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Abstract

This paper is concerned with the existence of mild solutions for impulsive semilinear neutral functional
integro-differential equations in Banach spaces. The existence result is obtained by using fractional power of
operators, Mönch fixed point theorem, the piecewise estimation method and semigroup theory. Applications
to partial differential systems are also given. c©2016 All rights reserved.
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1. Introduction

The theory of impulsive differential and partial differential equations in the field of modern applied
mathematics has become an important area of investigation in recent years, see the monographs of Laksh-
mikantham et al. [22], Haddad et al. [16], and Benchohra et al. [7]. Particularly, the theory of impulsive
evolution equations has become more important because of its wide applicability in control, mechanics,
electrical engineering, biological, and medical fields. There has been a significant development in impulsive
evolution equations in Banach spaces. For more details on this theory and its applications, we refer to the
references [2, 4–6, 8–11, 14, 17, 19–21, 23, 27].

In this paper, we will study the existence of mild solutions for first order impulsive semilinear neutral
functional integro-differential equations of the following form.
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d

dt
[u(t)− h(t, ut)] = Au(t) + f(t, ut, Su(t)), t ∈ J = [0, a], t 6= tk, (1.1)

∆u|t=tk = Ik(u(tk)), k = 1, 2, · · · ,m, (1.2)

u(t) = φ(t), t ∈ [−r, 0], (1.3)

where A : D(A) ⊂ X → X is the infinitesimal generator of a strongly continuous semigroup of bounded
linear operators T (t), t ≥ 0, X a real Banach space endowed with the norm | · |. f : J × D×X → X and
h : J ×D→ X are given functions, Ik ∈ C(X,X) (k = 1, 2, · · · ,m), φ ∈ D, in which D = {Ψ : [−r, 0]→ X :
Ψ is continuous everywhere except for a finite number of points t at which Ψ(t−) and Ψ(t+) exist and
Ψ(t−) = Ψ(t)}. r > 0, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = a, (m ∈ N). ∆u|t=tk denotes the jump of u(t)
at t = tk, i.e., ∆u|t=tk = u(t+k )− u(t−k ), where u(t+k ) and u(t−k ) represent the right and left limits of u(t) at
t = tk, respectively.

In (1.1), S is a linear operator defined by (Su)(t) =
∫ t
0 K(t, s)u(s)ds for u ∈ X and t ∈ J , where

K ∈ C(F,R+), in which F = {(t, s) ∈ J × J : t ≥ s} and R+ = [0,+∞).
For any function u defined on [−r, a] \ {t1, t2, · · · , tm} and any t ∈ J , we denote by ut the element of D

defined by ut(s) = u(t+ s), s ∈ [−r, 0]. Here, ut(·) represents the history of the state from time t− r up to
the present time t. For w ∈ D, the norm of w is defined by ‖w‖D = sup{|w(s)| : s ∈ [−r, 0]}.

In some papers the existence of mild solutions for various type neutral equations have been studied under
the condition that ”A is the infinitesimal generator of a compact semigroup of bounded linear operators
T (t) in Banach space X such that |T (t)| ≤ M for some M ≥ 1 and |AT (t)| ≤ L, L > 0.” From the
comments of [12], these conditions imply that the state space X is finite dimensional. Indeed, the identity
T (t) − I =

∫ t
0 AT (s)ds implies that the semigroup T (t) is uniformly continuous and compactness of T (t)

implies that T (0) = I is compact and so X is finite dimensional. So some known results hold only in finite
dimensional spaces. In this paper, we use the tool of fractional power of operators, Mönch’s fixed point
theorem combined with the method of piecewise estimation and the semigroup theory to tackle the problem
(1.1)-(1.3).

It is well-known that some restrictions on impulse effects are imposed to assure the existence of solu-
tions for impulsive differential equations. Usually, impulsive functions Ik satisfy some Lipschitz conditions
or compactness-type conditions. Here we assume that impulsive functions Ik are continuous and locally
bounded, the compactness-type and Lipschitz-type restrictions on the impulse terms have been dropped.

In [24, 25], the authors obtained the existence and uniqueness of mild and classical solutions for the
following impulsive semilinear evolution equation

u′(t) = Au(t) + f(t, u(t))(or f(t, u(t),

∫ t

0
k(t, s)u(s)ds)), 0 < t < a, t 6= tk,

u(0) = u0,

∆u|t=tk = Ik(u(tk)), k = 1, 2, · · · ,m, 0 < t1 < t2 < · · · < tm < a,

where the impulsive functions Ik are Lipschitz continuous.
Recently, in the special case where h ≡ 0 and f does not include Su, Benchohra et al. [3] investigated

the existence of mild solutions for the problem (1.1)-(1.3) by the Leray-Schauder nonlinear alternative and
the semigroup theory, where the impulsive functions satisfy compactness-type conditions. When f does not
include Su, Benchohra et al. [5] obtained the existence of mild solutions for the problem (1.1)-(1.3) by
the Schaefer fixed point theorem and the semigroup theory. In [5], the authors assumed that the impulsive
functions Ik are continuous and bounded. And [4] dealt with the existence of mild solutions for semilinear
neutral functional differential inclusions with impulse effects given by

d

dt
[u(t)− h(t, ut)] ∈ Au(t) + F (t, ut), t ∈ [0, a], t 6= tk,

∆u|t=tk = Ik(u(tk)), k = 1, 2, · · · ,m,
u(t) = φ(t),

where F is a bounded, closed, and convex-valued multivalued map, and Ik are continuous and bounded.
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In [1], Abada et al. proved the existence and the controllability of mild and extremal mild solutions for
semilinear impulsive differential inclusions:

u′(t)−Au(t) ∈ F (t, ut), 0 ≤ t ≤ a, t 6= tk,

∆u|t=tk ∈ Ik(u(tk)), k = 1, 2, · · · ,m,
u(t) = φ(t),

where F and Ik are multivalued maps with closed, bounded and convex values, the authors assumed that
the impulsive functions Ik are Lipschitz continuous with respect to generalized metric.

Motivated by the above works, we consider the first order impulsive semilinear neutral functional integro-
differential equations in Banach spaces. In this paper, by using fractional power of operators, Mönch’s fixed
point theorem, the method of piecewise estimation [28] and the semigroup theory [26], we derive the existence
of mild solutions for problem (1.1)-(1.3). We remark that the conditions imposed on the impulse terms are
very weak, the compactness-type and Lipschitz-type restrictions on the impulse terms have been dropped
and thus the result substantially improves and generalizes some known results. The result presented in this
paper is a generalization and a continuation to some results of impulsive differential equations in [3, 5, 24, 25].

The rest of the paper is organized as follows. In Section 2, we give some preliminaries and several lemmas
that will be used throughout Section 3. In Section 3, we establish and prove a theorem for the existence of
at least one mild solution to problem (1.1)-(1.3). Finally, an application to partial differential equations is
given in Section 4.

2. Preliminaries and lemmas

Let X denotes a Banach space, and A be the infinitesimal generator of an analytic semigroup T (t) in
X. If A is the infinitesimal generator of an analytic semigroup, then (A + νI) is invertible and generates
a bounded analytic semigroup for ν > 0 large enough. This allows to reduce the general case in which A
is the infinitesimal generator of an analytic semigroup to the case in which semigroup is bounded and the
generator invertible. Hence for convenience, we suppose that |T (t)| ≤ M for t ≥ 0 and 0 ∈ ρ(A), where
ρ(A) is the resolvent set of A. It follows that for 0 < ν ≤ 1, (−A)ν can be defined as a closed linear
invertible operator with its domain D(−A)ν being dense in X. We denote by Xν the Banach space D(−A)ν

endowed with norm ‖x‖ν = |(−A)νx| which is equivalent to the graph norm of (−A)ν . We have Xβ ⊂ Xν

for 0 < ν < β and the embedding is continuous. For more definitions and details of the operator semigroups,
we refer to the monographs [26].

Proposition 2.1 ([26]).

(1) If 0 < ν < β ≤ 1, then Xβ ⊂ Xν and the embedding is compact whenever the resolvent operator of A
is compact.

(2) For every 0 < ν ≤ 1 there exists γν > 0 such that

|(−A)νT (t)| ≤ γν
tν
, t > 0.

Let
J0 = [0, t1], J1 = (t1, t2], · · · , Jm−1 = (tm−1, tm], Jm = (tm, a].

Let C(Jk, X) denotes the Banach space of all continuous mappings u : Jk →X with norm ‖uk‖=‖u‖Jk=
maxt∈Jk |u(t)|, where uk is the restriction of u to Jk, k = 0, 1, · · · ,m. Let PC = {u : J → X : uk ∈ C(Jk, X),
k = 0, 1, 2, · · · ,m, u(t) is left continuous at t = tk and its right limit at t = tk exists for k = 1, 2, · · · ,m}.

Evidently, PC is a Banach space with norm ‖u‖PC = max{‖uk‖, k = 0, 1, · · · ,m}. Set

SPC = {u : u [−r, a]→ X : u ∈ D ∩ PC},
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then SPC is a Banach space with norm

‖u‖SPC = sup{|u(t)| : t ∈ [−r, a]}.

For any R > 0, set TR = {u ∈ X : |u| ≤ R}, OR = {u ∈ D : ‖u‖D ≤ R}, and BR = {u ∈ SPC : ‖u‖SPC ≤
R}. For any H ⊂ SPC and t ∈ J , let

H(t) = {u(t) : u ∈ H} ⊂ X, Ht = {ut : u ∈ H} ⊂ D,

(SH)(t) =

{∫ t

0
K(t, s)u(s)ds : u ∈ H

}
⊂ X.

Without confusion, let α(·) denotes the Kuratowski measure of non-compactness in X and D.
We give the definition of a mild solution of problem (1.1)-(1.3).

Definition 2.2. A function u ∈ SPC is said to be a mild solution of problem (1.1)-(1.3) if u(t) = φ(t) on
[−r, 0], ∆u|t=tk = Ik(u(tk)), k = 1, 2, · · · ,m; for each t ∈ J and s ∈ [0, t), the function AT (t− s)h(s, us) is
integrable and u satisfies the integral equation

u(t) =T (t)[φ(0)− h(0, φ)] + h(t, ut) +

∫ t

0
AT (t− s)h(s, us)ds

+

∫ t

0
T (t− s)f(s, us, Su(s))ds+

∑
0<tk<t

T (t− tk)Ik(u(tk)).

We need the following lemmas in this paper.

Lemma 2.3 ([15, 18]). If H = {un} ⊂ L[J,X] and there exists ρ(t) ∈ L[J,R+] such that |un(t)| ≤ ρ(t) a.e.
t ∈ J for any un ∈ H, then α(H(t)) ∈ L[J,R+] and

α

({∫ t

0
un(s)ds : n ∈ N

})
≤ 2

∫ t

0
α(H(s))ds, t ∈ J.

Lemma 2.4 ([13, Mönch fixed point theorem]). Let X be a Banach space, Ω is bounded open subset of X
with θ ∈ Ω. Let A : Ω→ X be a continuous operator satisfying

(i) x 6= λAx, ∀λ ∈ [0, 1], x ∈ ∂Ω;

(ii) if H ⊂ Ω is countable and H ⊂ co({θ} ∪A(H)), then H is relatively compact.

Then A has a fixed point in Ω.

3. Main results

We now state and prove our existence result for problem (1.1)-(1.3).

Theorem 3.1. Suppose the following conditions hold:

(H1) A is the infinitesimal generator of a analytic semigroup of bounded linear operators T (t) in X, and
there exists M ≥ 1 such that |T (t)| ≤M, t ∈ J ;

(H2) for any R > 0, f is uniformly continuous on J ×OR×TR and Ik (k = 1, 2, · · · ,m) is bounded on TR;

(H3) h is uniformly continuous on J × D, there exists 0 < β < 1 such that h is Xβ-valued, (−A)βh is
continuous, and there exist 0 ≤ c1 < 1

M0
, c2 > 0 such that

|(−A)βh(t, u)| ≤ c1‖u‖D + c2, t ∈ J, u ∈ D,

where M0 = M1 + γ1−β
aβ

β , M1 = |(−A)−β|;
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(H4) there exist p ∈ L1(J,R+) and continuous nondecreasing functions ψ1 : R+ → (0,∞), ψ2 : R+ →
R+, ψ2 satisfying ψ2(λx) ≤ λψ2(x) for λ > 0, such that

|f(t, u, v)| ≤ p(t) [ψ1(‖u‖D) + ψ2(|v|)]

for t ∈ J and every u ∈ D, v ∈ X, and with∫ tk

tk−1

P (s)ds <

∫ ∞
Nk−1

ds

s+
∑2

i=1 ψi(s)
, k = 1, 2, · · · ,m+ 1,

where

P (s) =
Mp(s)

1−M0c1
max {1, aK∗} , K∗ = max{K(t, s) : (t, s) ∈ F},

N0 =
1

1−M0c1

[
M(‖φ‖D +M1c1‖φ‖D +M1c2) +M1c2 + γ1−βc2

tβ1
β

]
,

Ni =
1

1−M0c1

M(‖φ‖D +M1c1‖φ‖D +M1c2) +M1c2 +
γ1−β
β

c1

i−1∑
j=0

Cj(t
β
j+1 − t

β
j )

+
γ1−β
β

c2t
β
i+1 +

i−1∑
j=0

[M(tj+1 − tj) +M ]βj

 ,

βi−1 = sup {|f(t, ut, Su(t))|, |Ii(u)| : t ∈ Ji−1, ‖ut‖D ≤ Ci−1, |u| ≤ Ci−1} ,

Ci−1 = Γ−1i

(∫ ti

ti−1

P (s)ds

)
, i = 1, 2, · · · ,m,

and

Γl(z) =

∫ z

Nl−1

ds∑2
i=1 ψi(s)

, z ≥ Nl−1, l = 1, 2, · · · ,m+ 1;

(H5) there exist constants 0 ≤ L0 <
1

M1+
γ1−β
β

aβ
, L1 ≥ 0 and L2 ≥ 0 such that

α((−A)βh(t,Ht)) ≤ L0α(Ht),

α(f(t,Ht, (SH)(t))) ≤ L1α(Ht) + L2α((SH)(t))

for any bounded set H ⊂ SPC and t ∈ J .

Then problem (1.1)-(1.3) has at least one mild solution u ∈ SPC.

Proof. Define an operator G : SPC → SPC as follows:

(Gu)(t) =



φ(t), t ∈ [−r, 0],

T (t)[φ(0)− h(0, φ)] + h(t, ut) +

∫ t

0
AT (t− s)h(s, us)ds

+

∫ t

0
T (t− s)f(s, us, Su(s))ds+

∑
0<tk<t

T (t− tk)Ik(u(tk)), t ∈ J.

For each R > 0, by Proposition 2.1 and the assumption (H3), the following inequality holds:

|AT (t− s)h(s, us)| = |(−A)1−βT (t− s)(−A)βh(s, us)| ≤
γ1−β

(t− s)1−β
(c1R+ c2). (3.1)
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From the assumptions, we know that both s→ (−A)βh(s, us) and s→ h(s, us) are continuous. In addition,
in view of the fact that T is an analytic semigroup, the operator function s → AT (t − s) is continuous in
the uniform operator topology on [0, t) and, consequently AT (t− s)h(s, us) is continuous on [0, t). On the
other hand, the estimate (3.1) and the Bochner theorem imply that |AT (t−s)h(s, us)| is integrable on [0, t).
Thus G is well-defined on BR. It is well-known that the fixed points of G are mild solutions to problem
(1.1)-(1.3).

We first prove that operator G : SPC → SPC is continuous. In fact, let vn, v ∈ SPC and ‖vn−v‖SPC →
0 (n→∞), then there exists R > 0 such that ‖vn‖SPC ≤ R, ‖v‖SPC ≤ R, i.e., vn, v ∈ BR. So we have

|(Gvn)(t)− (Gv)(t)| ≤|h(t, vnt)− h(t, vt)|+
∫ t

0
|AT (t− s)[h(s, vns)− h(s, vs)]|ds

+

∫ t

0
|T (t− s)| |f(s, vns , Svn(s))− f(s, vs, Sv(s))| ds

+
∑

0<tk<t

|T (t− tk)||Ik(vn(tk))− Ik(v(tk))|, t ∈ J.

Since

|f(t, vnt , Svn(t))− f(t, vt, Sv(t))| ≤ 2p(t)[ψ1(R) + ψ2(aK
∗R)],

|AT (t− s)[h(s, vns)− h(s, vs)]| ≤
2γ1−β

(t− s)1−β
(c1R+ c2), ∀t ∈ [−r, a].

By (H2), (H3), and the Lebesgue dominated convergence theorem, we have

‖G(vn)−G(v)‖SPC → 0, n→∞.

Thus, G : SPC → SPC is continuous.
Next, we shall show that

Ω0 = {u ∈ SPC : u = λGu for some λ ∈ [0, 1]}

is bounded. In fact, if u ∈ Ω0, then there exists λ0 ∈ [0, 1] such that

u(t) = λ0(Gu)(t), t ∈ [−r, a].

For the case t ∈ [−r, t1], we have

u(t) =



λ0φ(t), t ∈ [−r, 0],

λ0T (t)[φ(0)− h(0, φ)] + λ0h(t, ut) + λ0

∫ t

0
AT (t− s)h(s, us)ds

+ λ0

∫ t

0
T (t− s)f(s, us, Su(s))ds, t ∈ J0.

From (H1), (H3), and (H4), for any t ∈ J0, we have

|u(t)| ≤M [‖φ‖D +M1(c1‖φ‖D + c2)] +M1(c1‖ut‖D + c2) + γ1−βc1

∫ t

0

‖us‖D
(t− s)1−β

ds

+ γ1−βc2
tβ1
β

+M

∫ t

0
p(s) [ψ1(‖us‖D) + ψ2(|(Su)(s)|)] ds.

Let µ0(t) = sup{|u(s)| : −r ≤ s ≤ t}, t ∈ J0, and let t∗ ∈ [−r, t] be such that µ0(t) = |u(t∗)|. If t∗ ∈ J0,
then by the previous inequality, we have

µ0(t) ≤ l0 + c1

(
M1 + γ1−β

aβ

β

)
µ0(t) +M

∫ t

0
p(s)[ψ1(µ0(s)) + aK∗ψ2(µ0(s))]ds, t ∈ J0,
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where

l0 = M(‖φ‖D +M1c1‖φ‖D +M1c2) +M1c2 + γ1−βc2
tβ1
β
,

then

µ0(t) ≤
1

1−M0c1

{
l0 +M

∫ t

0
p(s)[ψ1(µ0(s)) + aK∗ψ2(µ0(s))]ds

}
, t ∈ J0. (3.2)

If t∗ ∈ [−r, 0], then µ0(t) ≤ ‖φ‖D and (3.2) holds, since 0 ≤M0c1 < 1 and M ≥ 1.
Let us take the right-hand side of the (3.2) as v0(t), then we have

v0(0) =
l0

1−M0c1
, µ0(t) ≤ v0(t),

v′0(t) =
Mp(t) [ψ1(µ0(t)) + aK∗ψ2(µ0(t))]

1−M0c1

≤ Mp(t) [ψ1(v0(t)) + aK∗ψ2(v0(t))]

1−M0c1
≤ P (t)

(
2∑
i=1

ψi(v0(t))

)
, t ∈ J0.

This implies for every t ∈ J0 that ∫ v0(t)

v0(0)

ds∑2
i=1 ψi(s)

≤
∫ t1

0
P (s)ds.

In view of (H4), we obtain

v0(t) ≤ Γ−11

(∫ t1

0
P (s)ds

)
:= C0.

Since ‖ut‖D ≤ µ0(t) ≤ v0(t) ≤ C0 for every t ∈ J0, we have supt∈[−r,t1] |u(t)| ≤ C0. By (H2), there exists
β0 > 0 such that

|f(t, ut, Su(t))| ≤ β0, |I1(u)| ≤ β0, for ‖ut‖D ≤ C0, |u| ≤ C0, t ∈ J0,

then
|u(t+1 )| = |u(t1) + λ0I1(u(t1))| ≤ C0 + β0.

Consider the case t ∈ J1, let

z(t) =

{
u(t), t1 < t ≤ t2,
u(t+1 ), t = t1,

zt(s) =

{
z(t+ s), t1 ≤ t+ s ≤ t2,
u(t+ s), t1 − r ≤ t+ s < t1,

then z(t) ∈ C([t1, t2], X) and

z(t) =λ0

{
T (t)[φ(0)− h(0, φ)] + h(t, zt) +

∫ t1

0
AT (t− s)h(s, us)ds

+

∫ t

t1

AT (t− s)h(s, zs)ds+

∫ t1

0
T (t− s)f(s, us, Su(s))ds

+

∫ t

t1

T (t− s)f(s, zs, Sz(s))ds+ T (t− t1)I1(u(t1))

}
.

From (H3) and (H4), for any t ∈ [t1, t2], we have

|z(t)| ≤M [‖φ‖D +M1c1‖φ‖D +M1c2] +M1c1‖zt‖D +M1c2

+ c1C0γ1−β
tβ1
β

+ c2γ1−β
tβ2
β

+ c1

∫ t

t1

γ1−β
(t− s)1−β

‖zs‖Dds+ (Mt1 +M)β0

+M

∫ t

t1

p(s)[ψ1(‖zs‖D) + ψ2(|(Sz)(s)|)]ds.
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Let

µ1(t) = max

{
sup

t1−r≤s<t1
|u(s)|, sup

t1≤s≤t
|z(s)|

}
, t ∈ [t1, t2],

then for t ∈ [t1, t2], we have

µ1(t) ≤ l1 + c1

(
M1 + γ1−β

aβ

β

)
µ1(t) +M

∫ t

t1

p(s)[ψ1(µ1(s)) + aK∗ψ2(µ1(s))]ds,

where
l1 = M(‖φ‖D +M1c1‖φ‖D +M1c2) +M1c2 +Mβ0(t1 + 1) +

γ1−β
β

(c1C0t
β
1 + c2t

β
2 ),

then

µ1(t) ≤
1

1−M0c1

{
l1 +M

∫ t

t1

p(s)[ψ1(µ1(s)) + aK∗ψ2(µ1(s))]ds

}
, t ∈ J1.

Let us take the right-hand side of the above inequality as v1(t), then we have

v1(t1) =
l1

1−M0c1
, µ1(t) ≤ v1(t), t ∈ [t1, t2],

and

v′1(t) =
Mp(t)[ψ1(µ1(t)) + aK∗ψ2(µ1(t)]

1−M0c1

≤Mp(t)[ψ1(v1(t)) + aK∗ψ2(v1(t))]

1−M0c1
≤ P (t)

(
2∑
i=1

ψi(v1(t))

)
, t ∈ [t1, t2].

This implies for every t ∈ [t1, t2] that∫ v1(t)

v1(t1)

ds∑2
i=1 ψi(s)

≤
∫ t2

t1

P (s)ds.

In view of (H4), we obtain

v1(t) ≤ Γ−12

(∫ t2

t1

P (s)ds

)
:= C1, t ∈ [t1, t2].

Since ‖zt‖D ≤ µ1(t) for every t ∈ J1, we have

sup
t∈[t1,t2]

|z(t)| ≤ C1,

and thus |u(t)| ≤ C1, t ∈ J1.
We continue this process, and establish that there exists Ck > 0 such that |u(t)| ≤ Ck for t ∈ Jk (k =

2, 3, · · · ,m). Let C = max{Ci : 0 ≤ i ≤ m}, then |u(t)| ≤ C, t ∈ [−r, a] and ‖u‖SPC ≤ C for any u ∈ Ω0,
i.e., Ω0 is bounded.

Next, we verify that conditions (i) and (ii) in Lemma 2.4 hold. Choose R0 > C and set

Ω = {u ∈ SPC : ‖u‖SPC ≤ R0},

then Ω is a bounded open subset of SPC with θ ∈ Ω, and for any λ ∈ [0, 1] and u ∈ ∂Ω, u 6= λGu. Then,
condition (i) of Lemma 2.4 holds.

Suppose H ⊂ Ω is countable and H ⊂ co({θ}∪ (GH)). By (H1)-(H3), G(H) is equicontinuous on [−r, 0]
and on each Jk (k = 0, 1, · · · ,m), and thus H is equicontinuous on [−r, 0] and on each Jk (k = 0, 1, · · · ,m).
It follows from the property of the Kuratowski measure of non-compactness, Lemma 2.3, and (H5) that

α(H(t)) ≤ α((GH)(t)) = α ({φ(t)}) = 0, t ∈ [−r, 0],
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and for t ∈ J0,

α(H(t)) ≤α((GH)(t))

≤α
({

h(t, ut) +

∫ t

0
AT (t− s)h(s, us)ds+

∫ t

0
T (t− s)f(s, us, Su(s))ds : u ∈ H

})
≤M1α((−A)βh(t,Ht)) + α

(∫ t

0

γ1−β
(t− s)1−β

(−A)βh(s,Hs)ds

)
+Mα

(∫ t

0
f(s,Hs, (SH)(s))ds

)
≤M1L0α(Ht) + 2

(∫ t

0

γ1−β
(t− s)1−β

α((−A)βh(s,Hs))ds

)
+ 2M

∫ t

0
[L1α(Hs) + L2α((SH)(s))]ds

≤M1L0α(Ht) + 2L0

∫ t

0

γ1−β
(t− s)1−β

α(Hs)ds+ 2M

∫ t

0
[L1α(Hs) + L2K

∗α(H(s))]ds.

Let m0(t) = sup−r≤s≤t α(H(s)), t ∈ J0, then by the previous inequality, we have

m0(t) ≤M1L0m0(t) + 2L0m0(t)
γ1−βa

β

β
+ 2M(L1 + L2K

∗)

∫ t

0
m0(s)ds,

then

m0(t) ≤
2M(L1 + L2K

∗)

1− L0(M1 +
γ1−β
β aβ)

∫ t

0
m0(s)ds, t ∈ J0.

By the Gronwall inequality, we have m0(t) = 0, so α(H(t)) = 0, t ∈ J0, hence H is a relatively compact set
in C(J0, X).

Since I1 ∈ C(X,X), α(H(t1)) = 0, it follows that α(I1(H(t1)) = 0. Then for any t ∈ J1, we obtain

α(H(t)) ≤α
({

h(t, ut) +

∫ t

0
AT (t− s)h(s, us)ds+

∫ t

0
T (t− s)f(s, us, Su(s))ds

+ T (t− t1)I1(u(t1)) : u ∈ H
})

≤α(h(t,Ht)) + α

(∫ t

0
AT (t− s)h(s,Hs)ds

)
+Mα

(∫ t

0
f(s,Hs, (SH)(s))ds

)
+Mα (I1(H(t1)))

≤M1L0α(Ht) + 2L0

∫ t

0

γ1−β
(t− s)1−β

α(Hs)ds+ 2M

∫ t

0
[L1α(Hs) + L2α((SH)(s))]ds

=M1L0α(Ht) + 2L0

∫ t

t1

γ1−β
(t− s)1−β

α(Hs)ds+ 2M

∫ t

t1

[L1α(Hs) + L2α((SH)(s))]ds.

Let m1(t) = supt1≤s≤t α(H(s)), t ∈ J1, then

m1(t) ≤M1L0m1(t) + 2L0
γ1−β
β

aβm1(t) + 2M(L1 + L2K
∗)

∫ t

t1

m1(s)ds,

and,

m1(t) ≤
2M(L1 + L2K

∗)

1− L0(M1 +
γ1−β
β aβ)

∫ t

t1

m1(s)ds, t ∈ J1.

By the Gronwall inequality, we have m1(t) = 0, so α(H(t)) = 0, t ∈ J1, and hence H is a relatively compact
set in C(J1, X).

Similarly, by continuing this process, we establish that H is a relatively compact set in C(Jk, X) (k =
2, 3, · · · ,m), and thus H ⊂ SPC is a relatively compact set, i.e., the condition (ii) of Lemma 2.4 is satisfied.
As a consequence of Lemma 2.4, we get that G has a fixed point in Ω, which is a mild solution of problem
(1.1)-(1.3).
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4. Applications to partial differential system

As an application of main results, we study the following impulsive partial neutral functional differential
system

∂

∂t

[
z(t, y)−

∫ π

0
U(y, s)zt(θ, s)ds

]
=

∂2

∂y2
z(t, y) +

∂

∂y
G(t, zt(θ, y)), t ∈ J = [0, a], t 6= tk, (4.1)

z(t, 0) = z(t, π) = 0, t ∈ [0, a], (4.2)

z(t+k , y)− z(t−k , y) =

∫ tk

0
qk(tk − s)z(s, y)ds, k = 1, 2, · · · ,m, (4.3)

z(θ, y) = (φ(θ))(y), θ ∈ [−r, 0], (4.4)

where a > 0, y ∈ [0, π], 0 < t1 < t2 < · · · < tm < a, G is a given function, and qk : R+ → R are continuous
functions for k = 1, 2, · · · ,m. Let X = L2[0, π] with the norm ‖·‖L2[0,π], φ ∈ D, that is, φ(θ) ∈ X = L2[0, π],
and zt(θ, y) = z(t+ θ, y), t ∈ [0, a], θ ∈ [−r, 0].

We define an operator A : X → X by Aw = w′′ with the domain

D(A) = {w ∈ X : w,w′ are absolutely continuous, w′′ ∈ X, w(0) = w(π) = 0}.

Then A generates a strongly continuous semigroup T (t) which is compact, analytic and self-adjoint. Fur-
thermore, A has a discrete spectrum, the eigenvalues are −n2, with corresponding normalized eigenvectors

wn(s) =
√

2
π sinns, n ∈ N. We also use the following properties:

(a) {wn : n ∈ N} is an orthonormal basis of X.

(b) If w ∈ D(A), then Aw = −
∑∞

n=1 n
2〈w,wn〉wn.

(c) For w ∈ X, (−A)−
1
2w =

∑∞
n=1

1
n〈w,wn〉wn.

(d) The operator (−A)
1
2 is given as (−A)

1
2w =

∑∞
n=1 n〈w,wn〉wn on the space D[(−A)

1
2 ] = {w ∈ X :∑∞

n=1 n〈w,wn〉wn ∈ X}.

The system (4.1)-(4.4) can be reformulated as the abstract form
d

dt
[u(t)− h(t, ut)] = Au(t) + f(t, ut), t ∈ J, t 6= tk,

∆u|t=tk = Ik(u(tk)), k = 1, 2, · · · ,m,
u(t) = φ(t), t ∈ [−r, 0],

where ut = zt(θ, ·), that is (u(t+θ))(y) = z(t+θ, y), t ∈ J, y ∈ [0, π], θ ∈ [−r, 0]. The function h : J×D→ X
is given by

(h(t, ut))(y) =

∫ π

0
U(y, s)zt(θ, s)ds.

Let (Bv)(y) =
∫ π
0 U(y, s)v(s)ds for v ∈ X, y ∈ [0, π]. The function f : J × D→ X is given by

(f(t, ut))(y) =
∂

∂y
G(t, zt(θ, y)),

and the functions Ik : X → X are given by

(Ik(u(t)))(y) =

∫ t

0
qk(t− s)z(s, y)ds, t ∈ J, k = 1, 2, · · · ,m.

We can take (f(t, ut))(y) = k0(y) sinut(θ, y). Suppose further that:
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(i) The function U(y, s), y, s ∈ [0, π] is measurable and(∫ π

0

∫ π

0
U2(y, s)dsdy

) 1
2

<∞.

(ii) The function ∂U(y,s)
∂y is measurable, U(0, s) = U(π, s) = 0, and let

L =

[∫ π

0

∫ π

0

(
∂

∂y
U(y, s)

)2

dsdy

] 1
2

<∞.

(iii) The function k0(y) is continuous on [0, π].

Take p(t) = ‖k0(y)‖L2[0,π], ψ1(x) = x+ 1, then

‖f(t, ut)‖L2[0,π] ≤‖k0(y)‖L2[0,π]‖ut‖D ≤ p(t)ψ1(‖ut‖D).

From (i) it is clear that B is a bounded linear operator on X. Furthermore, B(v) ∈ D[(−A)
1
2 ], and

‖(−A)
1
2B‖L2[0,π] ≤ L. In fact from the definition of B and (ii) it follows that

〈B(v), wn〉 =

∫ π

0

(∫ π

0
U(y, s)v(s)ds

)
wn(y)dy

=
1

n

√
2

π

〈∫ π

0

∂

∂y
U(y, s)v(s)ds, cos(ny)

〉
=

1

n

√
2

π
〈B1(v), cos(ny)〉,

where B1(v) =
∫ π
0

∂
∂yU(y, s)v(s)ds. From (ii) we know that B1 : X → X is a bounded linear operator with

‖B1‖L2[0,π] ≤ L. Hence ‖(−A)
1
2B(x)‖L2[0,π] = ‖B1‖L2[0,π], which implies the assertion.

On the other hand, for any u1t , u
2
t ∈ D, from (ii) and (iii) we have

‖(−A)
1
2h(t, u1t )− (−A)

1
2h(t, u2t )‖L2[0,π] ≤ L‖u1t − u2t ‖D,

and
‖f(t, u1t )− f(t, u2t )‖L2[0,π] ≤ ‖k0(y)‖L2[0,π]‖u1t − u2t ‖D.

Then, for any bounded set H ⊂ X and t ∈ J ,

α((−A)
1
2h(t,Ht)) ≤ Lα(Ht), α(f(t,Ht)) ≤ ‖k0(y)‖L2[0,π]α(Ht).

Hence, from Theorem 3.1, problem (4.1)-(4.4) admits a mild solution provided that the inequalities of (H4)
hold.
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[22] V. Lakshmikantham, D. D. Băınov, P. S. Simeonov, Theory of impulsive differential equations, Series in Modern
Applied Mathematics, World Scientific Publishing Co., Inc., Teaneck, NJ, (1989). 1

[23] J. Liang, J. H. Liu, T.-J. Xiao, Nonlocal impulsive problems for nonlinear differential equations in Banach spaces,
Math. Comput. Modelling, 49 (2009), 798–804. 1

[24] J. H. Liu, Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Systems, 6 (1999), 77–85. 1
[25] T. Paul, A. Anguraj, Existence and uniqueness of nonlinear impulsive integro-differential equations, Discrete

Contin. Dyn. Syst. Ser. B, 6 (2006), 1191–1198. 1
[26] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical

Sciences, Springer-Verlag, New York, (1983). 1, 2, 2.1
[27] Y. Peng, X. Xiang, W. Wei, Second-order nonlinear impulsive integro-differential equations of mixed type with

time-varying generating operators and optimal controls on Banach spaces, Comput. Math. Appl., 57 (2009),
42–53. 1

[28] S.-L. Xie, Z.-L. Yang, Solvability of nonlinear impulsive Volterra integral equations and integro-differential equa-
tions in Banach spaces, (Chinese) Acta Math. Sinica (Chin. Ser.), 46 (2003), 445–452. 1


	1 Introduction
	2 Preliminaries and lemmas 
	3 Main results
	4 Applications to partial differential system

