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Abstract

We consider the semilinear Schrödinger equation{
−4 u+ V (x)u = f(x, u), x ∈ RN ,
u ∈ H1(RN ),

where V (x) is asymptotically periodic and sign-changing, f(x, u) is a superlinear, subcritical nonlinearity.
Under asymptotically periodic V (x) and a super-quadratic condition about f(x, u). We prove that the
above problem has a ground state solution which minimizes the corresponding energy among all nontrivial
solutions. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Consider the following semilinear Schrodinger equation{
−4 u+ V (x)u = f(x, u), x ∈ RN ,
u ∈ H1(RN ),

(1.1)

where V : RN → R and f : RN ×R→ R satisfy the following standard assumptions, respectively:
(V) V ∈ C(RN ) is 1-periodic in each of x1, x2, ..., xN , and

sup[σ(−∆ + V ) ∩ (−∞, 0)] := Λ < 0 < Λ := inf [σ(−∆ + V ) ∩ (0,∞)]; (1.2)
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(F1) f ∈ C(RN ×R) is 1-periodic in each of x1, x2, ..., xN , F (x, t) :=
∫ t
0 f(x, s)ds ≥ 0;

(F2) f(x, t) = o(|t|), as |t| → 0, uniformly in x ∈ RN ;

(F3)lim|t|→∞
|F (x,t)|
|t|2 =∞, a.e.x ∈ RN ;

(F4) there exists a θ0 ∈ (0, 1) such that

1− θ2

2
f(x, t)t ≥

∫ t

θt
f(x, s)ds,∀θ ≥ 0, (x, t) ∈ RN ×R.

The existence of a nontrivial solution of (1.1) has been obtained in [5, 8, 12, 15, 22, 24] under some other
standard assumptions of V and f . In some very recent papers, under the above conditions, Xianhua Tang
[18, 19, 20, 21] proved the problem (1.1) has a ground state solution of Nehari-Pankov type.

If V (x) is asymptotically periodic, not only that the functional Φ loses the ZN -translation invariance,
but also the operator −∆ + V has also discrete spectrum except for continuous spectrum. For the periodic
problem, it is very crucial to show (PS)-sequence or (C)-sequence is bounded that the operator −∆ +V has
only continuous spectrum [16]. For the above knowledge, there are no existence results for (1.1) when V (x)
is asymptotically periodic and sign-changing and f(x, u) is asymptotically linear as |u| → ∞. Motivated by
the works [4, 7, 21], in this paper, we will use some tricks introduced in [9, 10] to overcome the difficulties
caused by the dropping of periodicity of V (x).

Before presenting our theorem, we make the following assumptions.
(V1) V (x) = V0(x) + V1(x), V0 ∈ C(RN ) ∩ L∞(RN ) and

sup[σ(−∆ + V0) ∩ (−∞, 0)] < 0 < Λ := inf[σ(−∆ + V0) ∩ (0,∞)], (1.3)

V1 ∈ C(RN ) and lim|x|→∞V1(X) = 0;
(V2) V0 is 1-periodic in each of x1, x2, ..., xN , and

0 ≤ −V1(x) ≤ sup
RN

(−V1) < Λ,∀x ∈ RN .

Let A0 = −∆ + V0. Then A0 is self-adjoint in L2(RN ) with domain D(A0) = H2(RN ) (see [2], Theorem
4.26). Let {ε(λ) : −∞ < λ < +∞} and |A0| be the spectral family and the absolute value of A0, respectively,
and |A0|1/2 be the square root of |A0| . Set U = id − ε(0) − ε(0−). Then U commutes with A0 (see [1],
Theorem IV 3.3). Let

E = D(|A0|1/2), E− = ε(0)E, E+ = [id− ε(0)]E. (1.4)

For any u ∈ E, it is easy to see that u = u− + u+, where

u− := ε(0)u ∈ E−, u+ := [id− ε(0)]u ∈ E+ (1.5)

and
A0u

− = −|A0|u−, A0u
+ = |A0|u+ ∀u ∈ E ∩ D(A0). (1.6)

Define an inner product
(u, v) = (|A0|1/2u,A0|1/2v)L2 , u, v ∈ E (1.7)

and the corresponding norm
‖u‖ =

∥∥|A0|1/2u
∥∥
2
, u ∈ E, (1.8)

where(·, ·)L2 denotes the inner product of L2(RN ) and ‖ · ‖ denotes the norm of Ls(RN ). By (V1), E =
H1(RN ) with equivalent norms. Therefore, E embeds continuously in Ls(RN ) for all 2 ≤ s ≤ 2∗. In addition,
one has the decomposition E = E− ⊕ E+ orthogonal with respect to both (·, ·)L2 and (·, ·).

Let

Φ(u) =
1

2

∫
RN

(|∇u|2 + V (x)u2)dx−
∫
RN

F (x, u)dx,∀u ∈ E (1.9)
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and

Φ0(u) =
1

2

∫
RN

(|∇u|2 + V0(x)u2)dx−
∫
RN

F (x, u)dx ∀u ∈ E, (1.10)

where F (x, t) =
∫ t
0 f(x, s)ds. Then Φ0(u) is also of class C1(E,R), and

〈Φ′0(u), v〉 =

∫
RN

(∇u∇v + V0(x)uv)dx−
∫
RN

f(x, u)vdx ∀u, v ∈ E. (1.11)

In view of (1.5), (1.8) and (1.10), we have

Φ0(u) =
1

2
(‖u+‖2 − ‖u−‖2)−

∫
RN

F (x, u)dx (1.12)

and

〈Φ′0(u), u〉 = ‖u+‖2 − ‖u−‖2)−
∫
RN

f(x, u)udx ∀u = u− + u+ ∈ E. (1.13)

Now, we are in a position to state the main result of this paper.

Theorem 1.1. Assume that V and f satisfy (V1), (V2), (F1), (F2), (F3) and (F4). Then problem (1.1)
has a nontrivial solution u0 ∈ E. such that Φ(u0) = infN− Φ > 0, where

N− = {u ∈ E\E− : 〈Φ′(u), u〉 = 〈Φ′(u), v〉 = 0 ∀v ∈ E−}. (1.14)

The set N− was first introduced by Pankov [13, 14], which is a subset of the Nehari manifold

N = {u ∈ E\{0} : 〈Φ′(u), u〉 = 0}. (1.15)

The rest of this paper is organized as follows. In Section 2, some preliminary results and the proofs of
Theorem 1.1 are presented.

2. Main results

Let X be a real Hilbert space with X = X−
⊕
X+ and X− ⊥ X+. For a functional ϕ ∈ C1(X,R), ϕ is

said to be weakly sequentially lower semi-continuous if for any un ⇀ u in X one has ϕ(u) ≤ lim infn→∞ ϕ(un),
and ϕ′ is said to be weakly sequentially continuous if limn→∞〈ϕ′(un), v〉 = 〈ϕ′(u), v〉 for each v ∈ X.

Lemma 2.1 ([3], [6], [7]). Let X be a real Hilbert space with X = X−
⊕
X+ and X− ⊥ X+, and let

ϕ ∈ C1(X,R) of the form

ϕ(u) =
1

2
(‖u+‖2 − ‖u−‖2)− ψ(u), u = u− + u+ ∈ X− ⊕X+.

Suppose that the following assumptions are satisfied:
(LS1) ψ ∈ C1(X,R) is bounded from below and weakly sequentially lower semi-continuous;
(LS2) ψ′ is weakly sequentially continuous;
(LS3) there exist r > ρ > 0 and e ∈ X+ with ‖e‖ = 1 such that

k := inf ϕ(S+
ρ ) > supϕ(∂Q),

where
S+
ρ = {u ∈ X+ : ‖u‖ = ρ}, Q = {w + se : w ∈ X1, s ≥ 0, ‖w + se‖ ≤ r}.

Then for some c ∈ [k, sup Φ(Q)], there exists a sequence {un} ⊂ X satisfying

ϕ(un)→ c, ‖ϕ′(un)‖(1 + ‖un‖)→ 0. (2.1)

Such a sequence is called a Cerami sequence on the level c or a (C)c sequence.
We set

Ψ(u) =

∫
RN

[−V1(x)u2 + F (x, u)]dx ∀u ∈ E. (2.2)
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Lemma 2.2. Suppose that (V1), (V2), (F1), (F2) and (F3) are satisfied. Then Ψ is nonnegative, weakly
sequentially lower semi-continuous, and Ψ′ is weakly sequentially continuous.

Using Sobolev’s embedding theorem, one can check easily the above lemma, so we omit the proof.

Lemma 2.3. Suppose that (V1), (F1), (F2), (F3) and (F4) are satisfied. Then for u ∈ N−,

Φ(u) ≥ Φ(tu+ w) +
1

2
‖w‖2 − 1

2

∫
RN

V1(x)w2dx+
1− t2

2
〈Φ′(u), u〉

− t〈Φ′(u), w〉 ∀u ∈ E, t ≥ 0, w ∈ E−.
(2.3)

Proof. For any x ∈ RN and τ 6= 0, (F4) yields

1− t2

2
τf(x, τ) ≥

∫ τ

tτ
f(x, s)ds, t ≥ 0. (2.4)

It follows that (1− t2

2
τ − tτ

)
f(x, τ) ≥

∫ τ

tτ+σ
f(x, s)ds, t ≥ 0, σ ∈ R. (2.5)

To show (2.5), we consider four possible cases. By virtue of (2.4) and sf(x, s) ≥ 0, one has

Case 1) 0 ≤ tτ + σ ≤ τ or tτ + σ ≤ τ ≤ 0,∫ τ

tτ+σ
f(x, s)ds ≤ f(x, τ)

|τ |

∫ τ

tτ+σ
|s|ds ≤

(1− t2

2
τ − tτ

)
f(x, τ);

Case 2) tτ + σ ≤ 0 ≤ τ ,∫ τ

tτ+σ
f(x, s)ds ≤

∫ τ

0
f(x, s)ds ≤ f(x, τ)

|τ |

∫ τ

tτ+σ
|s|ds ≤

(1− t2

2
τ − tτ

)
f(x, τ);

Case 3) 0 ≤ τ ≤ tτ + σ or τ ≤ tτ + σ ≤ 0,∫ tτ+σ

τ
f(x, s)ds ≥ f(x, τ)

|τ |

∫ tτ+σ

τ
|s|ds ≥ −

(1− t2

2
τ − tτ

)
f(x, τ);

Case 4) τ ≤ 0 ≤ tτ + σ,∫ tτ+σ

τ
f(x, s)ds ≥

∫ 0

τ
f(x, s)ds ≥ f(x, τ)

|τ |

∫ 0

τ
|s|ds ≥ −

(1− t2

2
τ − tτ

)
f(x, τ).

The above four cases show that (2.5) holds.
We let b : E × E → R denote the symmetric bilinear from given by

b(u, v) =

∫
RN

(5u5 v + V (x)uv)dx ∀u, v ∈ E. (2.6)

By virtue of (1.9) and (2.6), one has

Φ(u) =
1

2
b(u, u)−

∫
RN

F (x, u)dx ∀u ∈ E (2.7)

and

〈Φ′(u), v〉 = b(u, v)−
∫
RN

f(x, u)vdx ∀u, v ∈ E. (2.8)
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Thus, by (1.9), (1.11), (2.6), (2.7) and (2.8), one has

Φ(u)− Φ(tu+ w) =
1

2
[b(u, u)− b(tu+ w, tu+ w)] +

∫
RN

[F (x, tu+ w)− F (x, u)]dx

=
1− t2

2
b(u, u)− tb(u,w)− 1

2
b(w,w) +

∫
RN

[F (x, tu+ w)− F (x, u)]dx

= −1

2
b(w,w) +

1− t2

2
〈Φ′(u), u〉 − t〈Φ′(u), w〉

+

∫
RN

[1− t2
2

f(x, u)u− tf(x, u)w −
∫ u

tu+w
f(x, s)ds

]
dx

=
1

2
‖w‖20 −

1

2

∫
RN

V1(x)w2dx+
1− t2

2
〈Φ′(u), u〉 − t〈Φ′(u), w〉

+

∫
RN

[1− t2
2

f(x, u)u− tf(x, u)w −
∫ u

tu+w
f(x, s)ds

]
dx

≥ 1

2
‖w‖20 −

1

2

∫
RN

V1(x)w2dx+
1− t2

2
〈Φ′(u), u〉 − t〈Φ′(u), w〉 ∀t ≥ 0, w ∈ E−.

This shows that (2.3) holds.

Lemma 2.4. Suppose that (V1), (F1), (F2) and (F4) are satisfied. Then there exists ρ > 0 such that

m := inf
N−

Φ ≥ κ := inf{Φ(u) : u ∈ E+, ‖u‖ = ρ} > 0. (2.9)

Lemma 2.4 can be proved in the same way as ([17], Lemmas 2.4).

Lemma 2.5. Suppose that (V1), (F1), (F2) and (F3) are satisfied. Let e ∈ E+ with ‖e‖ = 1.
Then there is a r0 > 0 such that sup Φ(∂Q) ≤ 0, where

Q = {se+ w : w ∈ E−, s ≥ 0, ‖se+ w‖ ≤ r0}. (2.10)

Proof. (F1) yields that F (x, t) ≥ 0 for (x, t) ∈ RN×R, so we have Φ(u) ≤ 0 for u ∈ E−. Next, it is sufficient
to show that Φ(u) → −∞ as u ∈ E− ⊕ Re, ‖u‖ → ∞. Arguing indirectly, assume that for some sequence
{wn + sne} ⊂ E− ⊕Re with ‖wn + sne‖ → ∞, there is M > 0 such that Φ(wn + sne) ≥ −M for all n ∈ N .
Set vn = (wn + sne)�‖wn + sne‖ = v−n + tne, then ‖v−n + tne‖ = 1. Passing to a subsequence, we may
assume that vn ⇀ v in E, then vn → v a.e. on RN , v−n → v− in E, tn → t, and

− M

‖wn + sne‖2
≤ Φ(wn + sne)

‖wn + sne‖2
=
t2n
2
− 1

2
‖v−n ‖2 −

∫
RN

F (x,wn + sne)

‖wn + sne‖2
dx. (2.11)

If t = 0, then it follows from (2.11) that

0 ≤ 1

2
‖v−n ‖2 +

∫
RN

F (x,wn + sne)

‖wn + sne‖2
dx ≤ t2

2
+

M

‖wn + sne‖2
→ 0,

which yields ‖v−n ‖ → 0, and so 1 = ‖vn‖ → 0, is a contradiction.
If t 6= 0, then v 6= 0, it follows from (2.11), (F3) and Fatou’s lemma that

0 ≤ lim sup
n→∞

[ t2n
2
− 1

2
‖v−n ‖2 −

∫
RN

F (x,wn + sne)

‖wn + sne‖2
dx
]

= lim sup
n→∞

[ t2n
2
− 1

2
‖v−n ‖2 −

∫
RN

F (x,wn + sne)

(wn + sne)2
v2ndx

]
≤ 1

2
lim
n→∞

t2n − lim inf
n→∞

∫
RN

F (x,wn + sne)

(wn + sne)2
v2ndx

]
≤ t

2

2
−
∫
RN

lim inf
n→∞

F (x,wn + sne)

(wn + sne)2
v2ndx

]
= −∞,
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is a contradiction.

Lemma 2.6. Suppose that (V1), (F1), (F2), (F3) and (F4) are satisfied. Then there exist a constant c ≥ κ
and a sequence {un} ⊂ E satisfying

Φ(un)→ c and ‖Φ′(un)‖(1 + ‖un‖)→ 0. (2.12)

Proof. Lemma 2.6 is a direct corollary of Lemmas 2.1, 2.2, 2.4 and 2.5.

Lemma 2.7. Suppose that (V1), (F1), (F2), (F3) and (F4) are satisfied. Then any sequence {un} ⊂ E
satisfying

Φ(un)→ c and 〈Φ′(un), u±n 〉 → 0, (2.13)

is bounded in E.

Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that ‖un‖0 → ∞. Let vn =
un/‖un‖0. Then 1 = ‖vn‖20. By Sobolev imbedding theorem, there exists a constant C4 > 0 such that
‖vn‖2 ≤ C4. Passing to a subsequence, we have vn ⇀ v in E. There are two possible cases: i)v = 0 and
ii)v 6= 0.

Case i) v = 0, i.e. vn ⇀ 0 in E. Then v+n → 0 and v−n → 0 in Lsloc(R
N ), 2 ≤ s < 2∗ and v+n → 0 and

v−n → 0 a.e. on RN . By (V1) and (V2), it is easy to show that

lim
n→∞

∫
RN

V1(x)(v+n )2dx = lim
n→∞

∫
RN

V1(x)(v−n )2dx = 0. (2.14)

If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)

|v+n |2dx = 0,

then by Lion’s concentration compactness principle [11] or ([23], Lemma 1.21), v+n → 0 in Ls(RN ) for
2 < s < 2∗. Fix R > [2(1 + c∗)]

1/2. By virtue of (F0) and (F1), for ε = 1/4(RC4)
2 > 0, there exists Cε > 0

such that (1.12) holds. Hence, it follows that

lim sup
n→∞

∫
RN

F (x,Rv+n )dx ≤ lim sup
n→∞

[εR2‖v+n ‖22 + CεR
P ‖v+n ‖PP ]

≤ ε(RC4)
2 =

1

4
.

(2.15)

Let tn = R/‖un‖0. Hence, by virtue of (2.10) and (2.11), one can get that

c∗ + o(1) = Φ(un)

≥ t2n
2
‖un‖20 −

∫
RN

F (x, tnu
+
n )dx+

1− t2n
2
〈Φ′(un), un〉

+ t2n〈Φ′(un), u−n 〉+
t2n
2

∫
RN

V1(x)[(u+n )2 − (u−n )2]dx

=
R2

2
‖vn‖20 −

∫
RN

F (x,Rv+n )dx+
(1

2
− R2

2‖un‖20

)
〈Φ′(un), un〉

+
R2

‖un‖2
〈Φ′(un), u−n 〉+

R2

2

∫
RN

V1(x)[(v+n )2 − (v−n )2]dx

≥ R2

2
−
∫
RN

F (x,Rv+n )dx+ o(1)

≥ R2

2
− 1

4
+ o(1) > c∗ +

3

4
+ o(1).

This contradiction shows that δ > 0.
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Passing to a subsequence, we may assume the existence of κn ∈ ZN such that
∫
B1+

√
N (κn)

|v+n |2dx > δ
2 .

Let wn(x) = vn(x+ κn). Since V0(x) is 1-periodic in each of x1, x2, ..., xN . Then∫
B1+

√
N (0)
|w+
n |2dx >

δ

2
. (2.16)

Now we define ũn(x) = un(x+κn), then ũn/‖un‖0 = wn and ‖wn‖0 = ‖vn‖0 = 1. Passing to a subsequence,
we have wn ⇀ w in E, wn → w in Lsloc(R

N ), 2 ≤ s < 2∗ and wn → w a.e. on RN . Obviously we have w 6= 0.
Hence, it follows from (2.17), (F4) and Fatou’s lemma that

0 = lim
n→∞

c∗ + o(1)

‖un‖20
= lim

n→∞

Φ(un)

‖un‖20

= lim
n→∞

[1
2

(‖v+n ‖20 − ‖v−n ‖20) +
1

2

∫
RN

V1(x)[(v+n )2 − (v−n )2]dx

−
∫
RN

F (x+ κn, ũn)

ũn
2 w2

ndx
]

≤ 1

2
− lim inf

n→∞

∫
RN

F (x+ κn, ũn)

ũn
2 w2

ndx ≤
1

2
−
∫
RN

lim inf
n→∞

F (x+ κn, ũn)

ũn
2 w2

ndx

= −∞,

which is a contradiction.
Case ii) v 6= 0. In this case, we can also deduce a contradiction by a standard argument.
Case i)and ii) show that {un} is bounded in E.

Proof of Theorem 1.1. Applying Lemmas 2.6 and 2.7, we deduce that there exists a bounded sequence
{un} ⊂ E satisfying (2.8). Passing to a subsequence, we have un ⇀ u in E. Next, we prove u 6= 0.

Arguing by contradiction, suppose that u = 0, i.e. un ⇀ 0 in E, and so un → 0 in Lsloc(R
N ), 2 ≤ s < 2∗

and un → 0 a.e. on RN . By (V1) and (V2), it is easy to show that

lim
n→∞

∫
RN

V1(x)u2ndx = 0 and lim
n→∞

∫
RN

V1(x)unvdx = 0 ∀v ∈ E. (2.17)

Note that

Φ0(u) = Φ(u)− 1

2

∫
RN

V1(x)u2dx ∀u ∈ E (2.18)

and

〈Φ′0(u), v〉 = 〈Φ′(u), v〉 −
∫
RN

V1(x)uvdx ∀u, v ∈ E. (2.19)

From (2.10)-(2.13), one can get that

Φ0(un)→ c∗ and ‖Φ′0(un)‖(1 + ‖un‖)→ 0. (2.20)

Passing to a subsequence, we may assume the existence of κn ∈ ZN such that
∫
B1+

√
N (κn)

|un|2dx > δ
2

for some δ > 0. Let vn(x) = un(x+ κn). Then ‖vn‖0 = ‖un‖0 and∫
B1+

√
N (0)
|vn|2dx >

δ

2
. (2.21)

Passing to a subsequence, we have vn ⇀ v in E, vn → v in Lsloc(R
N ), 2 ≤ s < 2∗ and vn → v a.e. on RN .

Obviously, (2.21) implies that v 6= 0. Since V0(x) and f(x, u) are periodic in x, then by (2.14), we have

Φ0(vn)→ c∗ and ‖Φ′0(vn)‖(1 + ‖vn‖)→ 0. (2.22)
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By a standard argument, one has Φ′(v) = 0. This shows that v ∈ N− and so Φ(v) ≥ m. On the other hand,
by using (2.22), (F4) and Fatou’s lemma, we have

m ≥ c∗ = lim
n→∞

[
Φ(vn)− 1

2
〈Φ′(vn), vn〉

]
= lim

n→∞

∫
RN

[1
2
f(x, vn)vn − F (x, vn)

]
dx

≥
∫
RN

lim
n→∞

[1
2
f(x, vn)vn − F (x, vn)

]
dx

= Φ(v)− 1

2
〈Φ′(v), v〉 = Φ(v).

This shows that Φ(v) ≤ m and so Φ(v) = m = infN− Φ > 0.
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Non Linéaire, 1 (1984), 223–283. 2
[12] S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45

(2012), 1–9. 1
[13] A. Pankov, Periodic nonlinear Schrödinger equations with application to photonic crystals, Milan. J. Math., 73

(2005), 259–287. 1.1
[14] A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan. J. Math., 73

(2005), 259–287. 1.1
[15] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270–291. 1
[16] M. Schechter, Superlinear Schrödinger operators, J. Funct Anal., 262 (2012), 2677–2694. 1
[17] A. Szulkin, T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009),

3802–3822. 2
[18] X. H. Tang, Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and

nonlinearity, J. Math. Anal. Appl., 401 (2013), 407–415. 1
[19] X. H. Tang, New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum, J. Math.

Anal. Appl., 413 (2014), 392–410. 1
[20] X. H. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv.

Nonlinear Stud., 14 (2014), 361–373. 1
[21] X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci China Math., 58

(2015), 715–728. 1
[22] C. Troestler, M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential

Equations, 21 (1996), 1431–1449. 1
[23] M. Willem, Minimax Theorems, Brikhauser Boston, Boston, (1996). 2
[24] M. Yang, Ground state solutions for a periodic periodic Schrödinger equation with superlinear nonlinearities,

Nonlinear. Anal., 72 (2010), 2620–2627. 1


	1 Introduction and Preliminaries
	2 Main results

