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Abstract

The purpose of this article is to study common solution problems of quasi-variational inclusion problems
and nonlinear operator equations involving nonexpansive mappings. Strong convergence theorems are ob-
tained without any compactness assumptions imposed on the operators and the spaces. (©2016 All rights
reserved.
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1. Introduction

Convex feasibility problems have recently attracted much attention due to their applications in signal
processing and image reconstruction [I1] with particular progress in intensity modulated therapy [6]. Re-
cently, the convex feasibility problems have been studied extensively by many authors; see, for instance,
[2, B] and the references therein. The quasi-variational inclusion problem has the reformulations which re-
quire finding solutions of evolution equations, complementarity problems, mini-max problems, variational
inequalities; see [7], [8 9, 10 27, 28, 29 B0] and the references therein. It is well known that minimizing a
convex function g can be reduced to finding zero points of the subdifferential mapping dg.
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In this paper, we study a convex feasibility problem based on quasi-variational inclusion and fixed points
of nonexpansive mappings. Strong convergence of solutions are established in the framework of Hilbert
spaces. The organization of this paper is as follows. In Section [2, we give the necessary definitions and
lemmas. In Section [ strong convergence theorems are established based on a new iterative algorithm.

2. Preliminaries

From now on, we assume that H is a real Hilbert and C' a nonempty convex closed subset of H. Let
A : C — H be a mapping. Recall that A is said to be monotone iff

(Ar — Ay,x —y) >0, Vz,yeC.
A is said to be inverse strongly monotone iff there exists a constant x > 0 such that
(Az — Ay, x — ) > k||Az — Ay||*, Vaz,y € C.
A is said to be strongly monotone iff there exists a constant £ > 0 such that
(Ax — Ay, x — ) > &l|lz —y|?, Va,yeC.

For such a case, A is also said to be k-strongly monotone. A is said to be strongly monotone mapping
iff A=! is inverse strongly monotone.

Recall that a mapping B : H = H is said to be monotone iff, f € Bx and g € By imply (x—y, f—g) >0,
for all z,y € H. From now on, we denote the zero point set of B by B~1(0). A monotone mapping
B : H = H is maximal iff its graph Graph(B) is not properly contained in the graph of any other monotone
operators. In this paper, we use J,. : H — Dom(B), where Dom(B) denote the domain, to denote the
resolvent operator.

The so called quasi-variational inclusion problem is to a point Z such that

0€ (A+ B)z. (2.1)

A number of problems arising in structural analysis, mechanics, and economics can be studied in the
framework of this kind of variational inclusions; see, for instance, [7, 12, [19] and the references therein. The
problem includes many important problems as special cases.

(1) If B = 0¢, where ¢ — R U oo is a proper convex lower semi-continuous function and and 0¢ is the
subdifferential of ¢, then the variational inclusion problem is reduced to the following: find z € H,
such that

(Az,y —z) > 0,Vy € H. (2.2)

This is called the mixed quasi-variational inequality; see, [22] and the references therein.

(2) If B = 0d¢, where d¢ is the indicator function of C, i.e.

0, xeC,
+oo, x¢C,
then the variational inclusion problem is reduced finding a point z € C' such that

(Az,y — 1) > 0,Vy € C. (2.3)

This is called the classical variational inequality; see, [I4] and the references therein.
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It is known that variational inequality is equivalent to a fixed point problem. Z is a solution to
variational inequality iff it is a fixed point of some nonlinear operators. Recently, iterative methods
have extensively studied for solving solutions of problem , and ; see, [3}, 15} 16} 17, 20] 21, 23],
24, 25, [26] and the references therein.

Let T : C' — C be a mapping. From now on, we use Fixz(T) to denote the fixed point set of T', that is,
Fix(T) = {z € C|Tx = z}.

Recall that T is said to be contractive iff there exists a constant a € (0,1) such that

[Tz =Tyl < allz—yl, Vr,yeC.
We also say T is a-contractive. T is said to be nonexpansive iff

[Tz =Tyl <z —yl, VYz,yeC.

Lemma 2.1 ([I]). Let H be a Hilbert space, and A an mazimal monotone operator. For A >0, u > 0, and
x € E, we have Jyx = JM<§x + <1 — %) Jxx), where Jy = (I + NA)™! and J, = (I + pA)~t.

Lemma 2.2 ([2]). Let C be a convex closed and nonempty subset of a real Hilbert space H. Let A: C — H
be a mapping, and B : H = H a mazimal monotone operator. Then F(J.(I —rA)) = (A + B)71(0).

Lemma 2.3 ([18]). Let {a,} be a sequence of nonnegative numbers satisfying the condition
ant+1 < (1 —tp)an + tpby + cn, VY > 0, where {t,} is a number sequence in (0,1) such that lim, o0 t, =0
and Y ot = 00, {b,} is a number sequence such that limsup,_,.. b, <0, and {¢,} is a positive number
sequence such that ZZOZO cp < 0o. Then limy,,_vso ay, = 0.

Lemma 2.4 ([5]). Let C be a nonempty convex and closed subset of a real Hilbert space H. Let T : C' — C
be a nonexpansive mapping. Then I —T is demiclosed at zero, that is, {x,} converges weakly to some point
z and x, — Txy, converges in norm to 0, T = Tx.

3. Main results
We are now in a position to give the main results in this article.

Theorem 3.1. Let C be a nonempty convex closed subset of a real Hilbert space H. Let B be a mazximal
monotone operator on H such that Dom(B) C C and let A : C — H be an inverse k-strongly monotone
mapping. Let S : C — C be a fized a-contraction and let T : C' — C' be a nonexpansive mapping. Assume
that (A+ B)~1(0)N Fiz(T) is not empty. Let {a,} is a real number sequence in (0,1), {B,} is a real number
sequence in (0,2r). o is an initial in C. {x,} is a sequence such that x,.1 = T(I + BoB) Y (yn — BnAyn),
n > 0, where y, = (1 — ap)zy + apSz,. Assume that {an,} is a sequence in (0,1) such that limy, oo i, = 0,
YomegQn = 00, » o |an — an_1| < oo, and {Bn} is a sequence such that 0 < a < B, < b < 2k,
Sl 1Bn — Buoi|l < oo, where a and b are two real numbers. Then {x,} converges strongly to
z € Fiz(T) N (A+ B)~Y0), where & = Projpig(ryn(a+B)-1(0)S7-

Proof. Fix p € Fiz(T)N (A+ B)71(0). Using Lemma one has

[yn — pll < anl|Szn — pll + (1 = ap)||zn — p|
< ap||Szn — Spl| + (1 — an)l|lzn — p|| + anl|Sp — p|
< an||Sp—pll + (1 — an(l — a)) ||z, — p| (3.1)

Sy —
< max{———, ||Tn, — P||}-
- I lp_ apH
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Since A is inverse k-strongly monotone, one has

I(I = BpA)z — (I = BuA)y|* = |l — y||* — 2Bn(z — y, Az — Ay) + Bn*|| Az — Ay|)?
< ||z —y||* — Bu(2k — Bn) || Az — Ay|*.

From the restriction imposed on {5, }, one has [|[(I — 8,A)z — (I — B, A)y|| < || — y||. This shows that
I — B, A is nonexpansive. It follows from (3.1)) that

201 = pll < (I + BuB) ™ (Yn — BnAyn) — pll
< ||Yn — BnAyn — p+ BnAp||
< ”yn _p”
|Sp — pll
]_ —

< max{ s llen = pll}-

This implies that sequence {x,} is bounded, so is {y,}.
Since Proja4p)-1(0)S is contractive, it has a unique fixed point. Next, we denote the unique fixed point
by Z. Now, we are in a position to show

limsup(Sz — z,y, — ) < 0.

n—o0

To show this inequality, we choose a subsequence {yn,} of {y,} such that

limsup(Sz — z,y, — Z) = lim (ST — &, y,, — T) <0,

n—00 i—00

Since {ypn,} is bounded, we find that there exists a subsequence {ymj} of {yn, } which converges weakly
to . Without loss of generality, we can assume that y,, — 2.
Note that

[Yn = Yn-1ll < lan — an-1lllzn-1 — Szn1ll + (1 — an(l — @) lzn—1 — = (3.2)
Putting z,, = yn — BnAyn, we find from (3.2) that

Izn = Zn—1ll < llyn — Yn—1ll + 118 — Bl Ayn-1l
< lan — an—1l[|en—1 — Szpal + (1 —an(l— a)) [#n—1 = @] (3.3)
+ ’ﬁn - /Bn—l‘HAyn—IH-

Set Jégn = (I + 3,B)~ . Using Lemma (2.1 and (3.3]), one has

|20 — Tt < Hjéi,lzn—l - Jéiznll

Bn—l /Bn—l

= ][Ji_lzn_l—ng_l(izn+(1— )Jﬁfizn)H
Bn Bn
/Bn—l ﬂn—l
<1 = =) (IF 20 — 2n—1) + (20 — 20-1) |
Bn Bn
Bn—1
<[(1- IZ )(J[izn — zn) + (20 — 2zn-1)|
|Bn - ﬁn—l|
< B, ”Zn_JBEiZnH'i‘ 2n—1 — 2a|
< |/87L _6/371—1’ Hzn - J@iznn + ‘O‘n - O‘n71|||1'n71 - anfln

+ (1= an(1 = @) 21 — @l + 180 — Bu-rlll Ayl
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Using Lemma ({2.3)), we find lim,, o0 || —Zn+1|| = 0. Since i, — 0 as n — oo, we find limy, o0 || —yn|| = 0.

Note that
241 — plI? < |TE (0 — BaAp) — TE (yn — BuAyn)|?
< l(p = BnAp) — (yn — BnAyn)||®
< lyn — plI* = Bn(26 — Bn) [ Ayn — Apl|?
< ap||Sz, — p”2 + (1 — an)l|zn _pH2 — Bn(26 — Bn) || Ayn — Ap”2
< an|Szn = pl* + |20 — plI* — Bu(2k — Bn)l| Ay — Apl|*.
It follows that

Bn(26 = Ba)l|Ap — Aya|? < [lzn — | = [l2nt1 — plI* + anllp — Szal®
< (lzn = pll + llzns1 = pl)ln — 2nsll + anllp = Swall*.

This yields that
le |Ap — Ay, = 0. (3.4)

Since J gi is firmly nonexpansive, one has
15 (yn — BrAyn) = pI* < {(Yn — BuAyn) — (p — BuAp), J5 (yn — BuAyn) — p)
< 5 (1 — BuAun) — (0 BuAD)IP + 175 (o — ) —
~llgm = I (0 — BuAyn) — Bl Ay — AD)|1?)

1

< 5 (llym = 212 + 175, (v = BuAyn) — pI?
~llym = T (n — BnAgn)|I* — B3| Ay — Ap?
+ 260 [y — T8 (un — BuAy) [ Ay — Ap]))

< %(IIyn —pl? + 172 (yn — BuAyn) — pl|®
— Ny = JE (yn — BnAyn)|I?
+ 280y — 5 (4n — BuAya) | A — Ap])).
It follows that
15 (yn — BrAyn) — 21 < llyn — PI* = lyn — TE (yn — BnAyn)|I?
+ 2Bnllyn — J5 (Y — BrAyn) ||| Ayn — Apl|.
Hence, we have
2041 = plI* < [ITE (yn — BuAyn) — plI>
<y = I = llyn — JE. (yn — BnAyn)|I>
+ 2Bullyn — JE (yn — BuAyn) || Ayn — Apl|
< anllSzn — pl* + (1 — an)|2n = plI* = llyn — JE (Yn — BuAyn)|?
+ 2Bnllyn = JE (yn — BuAyn) || Ayn — Ap].
Therefore, we have
g = TZ (4 — BuAy)l12 < anl1Szn — plI2 + (1 — @)l — plI2 — lrmss — I
+ 2Bnllyn — JE (yn — BuAyn) || Ayn — Ap|
< ap||Szn — plI* + (lzn — pll + [|2ns1 — pI) |20 — Tnga ]
+ 2/lyn — JE (yn — BnAyn) ||| Ayn — Apl.
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In view of (3.4)), we find that
lim ||yn - ng (yn - BnAyn)H =0. (35)

n—o0

Note that
lyn — Tynll < yn — wull + |77 — TjﬁB;(yn — BnAyn)| + HTJBB;(yn = BnAyn) — Tynl|
< Hyn - xn” + ”wn - TJQB;(yn - /BnAyn)H + ”Jﬁi (yn - /BnAyn> - yn”

By (3.5), one gets that lim, o |[|[yn — Tyn|| = 0. Using Lemma one has & € Fix(T). Putting
T = Jgn (Yn — BnAyn), We have ry,, — .

Next, we prove & € (A + B)~1(0).

Notice that vy, — BnAyn € Ty + BnBry; that is, y”_ﬂnﬁ% € Bry,. Let n € Br. Since B is maximal
monotone, we find

<n_ynﬂ_rn+Ayna7—_Tn> > 0.

This implies that (n + Af, 7 — ) > 0. This implies that —AZ € B#, that is, 2 € (A + B)~1(0). Hence,
one has

limsup(z — Sz,z — y,) < 0. (3.6)
n—oo
Since )
Hyn - i'” = (1 - an)<$n — X, Yn — i> + an<an — I, Yn — j>
< (1= ap)llen — Z||||yn — Z|| + an{STn — ST, yn — T) + an(ST — T,y, — )
< (1= an(l = a)|lyn — zl||lzn — || + an (ST — 2, yn — T,
we find
Hyn - jHQ < 20471<S'CE —Z,Yn — 'CE> + (1 - an(l - a))”‘rn - 57\\2 (37)

This in turn implies from (3.7)) that

041 = 2|° < (|7 = JE, (yn — BuAya)|I?
< |[(yn = BuAys) — (7 — B AT)|
< lyn — |7
<(1-an(l—a))lz, — Z|* 4 20, (ST — T, yp — Z).

Since limy, 00, = 0, D02 o, = 00, we find from (3.6) that lim, o |2 — Z|| = 0. This completes the
proof. O

Corollary 3.2. Let C be a nonempty convex closed subset of a real Hilbert space H. Let A : C — H be
an inverse k-strongly monotone mapping. Let S : C'— C be a fixed a-contraction and let T : C' — C be a
nonexpansive mapping. Assume that VI(C, A) N Fixz(T) is not empty. Let {cw,} is a real number sequence
in (0,1), {Bn} is a real number sequence in (0,2k). xo is an initial in C.. {x,} is a sequence such that
Tnt1 = TProjo(yn — Bnlyn), n > 0, where y, = (1 — ap)xy + apnSzy,. Assume that {a,} is a sequence in
(0,1) such that limy oo tp = 0, Y 0" gy = 00, > o0 oy — 1| < 00, and {Bn} is a sequence such that
0<a<pB, <b<2k Y0 |00 — Bni] < oo, where a and b are two real numbers. Then {x,} converges
strongly to T € Fix(T) N VI(C, A), where = Projpiy(r)nvi(c,4)ST-

Proof. Letting x = ng, we find that
yE€x+rdicr <y e€x+rNox

—(y—z,v—1z)<0,Yvel
<= x = Projcv,

where Projc is the metric projection from H onto C' and Ncz :={e € H : (e,v — z),Vv € C'}. This find
the desired conclusion immediately. O
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Finally, we consider a problem of finding a solution of a Ky Fan inequality, which is known as an
equilibrium problem in the terminology of Blum and Oettli; see [4] and [13] and the references therein.
Let F' be a bifunction of C' x C into R, where R denotes the set of real numbers. Recall the following
equilibrium problem:
Find = € C such that F(z,y) >0, YyeC. (3.8)

The following standard assumptions are also essential in this paper.
(1) 0= F(z,z) > F(x,y) + F(y,z) for all z € C;
(2) F(z,y) > limsupy o F(tz + (1 — t)z,y) for all z,y,z inC :
(3) y+— F(x,y) is convex and lower semi-continuous, for all z € C.

Lemma 3.3 ([4]). Let C be a nonempty convex closed subset of a real Hilbert space H. Let F : C' x C' —
R be a bifunction satisfying (1)-(3). Then, for any > 0 and © € H, there exists z € C such that
BF(z,y)+ (y —z,z—x) >0, Vy € C. Further, define

Tgx:{zEC:BF(z,y)+<y—z,z—x>20, VyEC} (3.9)

for all B > 0 and v € H. Then (1) Tg is single-valued and firmly nonexpansive; (2) F(Tg) = EP(F) is
closed and convex.

Lemma 3.4 ([23]). Let C be a nonempty convex closed subset of a real Hilbert space H. Let F' be a bifunction
from C x C to R which satisfies (1)-(3), and let Ap be a multivalued mapping of H into itself defined by
H:F > (y — Yy e C C
o JEEHF@y) = (y-02), WeC), zeC 510)
0, ré¢C.

Then Ap is a mazimal monotone operator with the domain D(Ap) C C, EP(F) = A'(0), where FP(F)
stands for the solution set of (3.8), and Tgx = (I + BAR) 'z, Vo € H, 3 > 0, where Ty is defined as in

(3-9)-

Theorem 3.5. Let C be a nonempty convex closed subset of a real Hilbert space H. Let F : C x C' - R
be a bifunction satisfying (1)-(3). Let S : C — C be a fized a-contraction and let T : C — C be a
nonexpansive mapping. Assume that EP(F) N Fiz(T) is not empty. Let {an} is a real number sequence
in (0,1), {Bn} is a real number sequence in (0,2k), zo is an initial point in C, {x,} is a sequence such
that Tpy1 = T(I + BuAr) Y (yn — BnAyn), n > 0, where y, = (1 — )2y + 0 Sxy. Assume that {an,} is a
sequence in (0,1) such that lim,, o0ty = 0, D07y = 00, Y oy |an — ap—1| < 00, and {Bn} is a sequence
such that 0 < a < By, < b <2k, Y 71 |Bn — Bn-1| < 00, where a and b are two real numbers. Then {x,}
converges strongly to € Fixz(T)N (A + B)~1(0), where T = Projpiz(r)n(a+B)-1(0)ST-

Proof. Putting A = 0 in Theorem we find that Jﬂi = (I + BnAr)~!. From Theorem we can draw
the desired conclusion immediately. O
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