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Abstract

Recently, Chen established a relation for the squared norm second fundamental form of warped product
immersion by using Codazzi equation. We establish a sharp inequality for a contact CR-warped product
submanifold in a cosymplectic space form by using the Gauss equation. The equality case is also discussed.
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1. Introduction

Let ¢ : Ny xy Ny — M be an isometric immersion of a warped product into a Riemannian manifold.
Denote by o the second fundamental form of ¢. Let tro; and trog be the traces of o restricted to N7 and
Ny, respectively, i.e.,

ni n
tral = Za(ei,ei), tT‘O’g = Z a(ek,ek),
=1 k=ni1+1

for orthonormal vector fields eq, - ,e,, in T'(T'Ny) and €y, 41, - , €, in I'(T'Na), where I'(T'Ny) and T'(T'N3)
are sets of vector fields on N7 and N, respectively. The immersion ¢ is called mixed totally geodesic if
o(X,Z) =0, for any X € I'(T'N;) and Z € I'(T'N2). The immersion is called N;-minimal if tro; = 0,
i=1,2.

Recently, B.-Y. Chen used Codazzi equation to establish the following inequality for the second funda-
mental form in terms of warping function.
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Theorem 1.1 ([2]). Let M = N% Xt NV be a CR-warped product in a complez space form M(Zlc) of constant
holomorphic sectional curvature c. Then we have

lol* > 2p{|[V (In )| + A(n f) + 2hc}. (1.1)

If the equality sign in (1.1|) holds identically, then Nt is a totally geodesic submanifold and N is a totally
umbilical submanifold. Moreover, M is a minimal submanifold in M (4c).

Similar inequalities have been done for other spaces (see [I, 3]). In our research findings, the base
manifold is considered to be an invariant submanifold of the ambient manifold. In this paper, we use the
Gauss equation instead of Codazzi one to establish the following inequality.

Theorem 1.2. Let ¢ : M = Ny xy N| — M be an isometric immersion of a contact CR-warped product
into a cosymplectic space form M (c) of constant @-sectional curvature c. Then, we have:

(i) The squared norm of the second fundamental form o of M satisfies

A
lo|? > n2< (2n1 +1) — z—f) (1.2)
4 f
where nq1 = dim N, nQ dim N and A is the Laplacian operator of Nr.
(ii) If the equality sign in ) holds zdentzcally, then Nt is a totally geodesic submamfold and N| is a

totally umbilical submamfold of M( ). Moreover, M is a minimal submanifold of M( ).

The paper is organized as follows: Section [2]is devoted to preliminaries. In Section [3] first we develop
some basic results for later use and then we prove Theorem

2. Preliminaries

Let M be a (2m+ 1)-dimensional almost contact manifold with almost contact structure (¢, £, 1), i.e., a
structure vector field &, a (1, 1) tensor field ¢ and a 1-form 7 on M such that ©*X = - X +n(X)E, n) =1,
for any vector field X on M.

We consider a product manifold M x R, where R denotes the real line. Then a vector field on M xR
is glven by (X, )\ 7), where X is a vector field tangent to M t the coordinate of R and A a smooth function
on M x R. .

Now, define a linear map J on the tangent space of M x R by J(X, )\%) = (X — X¢, n(X)%). Then,
we have .J 2 = —J, where I is the identity transformation on M xR and hence J is almost complex structure
on M x R. .

The manifold M is said to be normal if J is integrable.

The condition for being normal is equivalent to vanishing of the torsion tensor [y, ¢] + 2dn ® &, where

[0, l(X,Y) = Q*[X, Y] + [pX,0Y] — 0[pX, Y] — ¢[X, Y]

for any vector fields X, Y tangent to M is the Nijenhuis tensor of ¢.

There always exists a compatible Riemannian metric g satisfying g(pX,9Y) = g(X,Y) —n(X)n(Y),
for any vector fields X,Y tangent to M. Thus the manifold M is said to be almost contact metric manifold
and (p,&,1,g) is its almost contact metric structure.

It is clear that n(X) = ¢g(X,&). The fundamental 2-form ® on M is defined by P(X,Y) = g(X,pY),
for any vector fields X, Y tangent to M.

The manifold M is said to be almost cosymplectic if the forms n and @ are closed, i.e., dn = 0 and
d® = 0, where d is an exterior differential operator.

An almost cosymplectic and normal manifold is cosymplectic.
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It is well known that an almost contact metric manifold M is cosymplectic if and only if \Y x vanishes
identically, where V is the Levi-Civita connection on M.

A cosymplectic manifold M with constant p-sectional curvature c is called a cospymplectic space form
and denoted by M(c). Then the Riemannian curvature tensor Ris given by

R(X,Y;2Z,W) f{g (X, W)g(Y,Z) — g(X, Z)g(Y, W) + g(X, oW )g(Y, pZ)

—9(X,02)g(Y,oW) = 29(X, oY) g(Z, pW) — g(X, W)n(Y)n(Z) (2.1)
+ 9(X, Z)n(Y)n(W) — g(Y, Z)n(X)n(W) + g(¥,W)n(X)n(Z)}.

Let M be an n-dimensional Riemannian manifold isometrically immersed in a Riemannian manifold
M. Then, the Gauss and Weingarten formulas are respectively given by VxY = VxY + o(X,Y) and
VxN = —AyX + V%N, for any X,Y € T'(TM), where V is the induced Riemannian connection on M, N
is a vector field normal to M , 0 is the second fundamental form of M, V' is the normal connection in the
normal bundle TM* and Ay is the shape operator of the second fundamental form. They are related by
g(ANX,Y) = g(c(X,Y), N) where g denotes the Riemannian metric on M as well as the metric induced
on M. -

Let M be an n-dimensional submanifold of an almost contact metric (2m + 1)-manifold M such that
restricted to M, the vectors e, -- , e, are tangent to M and hence ey, 1, --ean+1 are normal to M. Let
{U;"j}, ,j=1,---,nm;r=n+1,---,2m+ 1. Then we have

n

of; = g(o(eiej),er) = g(Ac,eie;)  and  |lo]® = glo(eie;) oles ). (2.2)
ij=1

The mean curvature vector H is defined by

n

- 1 1
H=—tro=— Z o(ei e, (2.3)
i,7=1
where {e1, - ,e,} is a local orthonormal frame of the tangent bundle TM of M. The squared mean

curvature is given by H? = g(H H ). A submanifold M is called minimal in M if its mean curvature
vector vanishes identically, and M is totally geodesic in M ,if o(X,Y) =0, for all X|Y € I'(TM). If
o(X,Y)=g(X,Y)H for all X,Y € I'(TM), then M is a totally umbilical submanifold of M.
For any X € I'(TM), we decompose pX as X = PX 4+ FX, where PX and FX are the tangential
and normal components of ¢ X, respectively. Also, the squared norm of P is defined by
n

IPI2 = 3" (g(pere)). (2.4)

ij=1

For a submanifold M of an almost contact manifold M , if F' is identically zero, then M is invariant,
and if P is identically zero, then M is anti-invariant.

Let R and R denote the Riemannian curvature tensors of M and M respectively. The equation of
Gauss is given by

R(X,Y:Z,W)=R(X,Y,Z, W)+ g(a(X,W),o(Y, Z))

(2.5)
- g(U(X? Z)> O—(K W))

for vectors X,Y, Z, W tangent to M.
Let M be an n-dimensional Riemannian manifold and eq,--- , e, be an orthonormal frame field on M.
Then for a differentiable function ¥ on M, the Laplacian A of v is defined by

n

AI/J = Z {(%eiei)d} - 6’@'61'1/1}. (2.6)

1=1



S. Uddin, L. S. Algahtani, J. Nonlinear Sci. Appl. 9 (2016), 2914-2921 2917

The scalar curvature of M at a point p in M is given by

rp)= Y Klewey), (2.7)

1<i<j<n

where K (e;, ej) denotes the sectional curvature of the plane section spanned by e; and e;.
Due to behaviour of the tensor field ¢, there are various classes of submanifolds. We mention the
following:

(1) A submanifold M, tangent to the structure vector field &, is called an invariant submanifold if ¢
preserves any tangent space of M, i.e., o(T,M) C T,M, for each p € M.

(2) A submanifold M, tangent to the structure vector field &, is said to be an anti-invariant submanifold
if » maps any tangent space of M into the normal space, i.e., o(T,M) C T,M=, for each p € M.

(3) A submanifold M, tangent to the structure vector field &, is called a contact CR-submanifold if it
admits an invariant distribution D whose orthogonal complementary distribution D is anti-invariant,
i.e., the tangent space of M is decomposed as TM = D@D+ @ (¢) with ¢D, = D, and @D; CT,M*,
for each p € M, where (£) denotes a 1-dimensional distribution spanned by the structure vector field

3

In this paper, we study contact CR-warped product submanifolds, therefore we are concerned with the
case (3). For a contact CR-submanifold M of an almost contact metric manifold M, the normal bundle

TM+ is decomposed as
TM* =Dt @&p, ©D- Ly, (2.8)

where p is an orthogonal complementary distribution of @D+ which is invariant normal subbundle of M+
with respect to .

3. Proof of Theorem [1.2]

Before proving the theorem, we need some lemmas and some basic formulas for a warped product. Let
M = Ny x¢ Na be a warped product. Then for unit vector fields X,Y € I'(T'Ny) and Z € I'(T'N3), we have

VxZ=V;X=(XInf)Z  g(VxY,Z)=0, (3.1)

which implies that (see [4, p. 210])

1
K(XANZ)= ?{(VXX)f—Xzf}. (3.2)
If we choose a local orthonormal frame ey, - - - , e, such that ey, - - , e,, are tangent to Nyand ey, 41, - -,ep,
are tangent to Ny, then we have
Af &
ff = K(eiAej), (3.3)
i=1

foreach j=n;+1,--- ,n.
The contact CR-warped product submanifolds of cosymplectic manifolds were studied in I, [5]. In this
section, first we give the following lemma.

Lemma 3.1. Let M = Nt x; N be a contact CR-warped product submanifold of a cosymplectic manifold

M such that ¢ € I'(T'Nr), where Ny and N, are the invariant and anti-invaraint submanifolds of M,

respectively. Then
g(a(ch, (pY>7N) = —g(O’(X,Y),N), (34)

for any X,Y € T(TNr) and N € T(TM™), where TM* is the normal bundle of M.
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Proof. For any X,Y € I'(T'Nr) and any N € T'(TM~), we have

g(O'(X,Y), N) = g(eXY;N)
= g(pVxY,oN)
= 9(Vx¢Y,oN) — g(Vxp)Y, ¢N).

Using the cosymplectic character and the property of Riemannian connection, we derive
9(0(X,Y),N) = g(Aon X, ¢Y) = g(0(X, Y ), pN). (3.5)

Similarly, we have
g(U(XaY)’N) :g(O'((,OX,Y),QON). (36)

Interchanging X by ¢ X and Y by ¢Y in (3.6)), we obtain
9(o(pX,pY),N) = —g(o(X, Y ), pN). (3.7)
Thus the result follows from and (| . O

Also, for a contact CR-warped product submanifold M = N x ¢ N of cosymplectic manifold M , We
have [5]
9(0(X,Y),0Z) =0 (3.8)
for any X, Y € I'(I'Ny) and Z € I'(T' N, ).
Now, we have the following lemma:

Lemma 3.2. Let ¢ : Nyr Xy N| — M be a warped immersion into a cosymplectic manifold M such that
§ € T(T'Ny). Then ¢ is Np-minimal.

Proof. Let M = Nr xy N| be an n-dimensional warped product submanifold isometrically immersed into
a (2m + 1)-cosymplectic manifold M such that ¢ is tangent to Np, where Np and N, are invariant and
anti-invariant submanifold of M with their real dimensions n; and ns, respectively.

Let us consider the orthonormal frame fields of Ny and N, respectively, which are {e;, - ,ep, epy1 =
pe1, - eap = Pep, €2py1 = €n; =&} and {en 41,7+, ent

Then the orthonormal frame fields of the normal subbundle oD+ and pu of TM™*, respectively, are
{en+1 = pen 1, entnypent and {enynyt1, - s €2mi1}

The dimensions of @D+ and u are ny and (2m + 1 — n — ny), respectively.

Then the squared norm of the mean curvature vector restricted to N, say || Hy||? is
2m—+1 ny 2m—+1 ng
AR Z%] > > (@)
r=n-+1 i=1 r=n+1 i=1
2m+1
2
= Z (O"{l_'__i_o—:;lnl) .
r=n+1
Using (2.2)) and (2.8)), we find
na
2
”*HlH2 = Z (9(0(617 61)7 @er) + A+ g(g(enp en1)a ‘Per))
r=1
2m+1

+ Y (glo(en,en) en) + -+ glolens en,)ser))

r=n+ni+1
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The first sum in the right-hand side is identically zero by using (3.8]), and hence from the frame fields
of Ny (dim Np = nj = 2p + 1), we obtain

2m—+1

2= Y (glolenen)e) + o+ glolepep).er)
r=n+ni+1
2
+ g(o(per, pe1),er) + -+ + g(o(pep, pep), er) + g(o (€, €), 67«))

Then the right-hand side vanishes identically by using (3.4) and the fact that o(£,&) = 0 and hence
H; = 0, which proves the lemma. O

Thus, from the above lemma the squared norm of the mean curvature vector H of M will be

2m+1
T 1 r r
VP = = 3 Glusnymn + o +0m)” (3.9)
r=n+1

Lemma 3.3. Let ¢ : M = Ny Xy N| — M be a warped product immersion into a cosymplectic manifold
M such that & € T'(T'Nr). Then, we have

(i) Yo|? > F(TM)—F(TNr)—7(TN,) — anAf, where T(TM) =31 <;cj<n K(e; Nej) denotes the scalar

curvature of the n-plane section and I?(ei N ej) is the sectional curvature of the plane section spanned

by the vectors e; and e;j in the ambient manifold M and ng 1s the dimension of N .
(i) If the equality sign in (i) holds identically, then Np and N are totally geodesic and totally umbilical
submanifolds in M, respectively.

Proof. We skip the proof of this lemma as we have proved it in [3] for a more general case such as for a
nearly trans-Sasakian manifold. O

Now, by using the Gauss equation, some preliminaries formulas and Lemma [3.3] we are able to prove
our main theorem for cosymplectic space form M/(c).

Proof of Theorem[I.2 For the unit orthonormal vectors X =¢; =W and Y = e; = Z, from (2.1]), we have

(TN =7 > {glenegles.e)) = gleie))” +glei penale;. pe;)
1<i<j<ng
— 3g(ei, pej)glej, pei) — U(ej)zg(ez‘, e;)
+2n(ei)n(e;)glei e5) —nlei)?gle;, e5)}
= 2 Z {g(ei,ei)glej, ej) — glei,e;)? + 3g(pes, e5)?
1<izj<ng
—n(e;)?gleir ei) + 2n(ej)n(egleir e5) — nlei)gle;, e5) }

— & fmalnr = 1)+ 3P — 2 — 1)}

Also, for an n;-dimensional invariant submanifold tangent to ¢ = e,,,, one can get ||P||*> = ny — 1; thus

we derive
97 (T Ny) = Z{nl(nl 1)+ (ng — 1)}. (3.10)

On the other hand, by using the frame field of TN| and Lemma [3.2] we have

_ c
27(TN.) = 4 Z {g(eise)g(ej,e) — gleiej)?}
ni+1<i<j<n (3.11)
C
= Zn2(n2 — 1)
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Similarly, by using and the frame field of T'M, one can get
2F(TM) = ${n(n — 1) +3|P|* - 2(n - 1},
where || P||? = > i j=19(Pei, ej)?> =n — 1. Thus, we have
2% (TM) = E{n(n 1)+ (n—1)}, (3.12)
where n = ny + ny. Then by Lemma [3.3] (ii), relations (3.10), and we have
Af

77,2(2711 + 1) — QTZQT, (313)

which is the inequality (i) of the theorem. The equality case follows from Lemma O

o|* >

=0

The following corollaries are consequences of Theorem

Corollary 3.4. Let M(c) be a cosymplectic space form with ¢ < 0. Then there does not exist any contact
CR-warped product submanifold N7 x ¢ N in M(c) such that In f is a harmonic function on Nr.

Proof. Let us assume that there exists a contact CR-warped product submanifold N7 x ;N in a cosymplectic
space form M (c) such that In f is a harmonic function on Np. Then by Theorem we get ¢ > 0. O

Corollary 3.5. Let M(c) be a cosymplectic space form with ¢ < 0. Then there does not exist a contact

CR-warped product submanifold Ny x¢ N in M(c) such that In f is a nonnegative eigenfunction of the
Laplacian on Nt corresponding to an eigenvalue A1 > 0.

Now, we provide a nontrivial example of contact CR-warped products.

Example 3.6. Consider a submanifold of R” with the coordinates (x1,y1, 2, y2,*3,¥3,2) and the almost
contact structure

“’(aii) = _a?/i’ *D(aayj) = aij’ w(i) =0 lsijs<s

Then for any vector field X = )‘ia% + Mja% + V% € I'(TR7), we have

9, X) =N+ 5+, gleX,0X) =\ + 13

and 9 5
2 — N
P (X) = Az(%i “Jayj X +n(X)¢E

for any i,j = 1,2,3. It is clear that g(¢X, 0 X) = g(X, X) — n*(X). Thus, (¢,&,n,g) is an almost contact
metric structure on R”. Let us consider an isometric immersion z into R” as follows

x(r,s,t,z) = (rsint, ssint, s, r,r cost, scost, z).

If M is the corresponding submanifold of the immersion, then the tangent bundle T'M of M is spanned
by the following orthogonal vector fields

VA *sinti—i—i—i—costi Z *Sinti—i-i—i-costi
te Ox1 Oy dxs’ 2T Oy1 Oz dys’

0

0 0
Z3 =rcost m— + scost — —rsint — — ssint —; Z4:a—.
z

1 0y1 0xs dys’
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Then ¢Z3 is orthogonal to TM, thus D+ = span{Z3} is an anti-invariant distribution and D =
span{Z1, Zs} is an invariant distribution such that £ = Zj is tangent to M. Hence M is a contact CR-
submanifold of R”. Tt is clear that the invariant distribution D@ (¢) and anti-invariant distribution D+ both
are integrable. If we denote the integral manifolds of D & (¢) and D+ by Ny and N, respectively, then the
metric tensor g of M is given by

2
g =2dr* +2ds* + dz* + (r* + s°)dt* = g1 + (\/r2 + 52) 92,

where g1 = 2dr? + 2ds? + dz? is the metric tensor of N7 and go is the metric tensor of N;. Thus M is a
warped product CR-submanifold M = N7 x ¢ N| with warping function f = vr2? + s2.
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