Research Article

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Ground state solutions for an asymptotically periodic and superlinear Schrödinger equation

Huxiao Luo

School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, P. R. China.

Communicated by R. Saadati

Abstract

We consider the semilinear Schrödinger equation

$$\begin{cases} -\bigtriangleup u + V(x)u = f(x, u), x \in \mathbb{R}^N, \\ u \in H^1(\mathbb{R}^N), \end{cases}$$

where V(x) is asymptotically periodic and sign-changing, f(x, u) is a superlinear, subcritical nonlinearity. Under asymptotically periodic V(x) and a super-quadratic condition about f(x, u). We prove that the above problem has a ground state solution which minimizes the corresponding energy among all nontrivial solutions. ©2016 All rights reserved.

Keywords: Schrödinger equation, ground state solutions, asymptotically periodic, sign-changing, super-quadratic condition. 2010 MSC: 46E20, 35J10.

1. Introduction and Preliminaries

Consider the following semilinear Schrodinger equation

$$\begin{cases} - \triangle u + V(x)u = f(x, u), \ x \in \mathbb{R}^N, \\ u \in H^1(\mathbb{R}^N), \end{cases}$$
(1.1)

where $V: \mathbb{R}^N \to \mathbb{R}$ and $f: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ satisfy the following standard assumptions, respectively: (V) $V \in C(\mathbb{R}^N)$ is 1-periodic in each of $x_1, x_2, ..., x_N$, and

$$\sup[\sigma(-\Delta+V)\cap(-\infty,0)] := \underline{\Lambda} < 0 < \overline{\Lambda} := \inf[\sigma(-\Delta+V)\cap(0,\infty)]; \tag{1.2}$$

Email address: wshrm7@126.com (Huxiao Luo)

$$\frac{1-\theta^2}{2}f(x,t)t \ge \int_{\theta t}^t f(x,s)ds, \forall \theta \ge 0, (x,t) \in \mathbb{R}^N \times \mathbb{R}.$$

The existence of a nontrivial solution of (1.1) has been obtained in [5, 8, 12, 15, 22, 24] under some other standard assumptions of V and f. In some very recent papers, under the above conditions, Xianhua Tang [18, 19, 20, 21] proved the problem (1.1) has a ground state solution of Nehari-Pankov type.

If V(x) is asymptotically periodic, not only that the functional Φ loses the Z^N -translation invariance, but also the operator $-\Delta + V$ has also discrete spectrum except for continuous spectrum. For the periodic problem, it is very crucial to show (PS)-sequence or (C)-sequence is bounded that the operator $-\Delta + V$ has only continuous spectrum [16]. For the above knowledge, there are no existence results for (1.1) when V(x)is asymptotically periodic and sign-changing and f(x, u) is asymptotically linear as $|u| \to \infty$. Motivated by the works [4, 7, 21], in this paper, we will use some tricks introduced in [9, 10] to overcome the difficulties caused by the dropping of periodicity of V(x).

Before presenting our theorem, we make the following assumptions. (V1) $V(x) = V_0(x) + V_1(x), V_0 \in C(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ and

$$\sup[\sigma(-\Delta+V_0)\cap(-\infty,0)] < 0 < \overline{\Lambda} := \inf[\sigma(-\Delta+V_0)\cap(0,\infty)], \tag{1.3}$$

 $V_1 \in C(\mathbb{R}^N)$ and $\lim_{|x|\to\infty} V_1(X) = 0;$ (V2) V_0 is 1-periodic in each of $x_1, x_2, ..., x_N$, and

$$0 \le -V_1(x) \le \sup_{R^N} (-V_1) < \overline{\Lambda}, \forall x \in R^N.$$

Let $\mathcal{A}_0 = -\Delta + V_0$. Then \mathcal{A}_0 is self-adjoint in $L^2(\mathbb{R}^N)$ with domain $\mathcal{D}(\mathcal{A}_0) = H^2(\mathbb{R}^N)$ (see [2], Theorem 4.26). Let $\{\varepsilon(\lambda) : -\infty < \lambda < +\infty\}$ and $|\mathcal{A}_0|$ be the spectral family and the absolute value of \mathcal{A}_0 , respectively, and $|\mathcal{A}_0|^{1/2}$ be the square root of $|\mathcal{A}_0|$. Set $\mathcal{U} = id - \varepsilon(0) - \varepsilon(0-)$. Then \mathcal{U} commutes with \mathcal{A}_0 (see [1], Theorem IV 3.3). Let

$$E = \mathcal{D}(|\mathcal{A}_0|^{1/2}), \qquad E^- = \varepsilon(0)E, \qquad E^+ = [id - \varepsilon(0)]E.$$
(1.4)

For any $u \in E$, it is easy to see that $u = u^- + u^+$, where

$$u^{-} := \varepsilon(0)u \in E^{-}, \qquad u^{+} := [id - \varepsilon(0)]u \in E^{+}$$
(1.5)

and

$$\mathcal{A}_0 u^- = -|\mathcal{A}_0| u^-, \qquad \mathcal{A}_0 u^+ = |\mathcal{A}_0| u^+ \quad \forall u \in E \cap \mathcal{D}(\mathcal{A}_0).$$
(1.6)

Define an inner product

$$(u,v) = (|\mathcal{A}_0|^{1/2}u, \mathcal{A}_0|^{1/2}v)_{L^2}, \quad u,v \in E$$
(1.7)

and the corresponding norm

$$\|u\| = \left\| |\mathcal{A}_0|^{1/2} u \right\|_2, \quad u \in E,$$
(1.8)

where $(\cdot, \cdot)_{L^2}$ denotes the inner product of $L^2(\mathbb{R}^N)$ and $\|\cdot\|$ denotes the norm of $L^s(\mathbb{R}^N)$. By (V1), $E = H^1(\mathbb{R}^N)$ with equivalent norms. Therefore, E embeds continuously in $L^s(\mathbb{R}^N)$ for all $2 \le s \le 2^*$. In addition, one has the decomposition $E = E^- \oplus E^+$ orthogonal with respect to both $(\cdot, \cdot)_{L^2}$ and (\cdot, \cdot) .

$$\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) dx - \int_{\mathbb{R}^N} F(x, u) dx, \forall u \in E$$
(1.9)

and

$$\Phi_0(u) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + V_0(x)u^2) dx - \int_{\mathbb{R}^N} F(x, u) dx \ \forall u \in E,$$
(1.10)

where $F(x,t) = \int_0^t f(x,s) ds$. Then $\Phi_0(u)$ is also of class $C^1(E,R)$, and

$$\langle \Phi'_0(u), v \rangle = \int_{\mathbb{R}^N} (\nabla u \nabla v + V_0(x) u v) dx - \int_{\mathbb{R}^N} f(x, u) v dx \quad \forall u, v \in E.$$
(1.11)

In view of (1.5), (1.8) and (1.10), we have

$$\Phi_0(u) = \frac{1}{2} (\|u^+\|^2 - \|u^-\|^2) - \int_{\mathbb{R}^N} F(x, u) dx$$
(1.12)

and

$$\langle \Phi'_0(u), u \rangle = \|u^+\|^2 - \|u^-\|^2) - \int_{\mathbb{R}^N} f(x, u) u dx \quad \forall u = u^- + u^+ \in E.$$
(1.13)

Now, we are in a position to state the main result of this paper.

Theorem 1.1. Assume that V and f satisfy (V1), (V2), (F1), (F2), (F3) and (F4). Then problem (1.1) has a nontrivial solution $u_0 \in E$. such that $\Phi(u_0) = \inf_{\mathcal{N}^-} \Phi > 0$, where

$$\mathcal{N}^{-} = \{ u \in E \setminus E^{-} : \langle \Phi'(u), u \rangle = \langle \Phi'(u), v \rangle = 0 \quad \forall v \in E^{-} \}.$$
(1.14)

The set \mathcal{N}^- was first introduced by Pankov [13, 14], which is a subset of the Nehari manifold

$$\mathcal{N} = \{ u \in E \setminus \{0\} : \langle \Phi'(u), u \rangle = 0 \}.$$
(1.15)

The rest of this paper is organized as follows. In Section 2, some preliminary results and the proofs of Theorem 1.1 are presented.

2. Main results

Let X be a real Hilbert space with $X = X^- \bigoplus X^+$ and $X^- \perp X^+$. For a functional $\varphi \in C^1(X, R)$, φ is said to be weakly sequentially lower semi-continuous if for any $u_n \rightharpoonup u$ in X one has $\varphi(u) \leq \liminf_{n \to \infty} \varphi(u_n)$, and φ' is said to be weakly sequentially continuous if $\lim_{n \to \infty} \langle \varphi'(u_n), v \rangle = \langle \varphi'(u), v \rangle$ for each $v \in X$.

Lemma 2.1 ([3], [6], [7]). Let X be a real Hilbert space with $X = X^- \bigoplus X^+$ and $X^- \perp X^+$, and let $\varphi \in C^1(X, R)$ of the form

$$\varphi(u) = \frac{1}{2}(\|u^+\|^2 - \|u^-\|^2) - \psi(u), \quad u = u^- + u^+ \in X^- \oplus X^+.$$

Suppose that the following assumptions are satisfied:

(LS1) $\psi \in C^1(X, R)$ is bounded from below and weakly sequentially lower semi-continuous;

(LS2) ψ' is weakly sequentially continuous;

(LS3) there exist $r > \rho > 0$ and $e \in X^+$ with ||e|| = 1 such that

$$k := \inf \varphi(S_{\rho}^+) > \sup \varphi(\partial Q),$$

where

$$S_{\rho}^{+} = \{ u \in X^{+} : \|u\| = \rho \}, \quad Q = \{ w + se : w \in X^{1}, s \ge 0, \|w + se\| \le r \}.$$

Then for some $c \in [k, \sup \Phi(Q)]$, there exists a sequence $\{u_n\} \subset X$ satisfying

$$\varphi(u_n) \to c, \quad \|\varphi'(u_n)\|(1+\|u_n\|) \to 0.$$
 (2.1)

Such a sequence is called a Cerami sequence on the level c or a $(C)_c$ sequence.

We set

$$\Psi(u) = \int_{\mathbb{R}^N} [-V_1(x)u^2 + F(x, u)] dx \quad \forall u \in E.$$
(2.2)

Lemma 2.2. Suppose that (V1), (V2), (F1), (F2) and (F3) are satisfied. Then Ψ is nonnegative, weakly sequentially lower semi-continuous, and Ψ' is weakly sequentially continuous.

Using Sobolev's embedding theorem, one can check easily the above lemma, so we omit the proof.

Lemma 2.3. Suppose that (V1), (F1), (F2), (F3) and (F4) are satisfied. Then for $u \in \mathcal{N}^-$,

$$\Phi(u) \ge \Phi(tu+w) + \frac{1}{2} ||w||^2 - \frac{1}{2} \int_{\mathbb{R}^N} V_1(x) w^2 dx + \frac{1-t^2}{2} \langle \Phi'(u), u \rangle - t \langle \Phi'(u), w \rangle \quad \forall u \in E, \ t \ge 0, \ w \in E^-.$$
(2.3)

Proof. For any $x \in \mathbb{R}^N$ and $\tau \neq 0$, (F4) yields

$$\frac{1-t^2}{2}\tau f(x,\tau) \ge \int_{t\tau}^{\tau} f(x,s)ds, \quad t \ge 0.$$
(2.4)

It follows that

$$\left(\frac{1-t^2}{2}\tau - t\tau\right)f(x,\tau) \ge \int_{t\tau+\sigma}^{\tau} f(x,s)ds, \quad t \ge 0, \quad \sigma \in \mathbb{R}.$$
(2.5)

To show (2.5), we consider four possible cases. By virtue of (2.4) and $sf(x,s) \ge 0$, one has Case 1) $0 \le t\tau + \sigma \le \tau$ or $t\tau + \sigma \le \tau \le 0$,

$$\int_{t\tau+\sigma}^{\tau} f(x,s)ds \leq \frac{f(x,\tau)}{|\tau|} \int_{t\tau+\sigma}^{\tau} |s|ds \leq \left(\frac{1-t^2}{2}\tau - t\tau\right) f(x,\tau);$$

Case 2) $t\tau + \sigma \leq 0 \leq \tau$,

$$\int_{t\tau+\sigma}^{\tau} f(x,s)ds \le \int_{0}^{\tau} f(x,s)ds \le \frac{f(x,\tau)}{|\tau|} \int_{t\tau+\sigma}^{\tau} |s|ds \le \left(\frac{1-t^2}{2}\tau - t\tau\right)f(x,\tau);$$

Case 3) $0 \le \tau \le t\tau + \sigma$ or $\tau \le t\tau + \sigma \le 0$,

$$\int_{\tau}^{t\tau+\sigma} f(x,s)ds \ge \frac{f(x,\tau)}{|\tau|} \int_{\tau}^{t\tau+\sigma} |s|ds \ge -\left(\frac{1-t^2}{2}\tau - t\tau\right)f(x,\tau);$$

Case 4) $\tau \leq 0 \leq t\tau + \sigma$,

$$\int_{\tau}^{t\tau+\sigma} f(x,s)ds \ge \int_{\tau}^{0} f(x,s)ds \ge \frac{f(x,\tau)}{|\tau|} \int_{\tau}^{0} |s|ds \ge -\left(\frac{1-t^{2}}{2}\tau - t\tau\right)f(x,\tau)ds \le \frac{f(x,\tau)}{|\tau|} \int_{\tau}^{0} |s|ds \ge -\left(\frac{1-t^{2}}{2}\tau - t\tau\right)f(x,\tau)ds$$

The above four cases show that (2.5) holds.

We let $b: E \times E \to R$ denote the symmetric bilinear from given by

$$b(u,v) = \int_{\mathbb{R}^N} (\nabla u \bigtriangledown v + V(x)uv) dx \qquad \forall u, v \in E.$$
(2.6)

By virtue of (1.9) and (2.6), one has

$$\Phi(u) = \frac{1}{2}b(u, u) - \int_{\mathbb{R}^N} F(x, u)dx \qquad \forall u \in E$$
(2.7)

and

$$\langle \Phi'(u), v \rangle = b(u, v) - \int_{\mathbb{R}^N} f(x, u) v dx \qquad \forall u, v \in E.$$
(2.8)

Thus, by (1.9), (1.11), (2.6), (2.7) and (2.8), one has

$$\begin{split} \Phi(u) - \Phi(tu+w) &= \frac{1}{2} [b(u,u) - b(tu+w,tu+w)] + \int_{R^N} [F(x,tu+w) - F(x,u)] dx \\ &= \frac{1-t^2}{2} b(u,u) - tb(u,w) - \frac{1}{2} b(w,w) + \int_{R^N} [F(x,tu+w) - F(x,u)] dx \\ &= -\frac{1}{2} b(w,w) + \frac{1-t^2}{2} \langle \Phi'(u),u \rangle - t \langle \Phi'(u),w \rangle \\ &+ \int_{R^N} \left[\frac{1-t^2}{2} f(x,u)u - tf(x,u)w - \int_{tu+w}^u f(x,s) ds \right] dx \\ &= \frac{1}{2} ||w||_0^2 - \frac{1}{2} \int_{R^N} V_1(x) w^2 dx + \frac{1-t^2}{2} \langle \Phi'(u),u \rangle - t \langle \Phi'(u),w \rangle \\ &+ \int_{R^N} \left[\frac{1-t^2}{2} f(x,u)u - tf(x,u)w - \int_{tu+w}^u f(x,s) ds \right] dx \\ &\geq \frac{1}{2} ||w||_0^2 - \frac{1}{2} \int_{R^N} V_1(x) w^2 dx + \frac{1-t^2}{2} \langle \Phi'(u),u \rangle - t \langle \Phi'(u),w \rangle \quad \forall t \ge 0, \quad w \in E^-. \end{split}$$

This shows that (2.3) holds.

Lemma 2.4. Suppose that (V1), (F1), (F2) and (F4) are satisfied. Then there exists $\rho > 0$ such that

$$m := \inf_{\mathcal{N}^{-}} \Phi \ge \kappa := \inf\{\Phi(u) : u \in E^{+}, \|u\| = \rho\} > 0.$$
(2.9)

Lemma 2.4 can be proved in the same way as ([17], Lemmas 2.4).

Lemma 2.5. Suppose that (V1), (F1), (F2) and (F3) are satisfied. Let $e \in E^+$ with ||e|| = 1. Then there is a $r_0 > 0$ such that $\sup \Phi(\partial Q) \leq 0$, where

$$Q = \{se + w : w \in E^{-}, s \ge 0, \|se + w\| \le r_0\}.$$
(2.10)

Proof. (F1) yields that $F(x,t) \ge 0$ for $(x,t) \in \mathbb{R}^N \times \mathbb{R}$, so we have $\Phi(u) \le 0$ for $u \in \mathbb{E}^-$. Next, it is sufficient to show that $\Phi(u) \to -\infty$ as $u \in E^- \oplus Re, ||u|| \to \infty$. Arguing indirectly, assume that for some sequence $\{w_n + s_n e\} \subset E^- \oplus Re \text{ with } \|w_n + s_n e\| \to \infty$, there is M > 0 such that $\Phi(w_n + s_n e) \ge -M$ for all $n \in N$. Set $v_n = (w_n + s_n e) \nearrow ||w_n + s_n e|| = v_n^- + t_n e$, then $||v_n^- + t_n e|| = 1$. Passing to a subsequence, we may assume that $v_n \rightharpoonup v$ in E, then $v_n \rightarrow v^-$ a.e. on \mathbb{R}^N , $v_n^- \rightarrow v^-$ in E, $t_n \rightarrow \overline{t}$, and

$$-\frac{M}{\|w_n + s_n e\|^2} \le \frac{\Phi(w_n + s_n e)}{\|w_n + s_n e\|^2} = \frac{t_n^2}{2} - \frac{1}{2} \|v_n^-\|^2 - \int_{R^N} \frac{F(x, w_n + s_n e)}{\|w_n + s_n e\|^2} dx.$$
(2.11)

If $\overline{t} = 0$, then it follows from (2.11) that

$$0 \le \frac{1}{2} \|v_n^-\|^2 + \int_{\mathbb{R}^N} \frac{F(x, w_n + s_n e)}{\|w_n + s_n e\|^2} dx \le \frac{t^2}{2} + \frac{M}{\|w_n + s_n e\|^2} \to 0,$$

which yields $||v_n^-|| \to 0$, and so $1 = ||v_n|| \to 0$, is a contradiction.

If $\bar{t} \neq 0$, then $v \neq 0$, it follows from (2.11), (F3) and Fatou's lemma that

$$\begin{split} 0 &\leq \limsup_{n \to \infty} \left[\frac{t_n^2}{2} - \frac{1}{2} \|v_n^-\|^2 - \int_{R^N} \frac{F(x, w_n + s_n e)}{\|w_n + s_n e\|^2} dx \right] \\ &= \limsup_{n \to \infty} \left[\frac{t_n^2}{2} - \frac{1}{2} \|v_n^-\|^2 - \int_{R^N} \frac{F(x, w_n + s_n e)}{(w_n + s_n e)^2} v_n^2 dx \right] \\ &\leq \frac{1}{2} \lim_{n \to \infty} t_n^2 - \liminf_{n \to \infty} \int_{R^N} \frac{F(x, w_n + s_n e)}{(w_n + s_n e)^2} v_n^2 dx \right] \\ &\leq \frac{\overline{t}^2}{2} - \int_{R^N} \liminf_{n \to \infty} \frac{F(x, w_n + s_n e)}{(w_n + s_n e)^2} v_n^2 dx \right] \\ &= -\infty, \end{split}$$

is a contradiction.

Lemma 2.6. Suppose that (V1), (F1), (F2), (F3) and (F4) are satisfied. Then there exist a constant $c \ge \kappa$ and a sequence $\{u_n\} \subset E$ satisfying

$$\Phi(u_n) \to c \quad and \quad \|\Phi'(u_n)\|(1+\|u_n\|) \to 0.$$
 (2.12)

Proof. Lemma 2.6 is a direct corollary of Lemmas 2.1, 2.2, 2.4 and 2.5.

Lemma 2.7. Suppose that (V1), (F1), (F2), (F3) and (F4) are satisfied. Then any sequence $\{u_n\} \subset E$ satisfying

$$\Phi(u_n) \to c \quad and \quad \langle \Phi'(u_n), u_n^{\pm} \rangle \to 0,$$
(2.13)

is bounded in E.

Proof. To prove the boundedness of $\{u_n\}$, arguing by contradiction, suppose that $||u_n||_0 \to \infty$. Let $v_n = u_n/||u_n||_0$. Then $1 = ||v_n||_0^2$. By Sobolev imbedding theorem, there exists a constant $C_4 > 0$ such that $||v_n||_2 \le C_4$. Passing to a subsequence, we have $v_n \rightharpoonup \overline{v}$ in E. There are two possible cases: $i)\overline{v} = 0$ and $ii)\overline{v} \neq 0$.

Case i) $\overline{v} = 0, i.e. v_n \to 0$ in E. Then $v_n^+ \to 0$ and $v_n^- \to 0$ in $L^s_{loc}(\mathbb{R}^N)$, $2 \leq s < 2^*$ and $v_n^+ \to 0$ and $v_n^- \to 0$ a.e. on \mathbb{R}^N . By (V1) and (V2), it is easy to show that

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} V_1(x) (v_n^+)^2 dx = \lim_{n \to \infty} \int_{\mathbb{R}^N} V_1(x) (v_n^-)^2 dx = 0.$$
(2.14)

If

$$\delta := \limsup_{n \to \infty} \sup_{y \in \mathbb{R}^N} \int_{B_1(y)} |v_n^+|^2 dx = 0,$$

then by Lion's concentration compactness principle [11] or ([23], Lemma 1.21), $v_n^+ \to 0$ in $L^s(\mathbb{R}^N)$ for $2 < s < 2^*$. Fix $\mathbb{R} > [2(1 + c_*)]^{1/2}$. By virtue of (F0) and (F1), for $\epsilon = 1/4(\mathbb{R}C_4)^2 > 0$, there exists $C_{\epsilon} > 0$ such that (1.12) holds. Hence, it follows that

$$\limsup_{n \to \infty} \int_{R^N} F(x, Rv_n^+) dx \le \limsup_{n \to \infty} [\epsilon R^2 \|v_n^+\|_2^2 + C_{\epsilon} R^P \|v_n^+\|_P^P] \le \epsilon (RC_4)^2 = \frac{1}{4}.$$
(2.15)

Let $t_n = R/||u_n||_0$. Hence, by virtue of (2.10) and (2.11), one can get that

$$\begin{split} c_* + o(1) &= \Phi(u_n) \\ &\geq \frac{t_n^2}{2} \|u_n\|_0^2 - \int_{R^N} F(x, t_n u_n^+) dx + \frac{1 - t_n^2}{2} \langle \Phi'(u_n), u_n \rangle \\ &+ t_n^2 \langle \Phi'(u_n), u_n^- \rangle + \frac{t_n^2}{2} \int_{R^N} V_1(x) [(u_n^+)^2 - (u_n^-)^2] dx \\ &= \frac{R^2}{2} \|v_n\|_0^2 - \int_{R^N} F(x, Rv_n^+) dx + \left(\frac{1}{2} - \frac{R^2}{2\|u_n\|_0^2}\right) \langle \Phi'(u_n), u_n \rangle \\ &+ \frac{R^2}{\|u_n\|^2} \langle \Phi'(u_n), u_n^- \rangle + \frac{R^2}{2} \int_{R^N} V_1(x) [(v_n^+)^2 - (v_n^-)^2] dx \\ &\geq \frac{R^2}{2} - \int_{R^N} F(x, Rv_n^+) dx + o(1) \\ &\geq \frac{R^2}{2} - \frac{1}{4} + o(1) > c_* + \frac{3}{4} + o(1). \end{split}$$

This contradiction shows that $\delta > 0$.

Passing to a subsequence, we may assume the existence of $\kappa_n \in Z^N$ such that $\int_{B_{1+\sqrt{N}}(\kappa_n)} |v_n^+|^2 dx > \frac{\delta}{2}$. Let $w_n(x) = v_n(x + \kappa_n)$. Since $V_0(x)$ is 1-periodic in each of $x_1, x_2, ..., x_N$. Then

$$\int_{B_{1+\sqrt{N}}(0)} |w_n^+|^2 dx > \frac{\delta}{2}.$$
(2.16)

Now we define $\tilde{u_n}(x) = u_n(x + \kappa_n)$, then $\tilde{u_n}/||u_n||_0 = w_n$ and $||w_n||_0 = ||v_n||_0 = 1$. Passing to a subsequence, we have $w_n \to w$ in E, $w_n \to w$ in $L^s_{loc}(\mathbb{R}^N)$, $2 \leq s < 2^*$ and $w_n \to w$ a.e. on \mathbb{R}^N . Obviously we have $w \neq 0$. Hence, it follows from (2.17), (F4) and Fatou's lemma that

$$\begin{aligned} 0 &= \lim_{n \to \infty} \frac{c_* + o(1)}{\|u_n\|_0^2} = \lim_{n \to \infty} \frac{\Phi(u_n)}{\|u_n\|_0^2} \\ &= \lim_{n \to \infty} \left[\frac{1}{2} (\|v_n^+\|_0^2 - \|v_n^-\|_0^2) + \frac{1}{2} \int_{R^N} V_1(x) [(v_n^+)^2 - (v_n^-)^2] dx \\ &- \int_{R^N} \frac{F(x + \kappa_n, \tilde{u_n})}{\tilde{u_n}^2} w_n^2 dx \right] \\ &\leq \frac{1}{2} - \liminf_{n \to \infty} \int_{R^N} \frac{F(x + \kappa_n, \tilde{u_n})}{\tilde{u_n}^2} w_n^2 dx \leq \frac{1}{2} - \int_{R^N} \liminf_{n \to \infty} \frac{F(x + \kappa_n, \tilde{u_n})}{\tilde{u_n}^2} w_n^2 dx \\ &= -\infty, \end{aligned}$$

which is a contradiction.

Case ii) $\overline{v} \neq 0$. In this case, we can also deduce a contradiction by a standard argument.

Case i)and ii) show that $\{u_n\}$ is bounded in E.

Proof of Theorem 1.1. Applying Lemmas 2.6 and 2.7, we deduce that there exists a bounded sequence $\{u_n\} \subset E$ satisfying (2.8). Passing to a subsequence, we have $u_n \rightharpoonup \overline{u}$ in E. Next, we prove $\overline{u} \neq 0$.

Arguing by contradiction, suppose that $\overline{u} = 0$, *i.e.* $u_n \to \overline{0}$ in E, and so $u_n \to 0$ in $L^s_{loc}(\mathbb{R}^N)$, $2 \le s < 2^*$ and $u_n \to 0$ a.e. on \mathbb{R}^N . By (V1) and (V2), it is easy to show that

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} V_1(x) u_n^2 dx = 0 \quad \text{and} \quad \lim_{n \to \infty} \int_{\mathbb{R}^N} V_1(x) u_n v dx = 0 \quad \forall v \in E.$$
(2.17)

Note that

$$\Phi_0(u) = \Phi(u) - \frac{1}{2} \int_{\mathbb{R}^N} V_1(x) u^2 dx \quad \forall u \in E$$
(2.18)

and

$$\langle \Phi'_0(u), v \rangle = \langle \Phi'(u), v \rangle - \int_{\mathbb{R}^N} V_1(x) uv dx \quad \forall u, v \in E.$$
(2.19)

From (2.10)-(2.13), one can get that

$$\Phi_0(u_n) \to c_* \quad \text{and} \quad \|\Phi'_0(u_n)\|(1+\|u_n\|) \to 0.$$
(2.20)

Passing to a subsequence, we may assume the existence of $\kappa_n \in Z^N$ such that $\int_{B_{1+\sqrt{N}}(\kappa_n)} |u_n|^2 dx > \frac{\delta}{2}$ for some $\delta > 0$. Let $v_n(x) = u_n(x + \kappa_n)$. Then $||v_n||_0 = ||u_n||_0$ and

$$\int_{B_{1+\sqrt{N}}(0)} |v_n|^2 dx > \frac{\delta}{2}.$$
(2.21)

Passing to a subsequence, we have $v_n \rightarrow \overline{v}$ in E, $v_n \rightarrow \overline{v}$ in $L^s_{loc}(\mathbb{R}^N)$, $2 \leq s < 2^*$ and $v_n \rightarrow \overline{v}$ a.e. on \mathbb{R}^N . Obviously, (2.21) implies that $\overline{v} \neq 0$. Since $V_0(x)$ and f(x, u) are periodic in x, then by (2.14), we have

$$\Phi_0(v_n) \to c_* \quad \text{and} \quad \|\Phi'_0(v_n)\|(1+\|v_n\|) \to 0.$$
 (2.22)

By a standard argument, one has $\Phi'(\overline{v}) = 0$. This shows that $\overline{v} \in \mathcal{N}^-$ and so $\Phi(\overline{v}) \ge m$. On the other hand, by using (2.22), (F4) and Fatou's lemma, we have

$$\begin{split} m &\geq c_* = \lim_{n \to \infty} \left[\Phi(v_n) - \frac{1}{2} \langle \Phi'(v_n), v_n \rangle \right] = \lim_{n \to \infty} \int_{\mathbb{R}^N} \left[\frac{1}{2} f(x, v_n) v_n - F(x, v_n) \right] dx \\ &\geq \int_{\mathbb{R}^N} \lim_{n \to \infty} \left[\frac{1}{2} f(x, v_n) v_n - F(x, v_n) \right] dx \\ &= \Phi(\overline{v}) - \frac{1}{2} \langle \Phi'(\overline{v}), \overline{v} \rangle = \Phi(\overline{v}). \end{split}$$

This shows that $\Phi(\overline{v}) \leq m$ and so $\Phi(\overline{v}) = m = \inf_{\mathcal{N}^-} \Phi > 0$.

Acknowledgement

The author thank the anoymous referees for their valuable suggestions and comments.

References

- D. E. Edmunds, W. D. Evans, Spectral Theory and Differential Operators, Oxford Clarendon Press, New York, (1987).
- [2] Y. Egorov, V. Kondratiev, On Spectral Theory of Elliptic Operators, Birkhäuser Verlag, Basel, (1996). 1
- [3] Y. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Publishing Co., Hackensack, (2007). 2.1
- [4] Y. Ding, C. Lee, Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, 222 (2006), 137–163.
- Y. Ding, A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations, 29 (2007), 397–419.
- [6] W. Kryszewski, A. Suzlkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations, 3 (1998), 441–472. 2.1
- [7] G. B. Li, A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun Contemp Math., 4 (2002), 763–776. 1, 2.1
- [8] Y. Li, Z. Q. Wang, J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 829–837. 1
- X. Lin, X. H. Tang, Semiclassical solutions of perturbed p-Laplacian equations with critical nonlinearity, J. Math. Anal. Appl., 413 (2014), 438–449. 1
- [10] X. Lin, X. H. Tang, Nehari-type ground state solutions for superlinear asymptotically periodic Schrödinger equation, Abstr. Appl. Anal., 2014 (2014), 7 pages. 1
- [11] P. L. Lions, The concentration-compactness principle in the calculus of variations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283.
- [12] S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1–9. 1
- [13] A. Pankov, Periodic nonlinear Schrödinger equations with application to photonic crystals, Milan. J. Math., 73 (2005), 259–287. 1.1
- [14] A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan. J. Math., 73 (2005), 259–287.
- [15] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. 1
- [16] M. Schechter, Superlinear Schrödinger operators, J. Funct Anal., 262 (2012), 2677–2694. 1
- [17] A. Szulkin, T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802–3822.
- [18] X. H. Tang, Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity, J. Math. Anal. Appl., 401 (2013), 407–415. 1
- [19] X. H. Tang, New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum, J. Math. Anal. Appl., 413 (2014), 392–410. 1
- [20] X. H. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv. Nonlinear Stud., 14 (2014), 361–373. 1
- [21] X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci China Math., 58 (2015), 715–728.
- [22] C. Troestler, M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations, 21 (1996), 1431–1449. 1
- [23] M. Willem, *Minimax Theorems*, Brikhauser Boston, Boston, (1996). 2
- [24] M. Yang, Ground state solutions for a periodic periodic Schrödinger equation with superlinear nonlinearities, Nonlinear. Anal., 72 (2010), 2620–2627. 1