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Abstract

In this paper, we study a new class of nonlinear fractional differential equations with three-point boundary
conditions. Existence of solutions are obtained by using Krasnoselskii’s fixed point theorem and Leray-
Schauder nonlinear alternative. An illustrative example is presented at the end of the paper to illustrate
the validity of our results. (©2016 All rights reserved.
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1. Introduction and Preliminaries

Differential equations and inclusions of fractional order have central role in the modeling of many natural
phenomena and physical processes. The increasing interest of fractional differential equations and inclusions
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are motivated by their applications in various fields of science such as physics, chemistry, engineering, biology,
economics, fluid mechanics, control theory, etc. For this reason, in the recent years, many papers have been
published about fractional differential equations and inclusions by mathematicians and other researchers
(for example, see [11, 2, 4, 5] ©, [7, 8, ©), 12, 16, 17, 18, 19, 22] and the references therein).

In [3], Bashir Ahmad investigated the existence of solutions for the following nonlinear fractional differ-
ential equation with anti-periodic type fractional boundary conditions

{ °Dex(t) = f(t,x(t), DPz(t)), t[0,T], T>0, 1<a<?2 (11
.%'(0) + ula:(T) =01, CD’YQZ(O) + o CDW.%(T) = 09, ) )

where ¢D® denotes the Caputo fractional derivative of order o, 0 < 7,8 < 1, u1 # 1, pu1 # 0 and o1 and o9
are real constants.

In [11], Xi Fu discussed the existence of solutions for the following fractional differential equation with
three-point boundary conditions

{CD‘X()— f(t,z(t)), tel0,T], T>0, 1<a<2,
) =c1,

a1z(0) + byx(T az(°D7x(n)) + ba(°D72(T)) = ca, (1.2)

where “D%denotes the Caputo fractional derivative of order o, 0 < v < 1,0 < n < T and a;,b;,¢c; € R, i =
1,2.

Motivated by the above papers, in this paper, we study the existence of solutions for the nonlinear
fractional differential equation

‘Du(t) = f(t,u(t), u'(t)) (1.3)

subject to three-point boundary conditions

Bu(0) + yu(1) = u(n),
B’ (0) 4 yu' (1) = o' (n), (1.4)
B¢DPu(0) +~°DPu(1) = “DPu(n),

where t € [0,1],2 < a<3,1<p<2 0<n<1andf,ve€ R Also, fis a continuous function from
[0,1] x R? into R.

Here, we bring some important definitions and lemmas which are needed in the sequel. For more details
See [10] 14}, 15] and [20].

Definition 1.1. Let « > 0, n —1 < a < n, n = [a] +1 and u € C([a,b],R). The Caputo derivative of
fractional order « for the function w is defined by

cD%% _ 1 K 77_n—oz—1u(n)7_ e
Doult) = e [ (= 7) (r)dr. (15)

Definition 1.2. The Riemann-Liouville fractional order integral of the function u is defined by

N R
Iu(t)—r(a)/o dn, (>0, (1.6)

whenever the integral exists.

Lemma 1.3 ([15]). Let n — 1 < a < n and the function g : [0,T] — R be continuous for each T'> 0. Then,
the general solution of the fractional differential equation D%g(t) = 0 is given by g(t) = co + c1t + cat? +
<4 cp1t" L where ¢, - -+ ,en_1 are real constants and n = [a] + 1.

Also, in [I5], authors have been proved that for each 7> 0 and u € C([0,T]) we have
I D%u(t) = u(t) + co + c1t + cot® + - + 1t (1.7)

where ¢g, - -+, ¢,—1 are real constants and n = [a] + 1.
Now we state the following known fixed point theorems which are needed in proving our results.
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Theorem 1.4 ([21], Krasnoselskii fixed point theorem). Let M be a closed, bounded, convex and nonempty
subset of a Banach space X. Consider the operators A and B such that:

(i) Az + By € M whenever x,y € M;
(i) A is compact and continuous;
(i) B is a contraction mapping.
Then there exists z € M such that z = Az + Bz.

Theorem 1.5 ([I3], Leray-Schauder nonlinear alternative). Let E be a Banach space, C' a closed and convex
subset of E and U an open subset of C with 0 € U. Suppose that F : U — C is a continuous and compact
map. Then either

(i) F has a fived point in U, or

(i1) there is a uw € OU (the boundary of U in C) and A € (0,1) with u = AF(u).

2. Main results

Now, we are ready to prove our main results. Let X = {u: u,u’ € C([0,1],R)} endowed with the norm

|lul| = sup |u(t)]+ sup |u/(¢t)|. Then, (X,]| -|) is a Banach space.
te(0,1] te(0,1]

Remark 2.1. Throughout the paper, let

m#ov Q=[8+~—-1]#0, S=12(n—7)*+Q(n*—~)| #0. (2.1)

Lemma 2.2. Let y € C([0,1],R). Then the integral solution of the linear problem
“Du(t) = y(t),
Bu(0) +yu(l) = u(n), (2.2)

Bu (0) + ' (1) = /().
BDPu(0) + 7°DPu(l) =* Du(n),

M =

is given by
u(t):/ot(t;(ja_l ds+Q/ _Sal d—/ y(s)ds
4 /22(2) /0 (g(a _)O;;y(s)ds 7’3(2) /0 (;((1—)1) y(s)ds (2.3)
N MQggt) /0" (nF—(;)jpp)ly(s) ge vl\gé;(t) /01 (1F—(§)j;;1 y(s)ds,
e A(t)=n—7+1tQ, B(t) =S5 +2Qtn— ) + *Q*. (2.4)

Proof. Tt is well known that the solution of equation *D%u(t) = y(t) can be written as
u(t) = I%(t) 4 co + c1t + cot?, (2.5)
where ¢y, c1,co € R are arbitrary constants. Then, we have

u'(t) = I Yy(t) + ¢ + 2¢ot
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and
CDPu(t) = I Py(t) 2°7° 1 <2
u(t) = Y +02F(3—p)’ <p<2
By using the three-point boundary conditions, we obtain
1 =711 ;a1 -1
co=—=UI%(n) —~vI%(1)) + — | =T y(n) —~vI* y(1
0= gUyn) = y(0) + * 5[5 yn) =41 y(1)
M =7, a o M* =) ja- am
+ HUZD ey g) — yreory)] + 2= ey ) -1y ),
1 a— a— M(n—~ a— a—
= G ) =1 y(0) + = 1y ) - ey
and M
2 = (I Py(n) =1 Py(1)).
Substituting the values of constants cg, c; and ¢ in (2.5)), we get (2.3)); that is
1 gl A(t) 1a-1 YVA() 101
u(t) =1%(t) + =1%(n) — =I1% () + —1% "y(n) — I“y(1
MB(t) YMB(t) .,
er — ——==19Py(1).
s 1) = a1y
The proof is completed. O
Remark 2.3. In this paper, the following relations hold:
A < In—~v+ Q| = A,
|B(t)] < 1S +2Q(n — ) + Q% = Bi, 26)
[A'(t)] < Q] = A1,
|B'(1)] <21Q(n —v) + Q°| = By
For the sake of brevity, we set
1 «@ + A a—1 + MB a—p +
A= Lty 1(?72 7) : 1(n M (2.7)
MNa+1) QT'(a+1) Q' () 2QT'(a—p+1)
1 Al a—1 MB' (n®—P
I'(a) Q*I'(«) 2Q°T (e —p+1)
A= Y AT ) | MBI 4 ) (2.9)
Ql'(a+1) Q*T'(«a) 2Q°’T(a—p+1) '
and
Al a—1 MB! (n®—P
A, = A0 +) 1" +7) (2.10)

Q°I'(a) 2Q°T(a—p+1)

Theorem 2.4. Let f:[0,1] x R? = R be a continuous function. Suppose that:

(H1) There exists a continuous function L : [0,1] — R such that for each t € [0,1] and for all u;,v; € R,

1 =1,2, we have

|f(t,u1,u2) — f(t,v1,v2)] < L(t)(Jur — v1| + [ug — v2).
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(H3) There exist a continuous function p : [0,1] — R* and a non-decreasing continuous function 1 : [0,1] —
RT such that
(b, u)] < pp(u] + fl),  tE0,1], weR, i=1,2

Then, the three-point boundary value problem (1.3)—(1.4) has at least one solution on [0, 1] if
= || L[[(A1 + A2) <1

where ||L|| = sup |L(t)| and A1, A2 are given by |D 2.10).

te(0,1]

Proof. We define ||pu|| = sup |p(t)| and choose a suitable constant r such that
tel0,1]

r 2 (r)|ul{Ar + Az}, (2.11)

where A;’s are given by (12.7)—(2.8). We consider the set B, = {u € X : ||lu|| < r}, where r is given in
(2.11)). It is clear that B, is a closed, bounded, convex and nonempty subset of the Banach space X. Now,
we define two operators F' and G on B, as follows:

t — g a—1
(Fu)(t) :/0 %f(s,u(s),u’(s))ds (2.12)

and
Q/ (n — S)a 1 (s,u(s),u ds—/ 175 (s, u(s),u(s))ds

T )
(1 5)o2 , %4() (1 52
* QQ/O o —1) ¢ & uls)ul)ds = /0 o —1)

" ( 77_ ja—p-1 /
2Q2 /0 f(s,u(s),u'(s))ds

’}/MB t) /1 _ a p—1
0

f(s,u(s),u'(s))ds
(2.13)

f(s,u(s),u'(s))ds

for each t € [0,1].
For u,v € B,, we can write

t — 5 a—1 _ 8
(Fu+ Go)(1)| s/o (t . O>[) |£(s,u(s), u'(s))ds + Q/ £ (5, 0(5)./(5))|ds
0% 1 (1 S)a 1 )
+ Q/o WU(&U(B),U (5))|ds
IA(t)I (n — s)*2 /
! / (o — 1) |/ (s, v(s),v'(s))lds
’Y’A ‘ / ; —1) |f(s,0(s),v'(s))lds
M|B _ a p—1 )
202 / | f(s,0(s),v'(s))|ds
’YM’B _ a p—1 /
2002 / |f(s,v(s),v'(s))|ds

<[l (r)A
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Also,

u+ @l < [ STt uts s + 55 [T 0o o s)lds
/ _Soz2
LA /”(1 S| f s, 0(s), /() lds

Q? I(a—1)
MB’ (77 _ S)a p—1 ,
" 2Q? / I'(a — p) |f(s,0(s),v'(s))|ds
YMB} [ (1—s)e P! /
o Jy iy el
<[lplle(r) Az

Hence ||Fu + Gv| <r and so, Fu+ Gv € B,.
Since f is continuous, then the operator F' is continuous. Also, for each u € B,., we have

t — s a—1
(PO < [ Ll s 6)lds < ot o)
and / (t — o) .
|(F"u) (t)] S/O Mo 1) |f(8 u(s), v'(s))|ds < m”ﬂ”di(?“)-
Thus [|Ful| < {I‘(al—i— 0 + F(la) }Hqu/J(r) This shows that the operator F' is uniformly bounded on B,.

Now, we prove that the operator F' is compact on B,.. For each t1,t2 € [0,1] with ¢; < t2, one can write

S)oc—l

to _ t1 — s a—1
((Fu)e) - Faen] = | [T st ends - [T s ), (o)
t1 — 3 a—1 _ — s a—1
<| [ s s

+ ‘ /:2 = s)a 1f (s U(S),U,(S))ds‘

()
(ta— )1 = (ts —5)*! /
<[ o) £ sy uls), o/ (5))lds
t2 —s a—1
+/t (2= 9)"" F(a)) |f(s,u(s),u(s))|ds
g{g‘ﬁ;fghw+$(“gbuwm
It is seen that |(Fu)(t2) — (Fu)(t1)| — 0 as t2 — t;. Also, we have
t2 —5)™ 2 t1 —s a—2
() 12) - wwu|ﬂ/'“afnf@M$w@wFA i s o) (o)
t1 o a 2 tl _ S) —2 ,
‘/ @=1) f(s,u(s),u (s))ds‘

+ ’/t2 to — a_l (S),ul(s))d3’
—2

(t2 — )" = (1 — 5)° /
< [ O )
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to s a—2
Jr/t1 (t;(a_)l) |f(8,u(s),u/(5))’d5

< {t T (o) (b)) }||M||¢(r).

I(a) I(a)

Again, we see that |(F'u)(t2) — (F'u)(t1)| — 0 as ta — ¢1. Hence |[(Fu)(t2) — (Fu)(t1)| tends to zero as
to — t1. Thus, F' is equicontinuous and so F' is relatively compact on B,. Consequently, the Arzeld-Ascoli
theorem implies that F' is a compact operator on B,.

Finally, we show that G is a contraction mapping. For every u,v € B,, we have

(Gu)(t) = (Go)(B)] Sé/n Y |f(s,u(s), ' (s)) = f(s,0(s),v'(s))|ds

Q/

_ S)a—l

|f s,u(s), ' (s)) — f(s,v(s),V(s))lds

B / ;_ u(s), () — £(5,0(s), (5))lds

1)
— g)o— 2
i Vgg /o %(a _) 1 o (), (8)) = (5, 0(5), ' (5) s

M|B | 7’] — 5 0‘ p— 1 , /
20° / (s, u(s), w/(5)) — (5, 0(s),v/(5))lds
’yM]B | — 5)> P 1 , ,
2Q2 / su(s),u'(s)) — f(s,v(s),v'(s))|ds

) (lu(s) = v(s)| + o (5) = /()] ) ds

u(s) —vo(s)| + |u'(s) — v’(s)\)ds

‘/ ;— 1) (5) —v(s)| + [ (s) —v'(8)|)ds
’YA (1—s)22 / /
s /0 Da—1) L<8>(\“<8> — v(s)| + o/ (s) =/ (s)])ds
_ 8 a D— 1
M2’g2 | / Y |U(S) —v(s)| + [ (s) — v'(s)|)d5
— 5)o 1
7A42|QB? J / - ]u(s) —v(s)] + |[u/(s) — v’(s)\)ds,

Also,
a—2

(@00 - @0l <o [ ﬂ’i(;‘? 5 L06)(1u(s) = o(s) + 1 (s) = o o))
I 1 — s a—2
+ 2 / 1~ L(s)(Jus) = v(s)| + |/ (s) = /(s)])ds

@ Jo T(a-1)

MBj (" (n—s)> P! — (s u'(s) —v'(s S
5t | i 1) () = o) + () = (s) )

yMBj [t (1= )P — (s u'(s) —v'(s)| )ds
+ 1 | S 1) () = v(s)| + ' (5) = v'(5)] ) .

Hence, letting sup,c(o 1) |L(t)| = [|L||, we obtain

sup [(Gu)(t) — (Gv) ()] < [|L[[Ax][u — vl],
t€[0,1]
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sup [(G'u)(t) — (G'v)(t)] < [IL[|Az]lu — v
te[0,1]

Thus, ||Gu — Gv|| < ||L||(A1 + A2)||u — v|| or |Gu — G| < k||lu —v||. Since k < 1, thus G is contraction on
B,. Hence, all the assumptions of Theorem are satisfied. Consequently, Theorem implies that the
three-point boundary value problem (1.3)—(1.4) has at least one solution on [0, 1]. O

Theorem 2.5. Let f:[0,1] x R? = R be a continuous function. Assume that:

(H3) There exist functions hi, ha € L*([0,1],RT) and a non-decreasing and continuous function 1 : R —
R* such that
|f(tur, u2)| < i)Y (ua| + [ug]) + ha(t)

forte€[0,1] and u; € R, i =1,2.

M
H,) There exists a positive constant M such that > 1, where fori=1,2,
) ! G B1 + 621] + Bz + 622] I
1 A A
S1s i=I1hi(1) + =T%hi(n) + ST%hs(1) + =51 hi() + LE 1 (1)
n @ vl\%B @ @2 (2.14)
1 — 1 —
1P}, T2 PR (1
8oy =1 hi(1) + Qéf “hi(n) + Q;I “Hhi(1)
VB VB (2.15)
1 ra—p Y 1 ra—p
+2Q21 hi(n) + 2Q2I hi(1).

Then the three-point boundary value problem (1.3)—(1.4) has at least one solution on [0, 1].
Proof. We define the operator F': X — X by

t _Sa—l _Sal
wmwzé“Fg st s+ L ule) () ds

0 Q? Fa—1)

1 _ <\a—2 n s a—p—1
_ Q(Zt /0 (F(a _) 1) f($7 U(S), u’(s))ds —+ ]\éggw /0 (nF(a)_ p) f(S, U(S), ’LL/(S))dS
1 — g\ —1
- 7]\2452@) /0 (1F(a)— pp) f(s,u(s),u'(s))ds.

It is clear that F' is a continuous operator. Now, we prove that F' maps bounded sets into bounded subsets

of X. For this purpose, let B, := {u € X : |Ju| <r} be a bounded set in X for a positive number r. By
(H3), we have

— s\ 2
- 22/ (1 (s,u(s),u'(s))ds + Al) /077 (n =) f(s,u(s),u'(s))ds
~yA

t _Safl Sal
Kﬂmm</(ﬂmg[<>mwmwx w+Q/'" S ha(s)(lul) + has))ds

Oé

)
1(1—5 T(n—s)*"
+3 [ asptial) + raoas + 53 [ L oyl + hatolas

_ g)o—2
" 7612421/0 (11*(a_)1) [ha(s)i(|lull) + ha(s)]ds

MB; (7 (n—s)* P!
! 2Q21/ Tl —p) el + ha(s)lds
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YMB; ! (1—s) Pl
+ 2092 /0 T(a—p) [ha(s)p(llull) + ha(s)]ds

1 _Sa—l _Sa—l 1 _sa—l
swm{ | C r@f) ms+ g [ = Cf) mas+ 5[4 - Cf) ha(s)ds

A1 () AL (L5
+ /0 hi(s)ds + /0 hi(s)ds

Q? MNa—-1) Q? MNa-1)
MBy (" (n—s)* P! YMBy [ (1—s)* P71
I A e IO ool e v L dS}

L1 st L -9 7 [ -t
+{/0 Ta) hg(s)ds—l—Q/O Ta) h2(8)d8+@/0 Ta) ha(s)ds

LA /77 (=52 sy 1+ A1 /1 U= 2) (s)ds
0 0

Q2 ), T(a—1) Q2 J, T(a—1)
g [y o g [ O o)
:¢(r){fah1(1) + élahl(n) + %Iahl(l) + gélo“lhl(n) + 7QA;I“—lhlu)
+ A;g;l I°Phy(n) + ’Y;\gfl Ia—Ph1(1)} + {Io‘hg(l) + ;21%2(17) + %Io‘hg(l)
+ C‘;Ia—th(n) + gﬁlw—lmu) + ]\24521 I Phy(n) + ’V;”Qfl Ia—%(l)}

=1)(r)011 + O12.

On the other hand
t (t o 8)a72

|(Fu) (2)] </ m[hl(SW(HUHHMS)]dS

0

/ n — s a—2
LA /0 =S () lul) + ha(s)]ds

Q? T(a—1)
+2 [ o syl + ha(s)lds
A [T sy + hatsds
+ D [ ) + ool
S71’(7‘){”—1}11(1) + ?;Ia_lhl(n) + f)g;;lla_lhl(l) + ]\245211&_”}11(77)
i %Ia_phl(l)} () géf“‘lhz(n) + VQAQ/UG—%Q(U
+ ]\;g 1% Pha(n) + ’Yé\gfi Ia_phg(l)}

=1)(7)021 + O22.

Hence
[Full < (r)[011 + 621] + [012 + d22], (2.16)
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where §;;’s are given in (2.14)—(2.15|) for ¢,j = 1,2.
Next, we prove that F maps bounded sets into equicontinuous sets of X. Again, consider the bounded
subset B, = {u € X : |ju|| <r} of X. Let u € X and t1,t2 € [0, 1] with ¢; < t2. Then, one can write

t1 _Sa—l_ _Sa—l
(Puez) = (P < [ =TI ) s

0

A(ty) — A(t1) [ (n—s)272 ,

' Q° 0 I'(a—1) (s, u(s),w(s))lds
Y(A(ty) — A(ty)) [H (1 —s)>2 ,
Q? /0 T(a—1) £ (s, u(s), u'(s))lds

M(B(t2) — B(t1)) [" (n—s)ep~1 ,
/o o —p) M(5uls)u(5)lds
'YM(B(tQ) — B(tl)) /1 (1 . s)a—p—l
T'a —
- /t1 (ty — S)a—l (- S)a—l ( p)
~Jo

_|_

+

| (s,u(s), u'(s))ds

[ha(8)d([[ull) + ha(s)]ds

to _sa—l
+/ ) [h(s)Y(l|ull) + ha(s)]ds

_ — 3 a—2
A(tz)Q2A(t1) 0” (g(a ) - () + ha(s))ds

Y(A(t) — A(h)) [ (1—s)
i /0 Fa 1) Pl + ha(s)]ds

M(B(t2) — B(t1)) [" (n—s)ep~1
2Q° /0 Tla—p) P (&)p(llull) + ho(s)lds

RUCORLIDY YU
2Q? o TI'(la—p)
It is clear that the right-hand side of the above inequilities converges to zero as to — t1. Similarly, we have

t1 _ g2 _ a2
[(Fu)(t2) = (Fu)(t)] S/O e I(a _(?) )

_|_

[ha(8)w(||lull) + ha(s)]ds.

|f(s,u(s),u'(s))|ds

to (t2 o S)a—z /
+/t T( £ (s, u(s), u'(s))|ds

, Tla=1)
. A'(tg)C;QA’(tl) /0” (g(;s_)al_; £ (s,u(s), u'(s))|ds
. 7(,4’(752)622 A'(tr)) /01 (;(a?al_)? £ (s, u(s), u/(s))|ds
X M(B’(tQQ)Q — (1) /0" Wf-(j_"‘;) | Fsu(s). () ds
_ /0 (ts - S)arfa_—(?) =" ()l + ha()lds

to _ gya-2
w [ ) + hao)las



S. Etemad, S. K. Ntouyas, J. Tariboon, J. Nonlinear Sci. Appl. 9 (2016), 2105-2116 2115

g [N ual) + a(s)las

V(A(t ) Alt) [ ( )“ ?
¥ L (sl + o)
o Ila—1)
MB’t - B'(t T (n—s)* Pt
LM (2) : ( 1))/ (n—s) tha (5)
2Q o Ila—p)
YM(B'(t2) — B'(t1)) /1 (s
2Q? o Tla—p)
Again, it is seen that the right-hand side of the above inequalities tends to zero as to — t1. Thus, ||(Fu)(t2)—
(Fu)(t1)]] — 0 as ta — t1. This shows that the operator F' is completely continuous, by the Arzela-Ascoli
theorem. Since all conditions of Theorem hold about the operator F', so either condition (i) or condition
(ii) holds.
Take U :={u € X : |lu]| < M} with ¢(M)[d11 + d21] + [d12 + d22] < M. In view of the condition (Hs)

and by ([2.16]), we get

D(l[ull) + ha(s)lds

ha(s)y([lull) + ha(s)]ds.

| Ful| < 9(r)[d11 + 021] + [012 + da22] < M.

Now, suppose that there exists u € U and A € (0,1) such that w = AFu. For such choice of u and the
constant A\, we have

M = |lul| = M|Ful| < w(HuH)Wu + 021] + [612 + d22] = P(M)[611 + d21] + [012 + da22] < M.

This is impossible. Hence, by Theorem (1.5} it follows that the operator F has a fixed point in U which is a
solution of the three-point boundary value problem (|1.3] and the proof is completed. O

Now, we give an illustrative example.
Example 2.6. Consider the following fractional differential equation

t]siny(t)|

T+ sy te[0,1] (2.17)

5 t
“Dgu(t) = §]Arctanaj(t)| +

with three-point boundary conditions

0.001u(0) 4 0.01u(1) = u(0.16),
0.001%/(0) + 0.014/(1) = «'(0.16), (2.18)
0.001¢D1334(0) 4 0.01¢D'334(1) =¢ D'-331(0.16).

One can easily see that o = 2.5, n = 0.16, p = 1.33, = 0.001 and v = 0.01. We define the function
f:[0,1] xR xR — R by

t]siny(t)|

t
f(ta,y) = glArctana(t)] + 52 ora G

t €[0,1].

In this case, for every z1,x2,y1,y2 € R, we have |f(t,z1,y1) — f (¢, 22, y2)| < L(t)(|x1 — x2| + |y1 — y2|), where
t

the function L : [0,1] — R is defined by L(t) = B and || L] = 0.5.

On the other hand, we have

2,90 = |glAretana(o)] + 515 OL] < Zugaol + o).

2+2|smy

t
Put ¢(t) = t and p(t) = 7 Clearly, ||u|| = 0.5 and the function ¢ is nondecreasing and continuous on

[0,1]. It can be easily found that A; = 0.6277, Ay = 1.2417, Ay = 0.3277 and Ag = 0.4897. Finally, since
k = |L|[(A1 + A2) = 0.4087 < 1, thus all assumptions and conditions of Theorem are satisfied. Hence,
Theorem implies that the three-point boundary value problem (2.17)—(2.18]) has a solution.
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