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Abstract
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1. Introduction and Preliminaries

Throughout the paper we assume that the set of n-dimensional row vector on the real number field by
Rn.

Rn+ = {x = (x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . , n}.

In particular, R1 and R1
+ denoted by R and R+ respectively.

In 2009, Kuang [5]defined a mean of two variables with three parameters as follows:

K(ω1, ω2, p; a, b) =

[
ω1A(ap, bp) + ω2G(ap, bp)

ω1 + ω2

] 1
p

, (1.1)
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where A(a, b) = a+b
2 and G(a, b) =

√
ab respectively is the arithmetic mean and geometric mean of two

positive numbers a and b, parameters p 6= 0, ω1, ω2 ≥ 0 with ω1 + ω2 6= 0.
In particular,

K
(

1,
ω

2
, 1; a, b

)
=
a+ ω

√
ab+ b

ω + 2

is the generalized Heron mean, which was introduced by Janous [4] in 2001.

K
(

1,
ω

2
, p, a, b

)
=
ap + ω(ab)p/2 + bp

ω + 2

is the generalized Heron mean with parameter.
For simplicity, sometimes we will show K(ω1, ω2, p; a, b) by K(ω1, ω2, p) or K(a, b).
In recent years, the study on the properties of the mean with two variables by using theory of majorization

is unusually active.
Yang [18],[19],[20] generalized the notion of Schur convexity to Schur f -convexity, which contains the

Schur geometrical convexity, Schur harmonic convexity and so on. Moreover, he discussed Schur m-power
convexity of Stolarsky means [18], Gini means [19] and Daróczy means [20]. Subsequently, many scholars
have aroused the interest of Schur m-power convexity (see [2], [16], [17], [21]).

In this paper, the Schur-m power convexity of the mean K(ω1, ω2, p) is discussed, a judging condition
about the Schur-m power convexity of the mean K(ω1, ω2, p) is given.

Our main result is as follows:

Theorem 1.1.

(I) For m > 0,

(i) if p ≥ max{(1 + ω2
ω1

)m, 2m}, then K(ω1, ω2, p) is Schur-m power convex with (a, b) ∈ R2
+,

(ii) if m ≤ p ≤ min{(1 + ω2
ω1

)m, 2m}, then K(ω1, ω2, p) is Schur-m power concave with (a, b) ∈ R2
+,

(iii) if 0 ≤ p < m, then K(ω1, ω2, p) is Schur-m power concave with (a, b) ∈ R2
+,

(iv) if p < 0, then K(ω1, ω2, p) is Schur-m power concave with (a, b) ∈ R2
+.

(II) For m < 0,

(i) if p ≥ 0, then K(ω1, ω2, p) is Schur-m power convex with (a, b) ∈ R2
+,

(ii) if m ≤ p < 0, then K(ω1, ω2, p) is Schur-m power convex with (a, b) ∈ R2
+,

(iii) if 2m ≤ p < m and p = (1 + ω2
ω1

)m, (0 < ω2
ω1

< 1), then K(ω1, ω2, p) is Schur-m power convex

with (a, b) ∈ R2
+,

(iv) if p < 2m and p = (1 + ω1
ω2

)m, (ω2
ω1

> 1), then K(ω1, ω2, p) is Schur-m power concave with

(a, b) ∈ R2
+.

2. Definitions and Lemmas

We need the following definitions and lemmas.

Definition 2.1 ([8, 15]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn.

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤
∑k

i=1 y[i] for k = 1, 2, . . . , n − 1 and∑n
i=1 xi =

∑n
i=1 yi, where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a

descending order,

(ii) Ω ⊂ Rn is called a convex set if (αx1 + βy1, . . . , αxn + βyn) ∈ Ω for any x and y ∈ Ω, where α and
β ∈ [0, 1] with α+ β = 1,
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(iii) let Ω ⊂ Rn, ϕ: Ω → R is said to be a Schur-convex function on Ω if x ≺ y on Ω implies ϕ (x) ≤
ϕ (y) . ϕ is said to be a Schur-concave function on Ω if and only if −ϕ is Schur-convex function.

Definition 2.2 ([11, 22]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn+.

(i) Ω ⊂ Rn+ is called a geometrically convex set if (xα1 y
β
1 , . . . , x

α
ny

β
n) ∈ Ω for any x and y ∈ Ω, where α and

β ∈ [0, 1] with α+ β = 1,

(ii) let Ω ⊂ Rn+, ϕ: Ω→ R+ is said to be a Schur-geometrically convex function on Ω if (log x1, . . . , log xn) ≺
(log y1, . . . , log yn) on Ω implies ϕ (x) ≤ ϕ (y) . ϕ is said to be a Schur-geometrically concave function
on Ω if and only if −ϕ is Schur-geometrically convex function.

Definition 2.3 ([1, 9]). Let Ω ⊂ Rn+.

(i) A set Ω is said to be a harmonically convex set if
(

x1y1
λx1+(1−λ)y1 , · · · ,

xnyn
λxn+(1−λ)yn

)
∈ Ω for every x, y ∈ Ω

and λ ∈ [0, 1].

(ii) A function ϕ : Ω → R+ is said to be a Schur harmonically convex function on Ω if
(

1
x1
, · · · , 1

xn

)
≺(

1
y1
, · · · , 1

yn

)
implies ϕ(x) ≤ ϕ(y). A function ϕ is said to be a Schur harmonically concave function

on Ω if and only if −ϕ is a Schur harmonically convex function.

Definition 2.4 ([18]). Let f : R+ → R be defined by

f(x) =


xm − 1

m
, m 6= 0;

log x, m = 0.
(2.1)

Then a function φ : Ω ⊂ Rn+ → R is said to be Schur m-power convex on Ω if

(f(x1), f(x2), . . . , f(xn)) ≺ (f(y1), f(y2), . . . , f(yn))

for all (x1, x2, . . . , xn) ∈ Ω and (y1, y2, . . . , yn) ∈ Ω implies φ(x) ≤ φ(y).
If −φ is Schur m-power convex, then we say that φ is Schur m-power concave.

If putting f(x) = x, log x, 1x in Definition 2.4, then definitions of the Schur-convex, Schur-geometrically
convex and Schur-harmonically convex functions can be deduced respectively.

Lemma 2.5 ([8, 15]). Let Ω ⊂ Rn is convex set and has a nonempty interior set Ω0 . Let ϕ : Ω → R is
continuous on Ω and differentiable in Ω0. Then ϕ is the Schur− convex(Schur− concave)function if and
only if it is symmetric on Ω and if

(x1 − x2)
(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0(≤ 0)

holds for any x = (x1, · · · , xn) ∈ Ω0.

Lemma 2.6 ([11, 22]). Let Ω ⊂ Rn+ be a symmetric geometrically convex set with a nonempty interior Ω0.
Let ϕ : Ω → R+ be continuous on Ω and differentiable on Ω0. Then ϕ is a Schur geometrically convex
(Schur geometrically concave) function if and only if ϕ is symmetric on Ω and

(x1 − x2)
(
x1
∂ϕ

∂x1
− x2

∂ϕ

∂x2

)
≥ 0 (≤ 0) (2.2)

holds for any x = (x1, · · · , xn) ∈ Ω0.
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Lemma 2.7 ([1, 9]). Let Ω ⊂ Rn+ be a symmetric harmonically convex set with a nonempty interior Ω0. Let
ϕ : Ω → R+ be continuous on Ω and differentiable on Ω0. Then ϕ is a Schur harmonically convex (Schur
harmonically concave) function if and only if ϕ is symmetric on Ω and

(x1 − x2)
(
x21
∂ϕ

∂x1
− x22

∂ϕ

∂x2

)
≥ 0 (≤ 0) (2.3)

holds for any x = (x1, · · · , xn) ∈ Ω0.

Lemma 2.8 ([18]). Let Ω ⊂ Rn+ be a symmetric set with nonempty interior Ω◦ and ϕ : Ω→ R+ be continuous
on Ω and differentiable in Ω◦. Then ϕ is Schur m-power convex on Ω if and only if ϕ is symmetric on Ω
and

xm1 − xm2
m

[
x1−m1

∂ϕ(x)

∂x1
− x1−m2

∂ϕ(x)

∂x2

]
≥ 0, if m 6= 0 (2.4)

and

(log x1 − log x2)

[
x1
∂ϕ(x)

∂x1
− x2

∂ϕ(x)

∂x2

]
≥ 0, if m = 0 (2.5)

for all x ∈ Ω◦.

Lemma 2.9. Let
g(x) = ω1(p−m)x

p
2 − ω2

p

2
xm + ω2(

p

2
−m), x ∈ [1,∞), (2.6)

where ω1 ≥ 0, ω2 ≥ 0,m ∈ R and m 6= 0.

(I) For m > 0,

(i) if p ≥ max{(1 + ω2
ω1

)m, 2m}, then g(x) ≥ 0,

(ii) if m ≤ p ≤ min{(1 + ω2
ω1

)m, 2m}, then g(x) ≤ 0,

(iii) if 0 ≤ p < m, then g(x) ≤ 0,

(iv) if p < 0, then the symbol of g(x) is not fixed (from negative to positive).

(II) For m < 0,

(i) if p ≥ 0, then g(x) > 0,

(ii) if m ≤ p < 0, then g(x) ≥ 0,

(iii) if 2m ≤ p < m and p = (1 + ω2
ω1

)m, (0 < ω2
ω1
< 1), then g(x) ≥ 0,

(iv) if p < 2m and p = (1 + ω1
ω2

)m, (ω2
ω1
> 1), then g(x) ≤ 0.

Proof. From (2.6), we have

g(1) = ω1(p−m)− ω2
p

2
+ ω2(

p

2
−m) = ω1[p− (1 +

ω2

ω1
)m] (2.7)

and
g
′
(x) = ω1(p−m)

p

2
x

p
2
−1 − ω2m

p

2
xm−1 =

p

2
xm−1h(x), (2.8)

where
h(x) = ω1(p−m)x

p
2
−m − ω2m. (2.9)

(I) For m > 0,

(i) if p ≥ max{(1 + ω2
ω1

)m, 2m}, then p > 0 and

h(x) ≥ ω1(p−m)− ω2m = g(1) ≥ 0, (2.10)

so for x ∈ [1,∞), we have g
′
(x) ≥ 0 and then, g(x) ≥ g(1) ≥ 0,



D. Wang, C.-R. Fu, H.-N. Shi, J. Nonlinear Sci. Appl. 9 (2016), 2298–2304 2302

(ii) if m ≤ p ≤ min{(1 + ω2
ω1

)m, 2m}, then it is easy to see that the inequality (2.10) is reversed, so

for x ∈ [1,∞), we have g
′
(x) ≤ 0 and then, g(x) ≤ g(1) ≤ 0,

(iii) if 0 ≤ p < m, then h(x) ≤ 0 and g(1) ≤ 0, so for x ∈ [1,∞), we have g
′
(x) ≤ 0 and then,

g(x) ≤ g(1) ≤ 0,

(iv) if p < 0, then h(x) ≤ 0, so for x ∈ [1,∞), we have g
′
(x) ≥ 0, this means that g(x) is increasing on

[1,∞). For p < 0, notice that limx→+∞ x
p
2 = 0, from (2.6), it is easy to see that limx→+∞ g(x) =

+∞, but g(1) < 0, so the symbol of g(x) is not fixed (from negative to positive) on [1,∞).

(II) For m < 0,

(i) if p ≥ 0, then h(x) ≥ 0, so for x ∈ [1,∞), we have g
′
(x) ≥ 0 and then, g(x) ≥ g(1) > 0,

(ii) if m ≤ p < 0, then h(x) ≥ 0, so for x ∈ [1,∞), we have g
′
(x) ≤ 0 and then, g(x) ≥

limx→+∞ g(x) = ω2(
p
2 −m) ≥ 0,

(iii) if 2m ≤ p < m and p = (1 + ω2
ω1

)m, (0 < ω2
ω1
< 1), then

h(x) ≤ ω1(p−m)− ω2m = g(1) = 0, (2.11)

so for x ∈ [1,∞), we have g
′
(x) ≥ 0 and then, g(x) ≥ g(1) = 0,

(iv) if p < 2m and p = (1 + ω2
ω1

)m, (ω2
ω1
> 1), then

h(x) ≥ ω1(p−m)− ω2m = g(1) = 0, (2.12)

so for x ∈ [1,∞), we have g
′
(x) ≤ 0 and then, g(x) ≤ g(1) = 0.

3. Proof of Theorem 1.1

Proof. From the definition of K(ω1, ω2, p), we have

K(ω1, ω2, p) =

(
ω1

ap+ap

2 + ω2a
p
2 b

p
2

ω1 + ω2

) 1
p

.

It is clear that K(ω1, ω2, p) is symmetric with (a, b) ∈ R2
+.

Write

s(a, b) :=

[
ω1(a

p + ap) + 2ω2a
p
2 b

p
2

2(ω1 + ω2)

] 1
p
−1

.

Then
∂K

∂a
= s(a, b)

(
ω1a

p−1 + ω2a
p
2
−1b

p
2

ω1 + ω2

)
,

∂K

∂b
= s(a, b)

(
ω1b

p−1 + ω2a
p
2 b

p
2
−1

ω1 + ω2

)
,

and then

∆ :=
am − bm

m

(
a1−m

∂K

∂a
− b1−m∂K

∂b

)
=

s(a, b)

2(ω1 + ω2)
f(a, b),

where

f(a, b) :=
am − bm

m
[ω1(a

p−m − bp−m) + ω2(a
p
2
−mb

p
2 − a

p
2 b

p
2
−m)].
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Without loss of generality, we may assume that a ≥ b, then z := a
b ≥ 1 and then

∆ =
s(a, b)bp

2(ω1 + ω2)
· z

m − 1

m
q(z), (3.1)

where
q(z) = ω1(z

p−m − 1) + ω2(z
p
2
−m − z

p
2 ) = ω1z

p−m + ω2z
p
2
−m − ω2z

p
2 − ω1,

q
′
(z) = ω1(p−m)zp−m−1 + ω2(

p

2
−m)z

p
2
−m−1 − ω2

p

2
z

p
2
−1 = z

p
2
−m−1g(z).

(I) For m > 0,

(i) if p ≥ max{(1+ω2
ω1

)m, 2m}, by (I)(i) from Lemma 2.9, it follows that q
′
(z) ≥ 0, so q(z) ≥ q(1) = 0.

Notice that
s(a, b)bp

2(ω1 + ω2)
> 0,

zm − 1

m
≥ 0,

from (3.1), we have ∆ ≥ 0 and by Lemma 2.8, it follows that K(ω1, ω2, p) is Schur-m power
convex with (a, b) ∈ R2

+.

By the same arguments, from (I)(ii) and (I)(iii) in Lemma 2.9 we can prove (I)(ii) and (I)(iii)
in Theorem 1.1, respectively,

(iv) if p < 0, then from (I)(iv) in Lemma 2.9, it follows that the symbol of q
′
(z) is not fixed (from

negative to positive). This means that q(x) first decreases and then increases, but q(1) = 0 and

lim
z→+∞

q(z) = lim
z→+∞

(ω1z
p−m + ω2z

p
2
−m − ω2z

p
2 − ω1) = −ω1 < 0,

hence q(z) ≤ 0 and then ∆ ≤ 0, by Lemma 2.8, it follows that K(ω1, ω2, p) is Schur-m power
concave with (a, b) ∈ R2

+.

By analogous discussing with case (I), from (II)(i), (II)(ii), (II)(iii) and (II)(iv) in Lemma 2.9, we can
prove (II)(i), (II)(ii), (II)(iii) and (II)(iv) in Theorem 1.1, respectively. The detailed proofs are left to
the reader.

The proof of Theorem 1.1 is complete.

In recent years, the study on the properties of the mean with two variables by using theory of majorization
is unusually active, interested readers can also refer to the references [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
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