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Abstract

In this paper, we propose a cyclic hybrid method for computing a common fixed point of a finite family
of nonexpansive mappings. The strong convergence of the method is established. Numerical examples
illustrate that the proposed method has an advantage in computing. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and C a nonempty closed convex
subset of H. Recall that a mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

holds for all x, y ∈ C. We denote by Fix(T ) the set of fixed points of T , i.e., Fix(T ) = {x ∈ C : Tx = x}.
Construction of common fixed points for a finite family of nonexpansive mappings have received vast

investigation, see [3, 6, 13, 16], since various problems of science and engineering, such as split feasibility
problems and multiple-sets split feasibility problems whit applications in intensity-modulated radiation
therapy (IMRT) in the field of medical care, see [4, 5], can be reduced to a problem of finding a common
fixed point of a family of nonexpansive mappings.
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In 2003, Nakajo and Takahashi [12] firstly introduced a hybrid algorithm for a nonexpansive mapping,
thereafter, several researchers generalized the hybrid methods for computing common fixed points of a family
of nonlinear mappings, see [7, 8, 14, 17, 18, 21]. For a finite family of relatively nonexpansive mappings
{Ti}Ni=1, Anh and Chung [1] recently proposed a parallel hybrid algorithm as following:

Algorithm AC 

x0 ∈ C chosen arbitrarily,

zk := PC(xk),

yik := αkzk + (1− αk)Ti(zk), i = 1, 2, · · · , N,
ik := argmax

i=1,2,··· ,N
{‖yik − xk‖},

Ck := {v ∈ H : ‖v − yikk ‖ ≤ ‖v − xk‖},
Qk := {u ∈ H : 〈x0 − xk, xk − u〉 ≥ 0},
xk+1 := PCk

⋂
Qk

(x0).

(1.1)

Algorithm AC is inherently parallel and Anh and Chung showed their advantage in parallel computation
in numerical examples.

Motivating by Anh and Chung’s work, we proposed a cyclic hybrid method which can be regarded as
a counterpart of the parallel one. Our ideas consists of determining successively yik for each operator Ti,
i = 1, 2, . . . , N and constructing of yik by using the value of yi−1k . Subsequent steps are the same with
Algorithm AC. The benefit of our approach is using the newly-obtained yi−1k (y0k = xk).

The remainder of this article is organized as follows. In the next section, some useful facts and tools are
given. Convergence analysis of the cyclic algorithm is given in Section 3, while in Section 4 the numerical
experiment is considered.

2. Preliminaries

We will use the notation:
1. ⇀ for weak convergence and → for strong convergence.
2. ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma 2.1 ([2]). There holds the identity in a real Hilbert space H:

‖u− v‖2 = ‖u‖2 − ‖v‖2 − 2〈u− v, v〉, u, v ∈ H.

Lemma 2.2 ([10]). Let C be a closed convex subset of a real Hilbert space H and let T : C → C be a
nonexpansive mapping such that Fix(T ) 6= ∅. If a sequence {xn} in C is such that xn ⇀ z and xn−Txn → 0,
then z = Tz.

Lemma 2.3 ([2]). Let K be a closed convex subset of real Hilbert space H and let PK be the (metric or
nearest point) projection from H onto K (i.e., for x ∈ H, PKx is the only point in K such that ‖x−PKx‖ =
inf{‖x− z‖ : z ∈ K}). Given x ∈ H and z ∈ K. Then z = PKx if and only if there holds the relation:

〈x− z, y − z〉 ≤ 0, for all y ∈ K.

Lemma 2.4 ([11]). Let K be a closed convex subset of H. Let {xn} be a sequence in H and u ∈ H. Let
q = PKu. If {xn} is such that ωw{xn} ⊂ K and satisfies the condition

‖xn − u‖ ≤ ‖u− q‖, for all n,

then xn → q.
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3. A cyclic hybrid algorithm and its convergence

Let {Ti}Ni=1 be a family of nonexpansive mappings from C into itself and assume that the set F :=⋂N
i=1 F (Ti) is not empty.

We consider the following algorithm.

Algorithm 3.1. Let x0 ∈ C be an arbitrarily chosen element and {αk} ⊂ (0, α] where α < 1. For k ≥ 0,
assuming xk is known, we

•Calculate {
y1k : = αkxk + (1− αk)T1(xk),

yi+1
k : = αky

i
k + (1− αk)Ti+1(y

i
k), i = 0, 1, · · · , N − 1.

(3.1)

•Find
ik := argmax

i=1,2,··· ,N
{‖yik − xk‖}. (3.2)

•If ‖yikk − xk‖ = 0 then stop. Else:
•Define {

Ck := {u ∈ C : ‖u− yikk ‖ ≤ ‖u− xk‖},
Qk := {v ∈ C : 〈x0 − xk, xk − v〉 ≥ 0}.

(3.3)

•Compute
xk+1 := PCk

⋂
Qk

(x0). (3.4)

•If xk+1 = xk then stop. Else, set k:=k+1 and repeat.

Lemma 3.2. If Algorithm 3.1 finishes at a step k <∞, then xk is a common fixed point of Ti, i = 1, 2, . . . , N ,
i.e., xk ∈ Fix(Ti).

Proof. Using stopping rule xk = xk+1, we have xk ∈ Ck. From the definition of Ck, it follows

‖xk − yikk ‖ ≤ ‖xk − xk‖ = 0.

Applying the definition of ik, we get yik = xk for i = 1, 2, . . . , N . Taking into account (3.1), we have

xk = αkxk + (1− αk)Ti(xk), i = 1, 2, · · · , N.

Since αk < 1 we see xk = Ti(xk) for i = 1, 2, · · · , N , i.e., xk ∈ Fix(Ti).

Theorem 3.3. Let {xk} be the (infinite) sequence generated by Algorithm 3.1, Ti be nonexpansive for
i = 1, 2, . . . , N . Then xk → x† := PFix(Ti)(x0) as k →∞.

Proof. For each k ≥ 0, it is easy to see that Qk is a halfspace or Qk = H. Further, the relation ‖u− yikk ‖ ≤
‖u− xk‖ is equivalent to 〈u, xk − yikk 〉 ≤

1
2{‖xk‖

2 − ‖yikk ‖
2} or 〈u− 1

2(xk + yikk ), xk − yikk 〉 ≤ 0. Hence, for all
k ≥ 0, Ck is a halfspace in H or Ck = H. An explicit formula for PCk

⋂
Qk

(x0) can be obtained similarly as
in [15]. Therefore, if Ck

⋂
Qk 6= ∅ then xk+1 is easily computed by (3.4).

Next we show that Fix(Ti) ⊂ Ck
⋂
Qk. Firstly we show that Fix(Ti) ⊂ Ck for all k ≥ 0. To observe

this, arbitrarily take p ∈ Fix(Ti), we have

‖p− yikk ‖ = ‖p− {αky
i−1
k + (1− αk)Ti(y

i−1
k )}‖
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≤ αk‖p− yi−1k ‖+ (1− αk)‖p− Ti(yi−1k )‖
≤ αk‖p− yi−1k ‖+ (1− αk)‖p− yi−1k ‖
= ‖p− yi−1k ‖
≤ · · · ≤ ‖p− y1k‖ ≤ ‖p− xk‖.

Therefore, p ∈ Ck and, hence, Fix(Ti) ⊂ Ck for all k ≥ 0.
Next we show Fix(Ti) ⊂ Qk for all k ≥ 0, by induction. For k = 0, we have Fix(Ti) ⊂ C = Q0. Assume

Fix(Ti) ⊂ Qk. Since xk+1 is the projection of x0 onto Ck
⋂
Qk , by Lemma 2.3, we have 〈x0−xk, xk−u〉 ≥ 0,

for u ∈ Ck
⋂
Qk. As Fix(Ti) ⊂ Ck∩Qk, by the induction assumption, the last inequality holds, in particular,

for all u ∈ Fix(Ti). This together with the definition of Qk+1 implies that Fix(Ti) ⊂ Qk+1. Therefore we
have Fix(Ti) ⊂ Qk for all k ≥ 0. Hence Fix(Ti) ⊂ Ck

⋂
Qk.

Since Fix(Ti) is a nonempty closed convex subset of C, there exists a unique element x† ∈ Fix(Ti)
such that x† = PFix(Ti)x0. From xk = PQk

x0 (by the definition of Qk) and Fix(Ti) ⊂ Qk, we have

‖xk − x0‖ ≤ ‖p− x0‖ for all p ∈ Fix(Ti). Due to x† ∈ Fix(Ti), then we get

‖xk − x0‖ ≤ ‖x† − x0‖, (3.5)

which implies that {xk} is bounded.
The fact that xk+1 ∈ Qk implies that 〈xk+1 − xk, xk − x0〉 ≥ 0. This together with Lemma 2.1 imply

‖xk+1 − xk‖2 ≤ ‖xk+1 − x0‖2 − ‖xk − x0‖2. (3.6)

From (3.5) and (3.6) we obtain
‖xk − xk+1‖ → 0 as k →∞. (3.7)

Using the definition of Ck and the inclusion xk+1 ∈ Ck, we also have

‖xk+1 − yikk ‖ ≤ ‖xk+1 − xk‖,

which with (3.7) yields

‖xk − yikk ‖ ≤ ‖xk+1 − xk‖+ ‖xk+1 − yikk ‖
≤ 2‖xk+1 − xk‖ → 0 as k →∞.

From the definition of ik in (3.2), it follows that

‖xk − yik‖ → 0 as k →∞ for i = 1, 2, · · · , N, (3.8)

which implies

‖yi+1
k − yik‖ ≤ ‖yi+1

k − xk‖+ ‖yik − xk‖ → 0, for i = 1, 2, · · · , N − 1.

From (3.1) it follows

‖xk − T1(xk)‖ =
1

1− αk
‖y1k − xk‖ → 0, (3.9)

and

‖yik − Ti+1(y
i
k)‖ =

1

1− αk
‖yik − yi+1

k ‖ → 0, i = 1, 2, . . . , N − 1. (3.10)

Using (3.8), (3.10) and nonexpansivity of {Ti}Ni=2, we get

‖xk − Ti+1(xk)‖ ≤ ‖xk − yik‖+ ‖yik − Ti+1(y
i
k)‖+ ‖Ti+1(xk)− Ti+1(y

i
k)‖

≤ 2‖xk − yik‖+ ‖yik − Ti+1(y
i
k)‖ → 0, i = 1, 2, . . . , N − 1.

(3.11)

Equations (3.9), (3.11) and Lemma 2.2 imply that ωw(xk) ⊂ Fix(Ti), i = 1, 2, . . . , N , i.e., ωw(xk) ⊂ F .
This, together with (3.5) and Lemma 2.4, guarantee strong convergence of xk to PFix(Ti)x0.
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4. A numerical example

In this section, we perform Algorithm 3.1 and Algorithm AC for finding a common fixed point of two
nonexpansive mappings and compare them through a numerical example.

We take T1 : R2 → R2 by T1 : v = (v1, v2)
> 7→ (sin v1+v2√

2
, cos v1+v2√

2
)> (see [9]) and T2 : R2 → R2 as

T2 := PC with C = {x ∈ R2|‖x− c‖ ≤ r} where c ∈ [−1, 1]2 generated randomly, and r = 3. The terminal

condition is ‖x−T (x)‖+‖x−S(x)‖
‖x‖ ≤ ε. In the numerical results listed in the following table, ’Iter.’ and ’Sec.’

denote the number of iterations and the cpu time in seconds, respectively.
For randomly chosen initial values, we compare Algorithm 3.1 and Algorithm AC with different terminal

condition many times, and results in the Table 1 were the average values. From Table 1 we observe that
Algorithm 3.1 is better than Algorithm AC in the sense of the average.

Table 1: Numerical results for a given tolerance

Algorithm 3.1 Algorithm AC
x0 Iter. Sec. Iter. Sec.

ε = 0.01 86 0.0234 114 0.0468

ε = 0.001 265 0.05772 322 0.07176

ε = 0.0001 559 0.11388 663 0.12168
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