ g(X) and f(X) is a soft S-complete space. Also, f and g are soft weakly
compatible mappings, because

f(g(x̃1)) = g(f(x̃1)) whenever f(x̃1) = g(x̃1).

Now, let ψ be the mapping defined in Example 4.3. Then, the condition (ii) in Theorem 4.2 holds for all
x̃, ỹ ∈̃ X̃. Hence, all the conditions of Theorem 4.2 are satisfied and x̃1 is the unique common fixed soft
element of f and g.

In Theorem 4.2, letting g = IdX (resp. f = IdX), where IdX is the identity mapping on X, we obtain
the following results:

Corollary 4.5. Let (X,U , A) be a Hausdorff se-uniform space and p a soft E-distance on X such that
(X,U , A) is a soft p-bounded space. Let f : (X,U , A) → (X,U , A) be a mapping satisfying the following
conditions:

(i) p(f(x̃), f(ỹ)) ≤̃ψ(p(x̃, ỹ)), for all x̃, ỹ ∈̃ X̃,

(ii) f(X) is a soft S-complete space.

Then f has a unique fixed soft element.

Corollary 4.6. Let (X,U , A) be a Hausdorff se-uniform space and p a soft E-distance on X such that
(X,U , A) is a soft p-bounded and soft S-complete space. Let g : (X,U , A) → (X,U , A) be a surjective
mapping such that

p(x̃, ỹ) ≤̃ ψ
(
p(g(x̃), g(ỹ))), for all x̃, ỹ ∈̃ X̃.

Then g has a unique fixed soft element.

Definition 4.7. Let X be a set and A a set of parameters. A mapping f : X → R is called a soft
semi-sequentially continuous if for any sequence {x̃n} of soft elements in X, the sequence {f(x̃n)} is a soft
convergent sequence in R.

Example 4.8. It is easily seen that every constant mapping f : X → R is a soft semi-sequentially continuous.

Dhage [16] defined the notion of a weak increasing. We introduce this notion in soft setting as follows:

Definition 4.9. Let (X, �̃, A) be a soft ordered set. Two mappings f, g : X → X are said to be soft weakly
increasing if f(x̃) �̃ g(f(x̃)) and g(x̃) �̃ f(g(x̃)) hold for all x̃ ∈̃ X̃.

Example 4.10. Take as the soft ordered set ([0, 1], ≤̃, A) and let f, g : [0, 1]→ [0, 1] be the mappings defined
in Example 3.18. Then,

f(x̃) = x̃ ≤̃ g(f(x̃)) = g(x̃) = 1− x̃ and g(x̃) = 1− x̃ ≤̃ f(g(x̃)) = f(1− x̃) = 1

for every x̃ satisfying 0 ≤̃ x̃ <̃ 1
3 . Similarly,

f(x̃) = 1 ≤̃ g(f(x̃)) = g(1) = 1 and g(x̃) = 1 ≤̃ f(g(x̃)) = f(1) = 1

for every x̃ satisfying 1
3 ≤̃ x̃ ≤̃ 1. The same also holds for the other x̃ ∈̃ X̃, so that f and g are soft weakly

increasing mappings.

Definition 4.11. Let (X,U , A) be an se-uniform space and p a soft E-distance on X.
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(i) (X,U , A) is said to be a soft p-complete space if for every soft Cauchy sequence {x̃n} for U , there
exists an x̃ ∈̃ X̃ such that limn→∞ p(x̃n, x̃) = 0.

(ii) f : (X,U , A)→ (X,U , A) is soft p-continuous if limn→∞ p(x̃n, x̃) = 0 implies

lim
n→∞

p(f(x̃n), f(x̃)) = 0.

Lemma 4.12. Let (X,U , A) be a Hausdorff se-uniform space, p a soft E-distance on X, and ϕ : X → R.
By letting for x̃, ỹ ∈̃ X̃

x̃ �̃ ỹ iff x̃ = ỹ or p(x̃, ỹ) ≤̃ϕ(x̃)− ϕ(ỹ)

we define a soft order �̃ on X induced by ϕ.

Proof. We shall show that �̃ satisfies

(so1) Since for every x̃ ∈̃ X̃, x̃ = x̃, we have x̃ �̃ x̃.

(so2) For x̃, ỹ ∈̃ X̃, let x̃ �̃ ỹ and ỹ �̃ x̃. Then,

x̃ = ỹ or p(x̃, ỹ) ≤̃ϕ(x̃)− ϕ(ỹ) and ỹ = x̃ or p(ỹ, x̃) ≤̃ϕ(ỹ)− ϕ(x̃).

Therefore we either have x̃ = ỹ or p(x̃, ỹ) + p(ỹ, x̃) = 0. If p(x̃, ỹ) + p(ỹ, x̃) = 0, then we get p(x̃, ỹ) = 0
and p(ỹ, x̃) = 0. It follows from the condition (p2) of Definition 3.11 that p(x̃, x̃) = 0. Thus, applying
Lemma 4.1(a), we infer that x̃ = ỹ.

(so3) For x̃, ỹ, z̃ ∈̃ X̃, let x̃ �̃ ỹ and ỹ �̃ z̃. Then,

x̃ = ỹ or p(x̃, ỹ) ≤̃ϕ(x̃)− ϕ(ỹ) and ỹ = z̃ or p(ỹ, z̃) ≤̃ϕ(ỹ)− ϕ(z̃).

Observe that

(i) If x̃ = ỹ and ỹ = z̃, then x̃ = z̃, i.e., x̃ �̃ z̃.
(ii) If x̃ = ỹ and p(ỹ, z̃) ≤̃ϕ(ỹ)− ϕ(z̃), then p(x̃, z̃) ≤̃ϕ(x̃)− ϕ(z̃), i.e., x̃ �̃ z̃.
(iii) If p(x̃, ỹ) ≤̃ϕ(x̃)− ϕ(ỹ) and ỹ = z̃, then p(x̃, z̃) ≤̃ϕ(x̃)− ϕ(z̃), i.e., x̃ �̃ z̃.
(iv) If p(x̃, ỹ) ≤̃ϕ(x̃)− ϕ(ỹ) and p(ỹ, z̃) ≤̃ϕ(ỹ)− ϕ(z̃), then

p(x̃, z̃) ≤̃ p(x̃, ỹ) + p(ỹ, z̃)≤̃ϕ(x̃)− ϕ(ỹ) + ϕ(ỹ)− ϕ(z̃) = ϕ(x̃)− ϕ(z̃)

i.e., x̃ �̃ z̃, which completes the proof.

Theorem 4.13. Let (X,U , A) be a Hausdorff se-uniform space, p a soft E-distance on soft p-complete space
X such that p(x̃, x̃) = 0 for each x̃ ∈̃ X̃ and let ϕ : X → R be a soft semi-sequentially continuous mapping. If
�̃ is the soft order on X induced by ϕ and mappings f, g : (X,U , A)→ (X,U , A) are both soft p-continuous
and soft weakly increasing, then f and g have a common fixed soft element.

Proof. Let x̃0 ∈̃ X̃ and define a sequence {x̃n} of soft elements in X by

f(x̃2n) = x̃2n+1 and g(x̃2n+1) = x̃2n+2 for n ∈ {0, 1, ...}.

From the fact that f and g are soft weakly increasing, it follows that

x̃1 = f(x̃0) �̃ g(f(x̃0)) = g(x̃1) = x̃2

x̃2 = g(x̃1) �̃ f(g(x̃1)) = f(x̃2) = x̃3

and by continuing this process we get

x̃1 �̃ x̃2 �̃ ... x̃n �̃ x̃n+1 �̃ ....

Now, since the mapping ϕ is soft semi-sequentially continuous, it follows that the sequence {ϕ(x̃n)} of soft
real numbers is a soft convergent sequence. Therefore, one can readily verify that it is a soft Cauchy sequence
in R. It turns out that {x̃n} is a soft Cauchy sequence for U . Indeed, let U ∈ U . Then, there exists a δ̃ >̃ 0
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such that p(z̃, x̃) <̃ δ̃ and p(z̃, ỹ) <̃ δ̃ for some z̃ ∈̃ X̃ imply (x̃, ỹ) ∈ U . Because the sequence {ϕ(x̃n)} is soft
Cauchy in R, there is an n0 ≥ 1 such that |ϕ(x̃m)−ϕ(x̃n)| <̃ δ̃ for all m,n ≥ n0. If m = n, then it is obvious
that x̃n and x̃m are soft U -close. If n < m, then by x̃n �̃ x̃m, we have

x̃n = x̃m or p(x̃n, x̃m) ≤̃ϕ(x̃n)− ϕ(x̃m).
This implies that

p(x̃n, x̃m) ≤̃ϕ(x̃n)− ϕ(x̃m) = |ϕ(x̃m)− ϕ(x̃n)| <̃ δ̃.
Hence, from the fact that p(x̃, x̃) = 0 for each x̃ ∈̃ X̃, it follows that x̃n and x̃m are soft U -close. Since
(X,U , A) is a soft p-complete space, there exists an x̃ ∈̃ X̃ such that limn→∞ p(x̃n, x̃) = 0. By the soft
p-continuity of f , we have limn→∞ p(x̃2n+1, x̃) = limn→∞ p(x̃2n+1, f(x̃)) = 0. Thus, by Lemma 4.1(a),
we obtain f(x̃) = x̃. In the same manner, we can show that g(x̃) = x̃, because the mapping g is soft
p-continuous. It follows that f(x̃) = g(x̃) = x̃, hence f and g have a common fixed soft element.

Theorem 4.14. Let (X,U , A) be a Hausdorff se-uniform space, p a soft E-distance on soft p-complete space
X such that p(x̃, x̃) = 0 for each x̃ ∈̃ X̃ and let ϕ : X → R be a soft semi-sequentially continuous mapping.
If �̃ is the soft order on X induced by ϕ and a mapping f : (X,U , A)→ (X,U , A) is both soft p-continuous
and soft nondecreasing with x̃0 �̃ f(x̃0) for some x̃0 ∈̃ X̃, then f has a fixed soft element.

Proof. Let us take an x̃0 ∈̃ X̃ such that x̃0 �̃ f(x̃0) and consider a sequence {x̃n} of soft elements in X satis-
fying f(x̃n−1) = x̃n for n ∈ {1, 2, ...}. Since the mapping f is soft nondecreasing, we have x̃0 �̃ x̃1 �̃ x̃2 �̃ ....
Therefore, as is shown in the proof of Theorem 4.13, {x̃n} is a soft Cauchy sequence for U . From the fact
that (X,U , A) is a soft p-complete space, it follows that there exists an x̃ ∈̃ X̃ such that limn→∞ p(x̃n, x̃) = 0.
By the soft p-continuity of f , we have limn→∞ p(x̃n, x̃) = limn→∞ p(x̃n, f(x̃)) = 0. Thus, by Lemma 4.1(a),
we obtain f(x̃) = x̃.

Example 4.15. Consider Example 3.13. Using the fact that ∆ ∈ U , we get that (X,U , A) is a soft p-
complete space. Now, define mappings f : X → X and ϕ : X → R by f(x) = f(y) = x and ϕ(x) = ϕ(y) = 0.
Since ϕ is the constant mapping, it is a soft semi-sequentially continuous. Also, the soft order on X
induced by ϕ is �̃ := {(x̃1, x̃1), (x̃2, x̃2), (x̃3, x̃3), (x̃4, x̃4)}. As it can be easily seen, the mapping f is soft
nondecreasing with respect to �̃ and soft p-continuous. Moreover, we have x̃1 �̃ f(x̃1) for x̃1 ∈̃ X̃. So, all
the conditions of Theorem 4.14 are satisfied and x̃1 is a fixed soft element of f .
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