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Abstract

In this paper, we solve the following cubic p-functional inequality

N(f(2x+y)+ fQ2z —y) = 2f(x+y) = 2f(z —y) — 12f(x) (1)
o (a1 (e 4 ) +4f (2 5) ~ fat) — Sl =9 = 6@) ) 2

and the following quartic p-functional inequality
N(f(2+y) + (22— y) = 4f(w +y) — 4f(z — y) = 24f(x) + 6£(y) (2)
o (87 (w4 5) +87 (2= §) 264 w) - 26— v) - 120(@) 4 31W) )2 s

in fuzzy normed spaces, where p is a fixed real number with p # 2.
Using the direct method, we prove the Hyers-Ulam stability of the cubic p-functional inequality and
the quartic p-functional inequality in fuzzy Banach spaces. (©2016 All rights reserved.

Keywords: fuzzy Banach space, cubic p-functional inequality, quartic p-functional inequality, Hyers-Ulam
stability.
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1. Introduction and preliminaries

Katsaras [11] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure
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on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view
16, 15, B33]. In particular, Bag and Samanta [2], following Cheng and Mordeson [5], gave an idea of fuzzy
norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [14]. They
established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some
properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, [I8] 19] to investigate the Hyers-Ulam stability
of cubic p-functional inequalities and quartic p-functional inequalities in fuzzy Banach spaces.

Definition 1.1 (2 18, 19, 20]). Let X be a real vector space. A function N : X x R — [0,1] is called a
fuzzy norm on X if for all z,y € X and all s,t € R,
(N1) N(z,t) =0 for t <0;
(N2) x =0 if and only 1fN(x t) =1 for all ¢t > 0;
(N3) N(cz,t) = N(z, E ‘) if ¢ # 0;
(Ny) N(x 4+ y,s+t) > min{N(z,s), N(y,t)};
(N5) N(z,-) is a non-decreasing function of R and lim;_, N(z,t) = 1;
(Ng) for  # 0, N(x,-) is continuous on R.

The pair (X, N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in [I§].

Definition 1.2 ([2, 18] 19, 20]). Let (X, N) be a fuzzy normed vector space. A sequence {x,} in X is said
to be convergent or converge if there exists an x € X such that lim,_,oo N(z, — 2,¢) = 1 for all ¢ > 0. In
this case, x is called the limit of the sequence {z,} and we denote it by N-lim,_,~ =, = .

Definition 1.3 (]2, 18, 19, 20]). Let (X, N) be a fuzzy normed vector space. A sequence {z,} in X is called
Cauchy if for each € > 0 and each ¢t > 0 there exists an ng € N such that for all n > ng and all p > 0, we
have N(zp4p — Tn,t) > 1 —c.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy
sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is
called a fuzzy Banach space.

We say that a mapping f : X — Y between fuzzy normed vector spaces X and Y is continuous at a
point zg € X if for each sequence {z, } converging to xp in X, then the sequence {f(xy)} converges to f(zo).
If f: X — Y is continuous at each x € X, then f: X — Y is said to be continuous on X (see [3]).

The stability problem of functional equations originated from a question of Ulam [32] concerning the
stability of group homomorphisms. Hyers [8] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by Th. M. Rassias
[26] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Th. M.
Rassias theorem was obtained by Gavruta [7] by replacing the unbounded Cauchy difference by a general
control function in the spirit of Th. M. Rassias’ approach. The stability problems of several functional
equations have been extensively investigated by a number of authors and there are many interesting results
concerning this problem (see [4, [10], 12} 13] 17, 23, 24], 25, 27, 28] 29, 30} B1]).

In [9], Jun and Kim considered the following cubic functional equation

fRx+y)+ f(2x —y)=2f(z +y) +2f(z —y) + 12f(z). (1.1)

It is easy to show that the function f(x) = 22 satisfies the functional equation (1.1)), which is called a cubic
functional equation and every solution of the cubic functional equation is said to be a cubic mapping.
In [16], Lee et al. considered the following quartic functional equation

fQRx+y)+ f(2x —y) =4f(z +y) +4f(x —y) +24f(z) — 6f(y). (1.2)

It is easy to show that the function f(z) = x* satisfies the functional equation (1.2, which is called a quartic
functional equation and every solution of the quartic functional equation is said to be a quartic mapping.
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Park [21122] defined additive p-functional inequalities and proved the Hyers-Ulam stability of the additive
p-functional inequalities in Banach spaces and non-Archimedean Banach spaces.

In Section [2| we solve the cubic p-functional inequality and prove the Hyers-Ulam stability of the
cubic p-functional inequality in fuzzy Banach spaces by using the direct method.

In Section (3, we solve the quartic p-functional inequality and prove the Hyers-Ulam stability of the
quartic p-functional inequality in fuzzy Banach spaces by using the direct method.

Throughout this paper, assume that p is a fixed real number with p # 2.

2. Cubic p-functional inequality
Lemma 2.1. Let f: X — Y be a mapping satisfying
fRrx+y)+ fQRx—y) - 2f(x+y) —2f(x —y) —12f(z) (2.1)
—p(1(z+2)+4f (2=2) = flaty) — f@—y) - 6f(2))
2 2
forallz,y € X. Then f: X —Y is cubic.
Proof. Letting y = 0 in (2.1)), we get 2f(2z) — 16 f(x) = 0 and so f(2z) = 8f(x) for all z € X. Thus

fQRr+y)+ f(22 —y) = 2f(z +y) = 2f(x —y) —12f(2)
=o(af (x4 5) +as (2= 5) ~ Tty ~ [z —y) ~6/())

2
= Lo +y) + f22 —y) — 2f (v +y) — 2f (2 — y) — 12 (x)
and so f2x +y)+ f2x —y) —2f(x+y) —2f(x —y) — 12f(xz) = 0 for all z,y € X, as desired. O

We prove the Hyers-Ulam stability of the cubic p-functional inequality in fuzzy Banach spaces.

Theorem 2.2. Let ¢ : X? — [0,00) be a function such that

© Ty
B(ay) = > 8 (27 27) < (2.2)
j=1

forallx,y e X. Let f : X = Y be a mapping satisfying
N(fQRz+y)+ fQRx—y) - 2f(x+y) —2f(x —y) —12f(x) (2.3)

Yy Yy
— = —Z) = — — — >
p(4f (z+ 2) +4f (= 2) f@+y) = fl@—y) = 6f()),1) 2 oY)
forall z,y € X and allt > 0. Then C(x) := N-lim, o, 8" f (2%) exists for each x € X and defines a cubic

mapping C : X —'Y such that
t

N _Oa) ) > — 2.4
U@ =00 2 g (24
forallx € X and all t > 0.
Proof. Letting y = 0 in (2.3)), we get
t
N2f(2z)—1 ty> ——— 2.
(2f(22) = 16/(@).1) > s (25)

and so N (f(z) —8f(%),%) > W for all x € X. Hence

N(f(x)*gf <g>t> - 2t+jt(§,o) N t+§g§(§,0)
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for all x € X. Hence

¥ () () =
041 (5) 670 500 (57 () 1 (3).0)

i [ (2) -9 (g) ) e (1) () )

t
> min 87 e 8™
{§z+%<ﬁ(zfiuo) syfl+2s0(2’i”na())}
min{ t t }
e (55,0) T e (50)

2 1 m j x
t+ 16 Zj:l-i-l 8 (?70)
for all nonnegative integers m and [ with m > [ and all z € X and all ¢t > 0. It follows from and
(2.6) that the sequence {8"f(5%)} is a Cauchy sequence for all z € X. Since Y is complete, the sequence
{8"f(5%)} converges. So one can define the mapping C: X — Y by

C(z) := N- lim 8”f( —)

n—oo

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (2.6)), we get (2.4)).

By (23),
Ve (G5 e () -2 (5) - (50) - (39)
(o (57) +or (5) o (57) 7 (5) -0 (3) )
forall z,y € X, all £ > 0 and all n € N. So

N (8” (f <2$2_:y> tf <2$2; y) _of o
Yy _ Yy _
o lar (T ) vor (M) o () () o (59) )

8n+‘:0(2"’2yn) t+ 8" (%72%)

Since lim,, oo W =1forall z,y € X and all t > 0,
n 27

C2z+y)+ (2:13— y) —2C(z+y) —2C(x —y) — 12C(x)
= p(40(x + 5) +4C(x = 3) — Cla +y) - Cla — ) — 6C(x))

for all z,y € X. By Lemma [2.1] -, the mapping C' : X — Y is cubic, as desired. O

Corollary 2.3. Let 0 > 0 and let p be a real number with p > 3. Let X be a normed vector space with norm
I - |l. Let f: X —Y be a mapping satisfying

N(fQx+y)+ f2x —y) —2f(x +y) —2f(x —y) — 12f(x) (2.7)
t

—p<4f <JJ+%) +4f (m—%) _f(x"i‘y)_f(x_y)_f’f(m))vt) > t+0(|z[? + |[y]P)




C. Park, S. Yun, J. Nonlinear Sci. Appl. 9 (2016), 1693-1701 1697

for all x,y € X and allt > 0. Then C(x) := N-lim, 0 8" f(57%) exists for each x € X and defines a cubic
mapping C : X —'Y such that

2(2P — &)t
N (f(x) - C(l’),t) > 2(2p _ S)t + QHl-Hp

forallz € X and allt > 0.
Proof. The proof follows from Theorem [2.2] by taking ¢ (z,y) := 0(||z||” + ||y||P) for all z,y € X. O

Theorem 2.4. Let ¢ : X2 — [0,00) be a function such that

Zggo 2]x,2jy) < 00
7=0

forallx,y € X. Let f : X = Y be a mapping satisfying 1) Then C(zx) := N-limy, 0 S%f (2"x) exists

for each x € X and defines a cubic mapping C : X — Y such that

t
N(f(x)—C(x),t) > ——————
) = @02 g
forallx € X and all t > 0.
Proof. 1t follows from ([2.5)) that
N (@) - ), o) 2
16" ) 2 i o 0)
and so
16t t

1
N <f(il‘) - 8f(2$)7t> = 16t + ¢(x,0) - t+ %90(17:0)

for all x € X and all t > 0.
The rest of the proof is similar to the proof of Theorem O

Corollary 2.5. Let 8 > 0 and let p be a real number with 0 < p < 3. Let X be a normed vector space with
norm || - ||. Let f: X =Y be a mapping satisfying (2.7). Then C(z) := N-lim, o0 g f(2"2) ezists for
each x € X and defines a cubic mapping C' : X — Y such that

2(8 —2P)t
N (f(z) = C(z),t) = 2(8 — 20)t + 0|z

forallz € X and allt > 0.

Proof. The proof follows from Theorem [2.4] by taking p(z,y) := 0(||z||P? + ||y||P) for all z,y € X. O

3. Quartic p-functional inequality
In this section, we solve and investigate the quartic p-functional inequality in fuzzy Banach spaces.
Lemma 3.1. Let f: X — Y be a mapping satisfying f(0) =0 and
x4 y) + [(20 —y) — Af (@ +y) — 4f(x — y) — 24f(z) + 6/ () (3.1)
=p(8f (s +5)+8f (v —5) —2f @+y) —2f (@ —y) —12f () + 3f )
forallx,y € X. Then f: X —Y is quartic.
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Proof. Letting y = 0 in (3.1]), we get 2f(2z) — 32f(z) = 0 and so f(2z) = 16f(z) for all z € X. Thus
fRx+y)+ f2r—y) —4Af(x +y) —4f(z —y) — 24f () +6f(y)
=p(8f(z+3)+8f (2 —3) —2f (@+y) —2f (2 —y) — 12f (2) + 3 (v))
= DU + )+ J (20 —y) — 4f (e +y) — 4f(x — y) - 24f(2) + 6/ (1)
and so f(2z +y) + f(2x —y) —Af(z +y) — Af(x —y) — 24f(z) + 6f(y) = 0 for all z,y € X. O
We prove the Hyers-Ulam stability of the quartic p-functional inequality (2] in fuzzy Banach spaces.

Theorem 3.2. Let ¢ : X2 — [0,00) be a function such that

ZlGJ (23 2j)<oo (3.2)
forallz,y € X. Let f : X =Y be a mapping satisfying f(0) =0 and
N(fQx+y)+ f2x—y) —4f(z+y) —4f(z —y) — 24f(2) + 6/ (y) (3.3)
— <8f<x+g>+8f<m—y>—2f(m+ )—2f (x—y)—12f (x) + 3f ( )) t)>¥
P 2 2 Y Y V)Y =14 oz y)

for all z,y € X and all t > 0. Then Q(x) := N-lim,_,o 16™f (2%) exists for each x € X and defines a
quartic mapping QQ : X — 'Y such that

t

N (f(z) — Q(z),t) > m (3.4)
forallz € X and allt > 0.
Proof. Letting y =0 in , we get
N (2f(20) =32/ (@).1) = N (2 (2) =2/ (20).0) > s (35)
and so N (f(:v) —16f (%) ,%) > m for all z € X. Hence
T 2t t
N(f(m)_mf (5) ’t> ST E30) IR VoY EGy

for all x € X. Hence

N (mlf (%) —16mf (2%) ,t) (3.6)
_ ) w2 )
:min{N <f <%) — 16/ (%) 161> ( 2m 1 f(%) Wi—1>}

t
> min 16" o 16m—=
{leJr%so(gz’in) 16m1+2‘P(2ﬁ“O)}
_min{ 16l+1t p 7T 16mt }
t+ 50 (357,0) e (5.0)

> .
t+ 35 227 1600 (55,0)
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for all nonnegative integers m and [ with m > [ and all x € X and all t > 0. It follows from and
that the sequence {16" f(57%)} is a Cauchy sequence for all z € X. Since Y is complete, the sequence
{ 16” f(5%)} converges. So one can define the mapping @ : X — Y by

X

Q(r) := N- lim 16"f(5-)

n—o0

for all x € X. Moreover, letting [ = 0 and passing the limit m — oo in , we get -
By the same method as in the proof of Theorem [2 . it follows from . ) that

QQ2zr +y) + Q(2r —y) — 4Q(x +y) — 4Q(x — y) — 24Q() + 6Q(y)

_ y A _ _ ) —
—p(3Q(z+5) +8Q (v - 5) —20(@+y) —2Q (@ — 1) = 12Q(2) +3Q () )
for all z,y € X. By Lemma the mapping Q : X — Y is quartic. O

Corollary 3.3. Let 8 > 0 and let p be a real number with p > 4. Let X be a normed vector space with norm
| - ||. Let f: X =Y be a mapping satisfying f(0) =0 and

N(fQz+y)+ 2z —y) —4f(x +y) — 4f (x —y) — 24f(2) + 6 (y) (3.7)
(87 (z+ )+8f(:v—f)—2f(:v+y)—2f(x—y)—12f(x)+3f(y)),t)
>

t+9(|!ﬂf\|p + llylP

for all x,y € X and all t > 0. Then Q(x) := N-lim, o 16" f(5%) exists for each x € X and defines a
quartic mapping QQ : X — 'Y such that

2(2P — 16)t
N (f(z) — Q(z),t) > 2(20 — 16)t + 0||z|?

forallz € X and allt > 0.
Proof. The proof follows from Theorem [3.2] by taking ¢(z,y) := 6(||z|? + ||y||?) for all z,y € X. O
Theorem 3.4. Let ¢ : X? — [0,00) be a function such that
= i i.cp (ij 2jy) < 00
— 167 ’
7=0
for all x,y € X. Let f : X — Y be a mapping satisfying f(0) = 0 and (3.3). Then Q(z) := N-

lim;, 00 lﬁ%f (2"z) exists for each x € X and defines a quartic mapping Q : X —'Y such that

N (f(z) - Qx),t) > t+ Lo(z,0)

forallz € X and ollt > 0.
Proof. Tt follows from ({3.5)) that

1 t
N<f($)—f(2$) 32)225_’_80(%0)

and so

1 32t t
N (f(w) - mf@“f')’t) S Py R W

for all x € X and all ¢t > 0.
The rest of the proof is similar to the proof of Theorem O
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Corollary 3.5. Let 0 > 0 and let p be a real number with 0 < p < 4. Let X be a normed vector space with
norm || - ||. Let f: X — Y be a mapping satisfying f(0) = 0 and 1’ Then Q(x) := N-limy, o0 m%f(Z”x)
exists for each x € X and defines a quartic mapping Q : X — Y such that

2(16 — 27)t
N (@) = Q@)Y = 5a—5m T aa]p

forallz e X.
Proof. The proof follows from Theorem [3.4] by taking ¢(z,y) := 6(||z|? + ||y||P) for all z,y € X. O
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