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Abstract

This paper is concerned with a diffusive prey-predator model with modified Leslie-Gower term and
Holling II functional response subject to the homogeneous Neumann boundary condition. Firstly, by up-
per and lower solutions method, we prove the global asymptotic stability of the unique positive constant
steady state solution. Secondly, introducing the cross diffusion, we obtain the existence of non-constant
positive solutions. The results demonstrate that under certain conditions, even though the unique positive
constant steady state is globally asymptotically stable for the model with self-diffusion, the non-constant
positive steady states can exist due to the emergency of cross-diffusion, that is to say, cross-diffusion can
create stationary pattern. Finally, using the bifurcation theory and treating cross diffusion as a bifurcation
parameter, we obtain the existence of positive non-constant solutions. c©2016 All rights reserved.
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1. Introduction

The predator-prey relationship is one of the best common relationship in biology. In paper [1], the
authors dealt with the following systems:

du

dt
= u(r1 − b1u−

a1v

k1 + u
), t > 0,

dv

dt
= v(r2 −

a2v

u+ k2
), t > 0

(1.1)
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with u(0) ≥ 0 and v(0) ≥ 0, where u and v represent the prey and predator population densities at time
t respectively. Parameters r1, b1, a1, k1, r2, a2, k2 are all positive. These parameters are defined as follows:
r1 is the growth rate of prey u, b1 measures the strength of competition among individuals of species u, a1

is the maximum value which per capita reduction rate of u can attain, k1 (respectively, k2) measures the
extent to which environment provides protection to prey u (respectively, to predator v), r2 describes the
growth rate of v, and a2 has a similar meaning to a1. For a more detailed biological background of the
model, refer to [1] and the references therein.

Given some reasonable restrictions on the model, the authors determined conditions and established
results for boundedness, existence of a positively invariant and attracting set and the global stability of the
coexisting interior equilibrium.

As far as (1.1) with the homogeneous Neumann boundary condition is concerned in [2, 3], the authors
considered the case k1 = k2 = 0 and obtained many interesting results for positive non-constant solutions
(namely, stationary patterns) in the so-called heterogeneous environment. Papers [10, 12] were mainly
devoted to the study of effects of diffusion coefficients on the positive non-constant solutions to (1.1) when
k1 > 0 and k2 = 0. For the details, please refer to these references.

In paper [11], after some simple scaling to (1.1), the authors considered the special form of (1.1)
−d1∆u = u(a− u− v

1 +mu
), x ∈ Ω,

−d2∆v = v(b− mv

m+ u
), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.2)

where a, b and m are positive constants. The authors mainly discussed the positive solutions in the
case that the parameter m is large, and obtain a complete understanding for the existence, multiplicity and
stability of positive solutions of (1.2).

In this paper, we will reconsider the model (1.2) with homogeneous Neumann boundary condition

∂u

∂t
− d1∆u = u(a− u− v

1 +mu
), (x, t) ∈ Ω× (0,∞),

∂v

∂t
− d2∆v = v(b− mv

m+ u
), (x, t) ∈ Ω× (0,∞),

∂u

∂n
=
∂v

∂n
= 0, (x, t) ∈ ∂Ω× (0,∞),

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω.

(1.3)

In the above, n is the outward unit normal vector of the boundary of ∂Ω which we will assume is smooth. The
homogeneous Neumann boundary conditions indicate that this system is self-contained with zero population
flux across the boundary. Parameters d1, d2, called self-diffusion, are positive.

It is easy to see that, if a > b, then system (1.3) has a unique positive constant equilibrium (ũ, ṽ), where
ũ is the unique positive root of equation

mu2 + (
b

m
+ 1−ma)u+ b− a = 0, (1.4)

and satisfies

ũ =
ma− 1− b

m +
√

(ma− 1− b
m)2 + 4m(a− b)

2m
< a, ṽ =

b(m+ ũ)

m
.

Firstly, using a comparison argument and iteration technique, we prove the global asymptotic stability
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of (ũ, ṽ), which implies that the corresponding elliptic system of (1.3)
−d1∆u = u(a− u− v

1 +mu
), x ∈ Ω,

−d2∆v = v(b− mv

m+ u
), x ∈ Ω,

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω

(1.5)

has no non-constant positive solutions. Secondly, we introduce the cross diffusion, and investigate the
following equations 

−d1∆u = u(a− u− v

1 +mu
), x ∈ Ω

−∆(d2v + d3uv) = v(b− mv

m+ u
), x ∈ Ω

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω,

(1.6)

where parameter d3 is called cross diffusion coefficient. In this model, v diffuses with flux

J = −∇(d2v + d3uv) = −(d2 + d3u)∇v − d3v∇u.

We observe that, the part −d3v∇u of the flux is directed toward the decreasing population density of u,
which indicate that the prey species congregate and form a huge group to protect themselves from the attack
of the predator. The authors also introduced the same cross-diffusion term in the papers [4, 5, 7, 13].

In this paper, we shall adopt some of the mathematical techniques, which are used in the papers [9, 14].
For system (1.6), we have to establish a priori estimates for any positive solutions. Then based on these
estimates, we will use some topological degree arguments to obtain some conclusions concerning the existence
of positive non-constant steady-state solutions to (1.6).

The organization of this paper is as follows. Section 2 is devoted to the global stability of (ũ, ṽ). In
Section 3, we give a priori estimates for positive solutions to (1.6). In Section 4, we study the existence of
positive non-constant solutions to system (1.6). Section 5 is concerned with the existence of non-constant
positive solutions by virtue of bifurcation theory.

Throughout this paper, we denote by 0 = µ0 < µ1 < µ2 < · · · < µn < · · · the eigenvalues of −4 in Ω
with the homogeneous Neumann boundary condition. For any k ≥ 0, we also denote the multiplicity of µk
by m(µk).

2. Global stability of positive constant equilibrium

In this section, we will prove that the unique constant positive solution (ũ, ṽ) is globally asymptotically
stable using the technique used in the paper [15]. We first state the following lemma:

Lemma 2.1. Let f(s) be a positive C1 function for s ≥ 0, and let d > 0, β ≥ 0 be constants. Further, let
T ∈ [0,∞) and w ∈ C2,1(Ω× (T,∞)) ∩ C1,0(Ω̄× [T,∞)) be a positive function.

(i) If w satisfies 
wt − d∆w ≤ (≥)w1+βf(w)(α− w), (x, t) ∈ Ω× (T,∞),

∂w

∂n
= 0, (x, t) ∈ ∂Ω× [T,∞),

and the constant α > 0, then

lim sup
t→∞

max
Ω̄

w(·, t) ≤ α (lim inf
t→∞

min
Ω̄
w(·, t) ≥ α).
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(ii) If w satisfies 
wt − d∆w ≤ w1+βf(w)(α− w), (x, t) ∈ Ω× (T,∞),

∂w

∂n
= 0, (x, t) ∈ ∂Ω× [T,∞),

and the constant α ≤ 0, then
lim sup
t→∞

max
Ω̄

w(·, t) ≤ 0.

Theorem 2.2. For system (1.3), if

a >
b(m+ a)

m
(2.1)

holds, then the positive constant solution (ũ, ṽ) is globally asymptotically stable.

Proof. By the maximum principle of parabolic equations, for any initial values(u0(x), v0(x)) > (0, 0), solu-
tions (u(x, t), v(x, t)) of system (1.3) are positive.

From the first equation of system (1.3), we have

∂u

∂t
− d1∆u ≤ u(a− u).

By Lemma 2.1, we get
lim sup
t→∞

max
Ω̄

u(·, t) ≤ a := ū1.

For any given ε > 0, there exists tε1 � 1 so that

u(x, t) ≤ ū1 + ε, ∀x ∈ Ω̄, t ≥ tε1.

From the second equation of (1.3), for x ∈ Ω̄, t ≥ tε1,

∂v

∂t
− d2∆v ≤ v(b− mv

m+ ū1 + ε
).

Lemma 2.1 tells us that

lim sup
t→∞

max
Ω̄

v(·, t) ≤ b(m+ ū1 + ε)

m
:= vε1.

In terms of the arbitrariness of ε, we obtain that

lim sup
t→∞

max
Ω̄

v(·, t) ≤ b(m+ ū1)

m
= v0

1 = v̄1.

Then, there exists tε2 ≥ tε1 such that

v(x, t) ≤ v̄1 + ε, ∀x ∈ Ω̄, t ≥ tε2.

In turn, because of a >
b(m+ a)

m
, from the equation u, we have that there exists ε0 such that

a >
b(m+ a)

m
+ ε, then ∀0 < ε < ε0,

∂u

∂t
− d1∆u ≥ u(a− u− v̄1 + ε

1 +mu
)

=
u

1 +mu
(−u2 + (a− 1

m
)u+

1

m
(a− (v̄1 + ε)))

=
u

1 +mu
(u− uε2)(uε1 − u),
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where

uε1 =
a− 1

m +
√

(a− 1
m)2 + 4 1

m(a− (v̄1 + ε))

2
> 0

and

uε2 =
a− 1

m −
√

(a− 1
m)2 + 4 1

m(a− (v̄1 + ε))

2
< 0.

Lemma 2.1 implies that
lim inf
t→∞

min
Ω̄
u(·, t) ≥ uε1.

By virtue of the arbitrariness of ε, we get

lim inf
t→∞

min
Ω̄
u(·, t) ≥ u0

1 := u1.

Then for 0 < ε < u1, there exists tε3, when t ≥ tε3 ≥ tε2,

u(x, t) ≥ u1 − ε, ∀x ∈ Ω̄

holds. Here

u1 =
a− 1

m +
√

(a− 1
m)2 + 4 1

m(a− v̄1)

2
.

Equation of v can be rewritten as

∂v

∂t
− d2∆v ≥ v(b− mv

m+ u1 − ε
).

Thus

lim inf
t→∞

min
Ω̄
v(·, t) ≥ b(m+ u1 − ε)

m
:= vε2.

By the arbitrariness of ε, we derive that

lim inf
t→∞

min
Ω̄
v(·, t) ≥ v0

2 := v1 =
b(m+ u1)

m
.

For 0 < ε < v1, there exists tε4 such that when t ≥ tε4 ≥ tε3,

v(x, t) ≥ v1 − ε, ∀x ∈ Ω̄

holds. Therefore, equation of u can be rewritten as

∂u

∂t
− d1∆u ≤ u(a− u− v1 − ε

1 +mu
)

=
u

1 +mu
(−u2 + (a− 1

m
)u+

1

m
(a− (v1 − ε)))

=
u

1 +mu
(u− uε3)(uε4 − u).

Here

uε3 =
a− 1

m +
√

(a− 1
m)2 + 4 1

m(a− (v1 − ε))
2

< 0,

and

uε4 =
a− 1

m −
√

(a− 1
m)2 + 4 1

m(a− (v1 − ε))
2

> 0.
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Similarly to the above, there exists tε5 such that

u(x, t) ≥ ū2 − ε, ∀x ∈ Ω̄, t ≥ tε5 ≥ tε4.

Here

ū2 =
a− 1

m +
√

(a− 1
m)2 + 4 1

m(a− (v1))

2
> 0.

Let

ϕ(s) =
b(m+ s)

m
, ψ(s) =

a− 1
m +

√
(a− 1

m)2 + 4 1
m(a− s)

2
, s > 0

then ϕ′(s) > 0, ψ′(s) < 0, and the constants ū1, v̄1, u1, v1, ū2 construed above satisfy

u1 ≤ lim inf
t→∞

min
Ω̄
u(·, t) ≤ lim sup

t→∞
max

Ω̄
u(·, t) ≤ ū1,

v1 ≤ lim inf
t→∞

min
Ω̄
v(·, t) ≤ lim sup

t→∞
max

Ω̄
v(·, t) ≤ v̄1,

v1 = ϕ(u1) < ϕ(ū1) = v̄1, u1 = ψ(v̄1) < ψ(v1) = ū2 < ū1.

By the inductive method, we can construct four sequences {ui}, {ūi}, {vi}, {v̄i} by

vi = ϕ(ui), ϕ(ūi) = v̄i, ui = ψ(v̄i), ψ(vi) = ūi+1,

such that
ui ≤ lim inf

t→∞
min

Ω̄
u(·, t) ≤ lim sup

t→∞
max

Ω̄
u(·, t) ≤ ūi,

vi ≤ lim inf
t→∞

min
Ω̄
v(·, t) ≤ lim sup

t→∞
max

Ω̄
v(·, t) ≤ v̄i.

By the monotonicity of ϕ,ψ, we have

vi−1 < vi = ϕ(ui) < ϕ(ūi) = v̄i < v̄i−1,

ui−1 < ui = ψ(v̄i) < ψ(vi) = ūi+1 < ūi.

We may assume that
lim
t→∞

ui = u, lim
t→∞

vi = v, lim
t→∞

ūi = ū, lim
t→∞

v̄i = v̄.

Evidently, we have 0 < u ≤ ū and 0 < v ≤ v̄, and

u = ψ(v̄), ū = ψ(v), v = ϕ(u), v̄ = ϕ(ū). (2.2)

Direct computations show that (2.2) is equivalent to

a− u− v̄

1 +mu
= 0, a− ū− v

1 +mū
= 0, (2.3)

v =
b(m+ u)

m
, v̄ =

b(m+ ū)

m
. (2.4)

It is deduced from (2.4) that

v̄ − v =
b

m
(ū− u). (2.5)

Substituting the second (first) equation of (2.4) into the first (second) equation of (2.3) respectively, we have

(a− u)(1 +mu) =
b(m+ ū)

m
(2.6)
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and

(a− ū)(1 +mū) =
b(m+ u)

m
. (2.7)

Subtracting (2.6) from (2.7), we have

(ma− 1)(ū− u)−m(ū+ u)(ū− u)− b

m
(ū− u) = 0. (2.8)

Suppose, on the contrary, that ū 6= u, then ū > u and it follows from (2.8) that

m(ū+ u) = ma− 1− b

m
. (2.9)

Noticing that ũ satisfies condition (1.4), and by using of (2.8), after some calculations, we have

(v̄ − v) = (a− u)(1 +mu)− b(m+ u)

m

= a− b+ (ma− 1− b

m
)u−mu2

= mũ2 + (
b

m
−ma+ 1)ũ+ (ma− 1− b

m
)u−mu2

= (ũ− u)[m(ũ+ u) +
b

m
−ma+ 1]

= m(ũ− u)(ũ− ū).

(2.10)

Similarly, we have

(v̄ − v) =
b(m+ ū)

m
− (a− ū)(1 +mū)

= m(ū− ũ)(ũ− u).
(2.11)

Combining (2.10) with (2.11), we have ū = u = ũ, which contradicts with the assumption. Thus ū = u, in
turn, v̄ = v.

Since system (1.3) has a unique positive constant equilibrium (ũ, ṽ), then

(u, v) = (ū, v̄) = (ũ, ṽ).

Therefore, for any initial values (u, v) < (u0, v0) < (ū, v̄), as t→∞, the positive solution (u(x, t), v(x, t)) of
system (1.3) uniformly converges to (ũ, ṽ).

3. A priori estimates

The main purpose of this section is to give a priori positive upper and lower bounds for the positive
solutions to (1.6). We first state the following lemma which is due to Lou and Ni [6].

Lemma 3.1. (maximum principle) Let g ∈ C1(Ω×R).
(i) If w ∈ C2(Ω) ∩ C1(Ω) satisfies ∆w + g(x,w) ≥ 0, x ∈ Ω,

∂w

∂ν
≤ 0, x ∈ ∂Ω,

and w(x0) = maxΩ̄w, then g(x0, w(x0)) ≥ 0.

(ii) If w ∈ C2(Ω) ∩ C1(Ω) satisfies ∆w + g(x,w) ≤ 0, x ∈ Ω,

∂w

∂ν
≥ 0, x ∈ ∂Ω,

and w(x0) = minΩ̄w, then g(x0, w(x0)) ≤ 0.
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Lemma 3.2 (Harnark inequality). Let z ∈ C2(Ω)× C1(Ω̄) be a positive solution to ∆z(x) + c(x)z(x) = 0,
where c ∈ C(Ω̄) satisfying the homogeneous Neumann boundary condition. Then there exists a positive
constant C which depends only on B where ‖c‖∞ ≤ B such that max

Ω̄
z ≤ C min

Ω̄
z.

Theorem 3.3. Let a, b,m, d, d∗ > 0 be fixed. Then there exist positive constants C(a, b,m, d, d∗) and
C̄(a, b,m, d, d∗) such that for all

d1, d2 ≥ d, 0 < d3 ≤ d∗,

any positive solution (u, v) of (1.6) satisfies

max
Ω̄

u ≤ C̄(a, b,m, d, d∗) min
Ω̄
u, max

Ω̄
v ≤ C̄(a, b,m, d, d∗) min

Ω̄
v, (3.1)

and
‖u, v‖C2+α(Ω̄) ≤ C(a, b,m, d, d∗). (3.2)

Proof. We will prove that (3.1) and

max
Ω̄

u ≤ C(a, b,m, d, d∗), max
Ω̄

v ≤ C(a, b,m, d, d∗). (3.3)

Applying the maximum principle to the equation of u of (1.6), we find that

max
Ω̄

u ≤ a. (3.4)

Let ϕ(x) = d2v + d3uv, and ϕ(x0) = max
Ω̄

ϕ. Thus

v(x0)(b− mv(x0)

m+ u(x0)
) ≥ 0.

It follows from above that

v(x0) ≤ (m+ a)b

m
.

Then we have

d2 max
Ω̄

v ≤ ϕ(x0) = d2v(x0) + d3v(x0)u(x0) ≤ (d2 + d3 max
Ω̄

u)v(x0) ≤ (d2 + d3a)
(m+ a)b

m
,

which implies that

max
Ω̄

v ≤ (1 +
d∗a

d
)
(m+ a)b

m
. (3.5)

Applying the Harnack inequality to the equations of u, we see that

max
Ω̄

u ≤ C1 min
Ω̄
u, (3.6)

where C1 is a positive constant.
We rewrite the equation of v as follows:

−∆ϕ = ϕ(b− mv

m+ u
)(d2 + d3u)−1 = pϕ, (3.7)

where

‖p‖∞ = ‖(b− mv

m+ u
)(d2 + d3u)−1‖∞ ≤

1

d2
(b+ (1 +

d∗a

d
)
(m+ a)b

m
).

Applying the Harnack inequality to (3.7), we follow that there exists a positive constant C2 such that

max
Ω̄

ϕ ≤ C2 min
Ω̄
ϕ. (3.8)
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From the formula of ϕ, we have v =
ϕ

d2 + d3u
, and

max
Ω̄

v

min
Ω̄
v
≤

max
Ω̄

ϕ

d2 + d3 min
Ω̄
u

min
Ω̄
ϕ

d2 + d3 max
Ω̄

u

≤
max

Ω̄
ϕ

min
Ω̄
ϕ

max
Ω̄

u

min
Ω̄
u
≤ C1C2.

It is deduced from above that
max

Ω̄
v ≤ C3 min

Ω̄
w. (3.9)

From (3.6)-(3.9) and (3.4)-(3.5), we prove (3.1) and (3.3), respectively.
Now, we prove the estimate (3.2). Due to (3.3), by the regularity for elliptic equations we have that u

and v(d2 + d3u) belong to C1+α(Ω̄), and the C1+α(Ω̄) norms of them depend only on the parameters d, d∗

and the parameters a,m, b. It follows that v ∈ C1+α(Ω̄) and ‖v‖C1+α(Ω̄) depends only on the parameters
d, d∗ and a,m, b. Using the regularity of elliptic equations again, the estimate (3.2) follows.

In the following we give the positive lower bound of positive solutions. We first state a lemma whose
proof is omitted.

Lemma 3.4. Let dij ∈ (0,∞), i = 1, 2, 3 and (uj , vj) be the corresponding positive solution of (1.6) with
di = dij. Assume that dij → di ∈ [0,∞] and (uj , vj) → (u∗, v∗) uniformly on Ω̄. If u∗, v∗ are constants,
then (u∗, v∗) must satisfy

a− u∗ − v∗

1 +mu∗
= 0, b− mv∗

m+ u∗
= 0.

In particular, if u∗, v∗ are positive constants, then (u∗, v∗) = (ũ, ṽ).

Theorem 3.5 (lower bound). Let d and d∗ be two fixed positive constants. Then there exists a positive
constant C(d, d∗) such that, for any d1, d2 ≥ d, and 0 < d3 ≤ d∗, every positive solution (u, v, w) of (1.6)
satisfies

min
Ω̄
u,min

Ω̄
v ≥ 1

C(d, d∗)
. (3.10)

Proof. If the conclusion does not hold, then there exist a sequence {d1j , d2j , d3j}∞j=1 satisfying d1j , d2j ≥ d,
and 0 < d3j ≤ d∗ and a sequence of corresponding positive solutions (uj , vj) of (1.6) with di = dij , such
that minΩ̄{minΩ̄ uj ,minΩ̄ vj} → 0. As d1j , d2j ≥ d, subject to a subsequence, we may assume that dij →
di ∈ [d,∞] for i = 1, 2 and d3j → d3 ∈ [0, d∗]. By (3.2), we may also assume that (uj , vj) converges to some
nonnegative functions (u, v) in [C2+α(Ω̄)]2. It is easy to see that (u, v) also satisfies the estimate (3.2), and
minΩ̄ u = 0 or minΩ̄ v = 0. Moreover, we observe that, if d1, d2 <∞, then (u, v) satisfies (1.6); If d1 =∞, as

(uj , vj) satisfies (1.6), then u satisfies ∆u = 0 in Ω and
∂u

∂n
= 0 on ∂Ω. Hence u is a nonnegative constant.

Analogous conclusions hold for d2.
Next we derive a contradiction for every possible case.

(1) The case of d1, d2 <∞.
If minΩ̄ u = 0 holds, then u = 0 on Ω̄ by Harnack inequality, and v satisfies

−d2∆v = v(b− v), x ∈ Ω,

∂v

∂n
= 0, x ∈ ∂Ω.

(3.11)

Then we obtain that v = b or v = 0 on Ω̄. Thus (uj , vj)→ (0, b) or (uj , vj)→ (0, 0), which contradict
with Lemma 3.4, so minΩ̄ u > 0.
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If minΩ̄ v = 0 holds, then Harnack inequality tells us v = 0 on Ω̄, and u satisfies
−d1∆u = u(a− u), x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω.

(3.12)

It follows from above that u = a on Ω̄. Thus (uj , vj)→ (a, 0), which contradicts with Lemma 3.4, so
minΩ̄ v > 0.

(2) If d1 = ∞, then u = ǔ is a nonnegative constant. If min
Ω̄
u = 0 holds, then ǔ = 0 on Ω̄, and in turn

v = 0 or v = b on Ω̄. Then (uj , vj) → (0, 0) or (uj , vj) → (0, b), from Step 1, we know that this is
impossible. Hence ǔ > 0.

(2a) When d2 < ∞, if min
Ω̄
v = 0 holds, then we have v = 0 on Ω̄. Thus (uj , vj) → (ǔ, 0), and this is a

contradiction with Lemma 3.4. Hence, minΩ̄ v > 0.

(2b) When d2 = ∞, then v = v̌ is a nonnegative constant. If min
Ω̄
v = 0 holds, then we have v̌ = 0 on Ω̄.

Thus (uj , vj)→ (ǔ, 0), and this is a contradiction with Lemma 3.4. Hence, minΩ̄ v > 0.

(3) If d2 =∞, then v = v̌ is a nonnegative constant. If min
Ω̄
v = 0 holds, then we have v̌ = 0 on Ω̄. In turn,

we have u = 0 or u = a on Ω̄. Thus (uj , vj)→ (0, 0) or (uj , vj)→ (a, 0), and there is a contradiction
with Lemma 3.4. Hence, v̌ > 0.

When d1 < ∞, if min
Ω̄
u = 0 holds, then we have u = 0 on Ω̄. Thus (uj , vj) → (0, v̌), which contradicts

with Lemma 3.4. The proof is complete.

4. Existence results

In this Section, we shall give the existence of non-constant positive solutions to (1.6) due to the
emergence of the cross-diffusion.

Let U = (u, v)T , U0 = (ũ, ṽ), Φ(U) = (d1u, d2v + d3uv)T , then system (1.6) is translated into

−∆Φ(U) = G(U), with G(U) =

 u(a− u− v

1 +mu
)

v(b− mv

m+ u
)

 .

Obviously, U is a positive solution of (1.6) if and only if

F(U) = U − (I −∆)−1
{

Φ−1
U (U)[G(U) +∇UΦUU(U)∇UT ] + U

}
= 0. (4.1)

In particular,
FU (U0) = I − (I −∆)−1

{
Φ−1

U (U0)GU (U0) + I
}
.

Employing the formula for the index of fixed point [8], by the same argument as in [9], we know that in
order to facilitate our computation of index(I −F , U0), we need to determine the sign of H(µ), where H(µ)
is defined by

H(µ) = det{Φ−1
U (U0)}det{µΦU(U0)−GU(U0)}. (4.2)

Directly computing, we have det{Φ−1
U (U0)} is positive, and

det{µΦU(U0)−GU(U0)} = C2(d3)µ2 + C1(d3)µ+ C0(d3) = C(d3;µ), (4.3)

where
C2(d3) = d1(d2 + d3ũ) > 0,

C1(d3) =
d1mṽ

m+ ũ
− ũ(d2 + d3ũ)(−1 +

mṽ

(1 +mũ)2
)− d3ũṽ

(1 +mũ)
,

C0(d3) =
mũṽ2

(1 +mũ)(m+ ũ)2
− mũṽ

m+ ũ
(−1 +

mṽ

(1 +mũ)2
).
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In the sequel, we will consider the dependence of C(ε, d3;µ) on parameter d3. Let µ̃1, µ̃2 be the roots of
C(d3;µ) = 0 satisfying Reµ̃1 ≤ Reµ̃2, then

µ̃1µ̃2 =
det{GU (U0)}

C2
.

It is easy to see that if

− 1 +
mṽ

(1 +mũ)2
< 0 (4.4)

holds, then det{GU (U0)} > 0. Combining with C2 > 0, we get µ̃1µ̃2 > 0.
After some computations,we have the following limitation

lim
d3→∞

C2(d3)

d3
= d1ũ = a2 > 0,

lim
d3→∞

C1(d3)

d3
= −ũ2(−1 +

mṽ

(1 +mũ)2
)− ũṽ

(1 +mũ)
= a1,

lim
d3→∞

C0(d3)

d3
= 0,

that is,

lim
d3→∞

C(d3;µ)

d3
= a2µ

2 + a1µ = µ[a2µ+ a1].

When

− ũ2(−1 +
mṽ

(1 +mũ)2
)− ũṽ

(1 +mũ)
< 0, (4.5)

then a1 < 0. We only consider the case a1 < 0. By continuity, we have that when d3 is large enough, µ̃1 > 0
and µ̃2 > 0, and µ̃1, µ̃2 satisfy

lim
d3→∞

µ̃1 = 0, lim
d3→∞

µ̃2 = −a1

a2
:= µ+. (4.6)

From the above analysis, we have the following conclusion.

Theorem 4.1. Assume that conditions (2.1) and

0 < −ũ(−1 +
mṽ

(1 +mũ)2
) <

ṽ

(1 +mũ)
(4.7)

hold, if µ+ determined by (4.6) satisfies µ+ ∈ (µn, µn+1) for some n ≥ 2, and
n∑
k=2

m(µk) is odd, then there

exists a d̂3 > 0 such that system (1.6) has at least one non-constant positive solution when d3 ≥ d̂3.

Proof. We argue by contradiction. Assume that for some d3 = d̄3 ≥ d̂3, system (1.6) has no positive
non-constant solutions. In the following, we fix d3 = d̄3 ≥ d̂3.

For t ∈ [0, 1], define
Φ(t;U) = (d1u, d2v + td3uv)T ,

and considering the following system
−∆Φ(t;U) = G(U), x ∈ Ω,

∂U

∂n
= 0, x ∈ ∂Ω.

(4.8)

Obviously for 0 ≤ t ≤ 1, U0 is the only positive constant solution of system (4.8) and U is a positive solution
of system (1.6) if and only if U is a positive solution of system (4.8) when t = 1. U is a positive solution of
(4.8) if and only if

F(t;U) = U − (I −∆)−1
{

Φ−1
U (t;U)[G(U) +∇UΦUU(t;U)∇UT ] + U

}
= 0.
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By a priori estimates, it is easy to see that any positive solution of system (4.8) must lie in B, where

B = {(u, v) ∈ C(Ω)× C(Ω)× C(Ω) : C−1 < u, v < C}.

and F(t;U) 6= 0 on ∂B. So deg(F(t;U), B, 0) is well defined. By the homotopy invariance of topology
degree, we have

deg(F(1, ·), B, 0) = deg(F(0, ·), B, 0). (4.9)

Note that
H(t;µ) = det{Φ−1

U (t;U0)}det{µΦU(t;U0)−GU(U0)},

and when t = 0, under the condition (4.7), we have that H(0;µ) > 0 for all i ≥ 1. By virtue of the formula

index(I −F(t, ·), U0) = (−1)
∑

i≥1, H(µi)<0m(µi), (4.10)

we have
index(I −F(0, ·), U0) = (−1)0 = 1. (4.11)

Since we assume that system (1.6) has no positive non-constant solutions, and
n∑
k=2

m(µk) is odd, then we

have

index(I −F(1, ·), U0) = (−1)

n∑
k=2

m(µk)
= −1. (4.12)

On the other hand, from the assumption, we know that F(1;U) = 0 and F(0;U) = 0 have a unique positive
solution U0 on B. So

deg(F(0, ·), B, 0) = index(I −F(0, ·), U0) = 1, (4.13)

deg(F(1, ·), B, 0) = index(I −F(1, ·), U0) = −1, (4.14)

and (4.13)-(4.14) contradict with (4.9). So the proof is complete.

5. Bifurcation

In this section, we will discuss the existence of non-constant positive solutions to system (1.6) by using
of bifurcation. In the following, we fix the parameters a, b,m, d1, d2 and treat d3 as a bifurcation parameter.

Definition 5.1. (d̂3, U0) is said to be a bifurcation point of system (1.6) if for any δ ∈ (0, d̂3), there exists
d3 ∈ [d̂3 − δ, d̂3 + δ] such that system (1.6) has a non-constant positive solution. Otherwise, (d̂3, U0) is a
regular point.

Define N = {µ > 0|H(µ) = 0}, and Sp = {µ2, µ3, µ4, · · · }, where H(µ) is defined by (4.2) and Sp consists
of the positive spectrum of −∆ on Ω with the homogeneous Neumann boundary condition. To emphasize
the dependence of H(µ), F(U) and N on d3, we write H(d3;µ), F(d3;U) and N(d3), respectively, where
F(U) is defined by (4.1).

Theorem 5.2 (Local bifurcation with respect to d3). Let d̂3 > 0.

(1) If Sp ∩N(d̂3) = ∅, then (d̂3, U0) is a regular point of system (1.6).

(2) Suppose Sp ∩N(d̂3) 6= ∅, and the positive roots of H(d̂3;µ) = 0 are all simple. If
∑

µj∈N(d̂3)m(µj) is

odd, then (d̂3, U0) is a bifurcation point of system (1.6).

Proof. (1) If Sp∩N(d̂3) = ∅, then H(d̂3;µi) 6= 0 for i ∈ {1, 2, · · · }. So it is evident that 0 is not an eigenvalue

of FU (d̂3, U0), which implies that FU (d̂3, U0) is a homeomorphism from X to itself. By virtue of the implicit
function theorem, it follows that for all d3 close to d̂3, U = U0 is the only solution to F(d3;U) = 0 in a
small neighborhood BU0,δ of U0, i.e., (d̂3, U0) is a regular point of system (1.6).
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(2) Suppose Sp∩N(d̂3) 6= ∅. After a series of calculus, the characteristic polynomial of µiI−Φ−1
U (U0)GU (U0)

is given by
λ2 +A1λ+A2 = 0, (5.1)

where

A2 = 3µ2
i + 2µi

C2

C3
+
C1

C3
,

A3 = −µ3
i −

C2

C3
µ2
i − µi

C1

C3
− C0

C3
.

It is easy to verify that 0 is a simple eigenvalue of µiI − Φ−1
U (U0)GU (U0) for µi ∈ Sp ∩ N(d̂3), i.e., 0 is a

simple eigenvalue of FU (d̂3, U0) for µi ∈ Sp ∩N(d̂3). On the contrary, we assume that there exists a d̂3 > 0
such that the following are true:

(a) Sp ∩N(d̂3) 6= ∅ and
∑

µj∈N(d̂3)m(µj) is odd;

(b) there exists a δ ∈ (0, d̂3) such that for every d3 ∈ [d̂3 − δ, d̂3 + δ], U = U0 is the only solution of
F(d3;U) = 0 in BU0,δ.

Since F(d3; ·) is a compact perturbation of the identity function, in view of (b), the Leray–Schauder degree
deg(F(d3; ·), BU0,δ, 0) is well defined and does not depend on d3 ∈ [d̂3− δ, d̂3 + δ]. If FU (d3;U0) is invertible,
then

deg(F(d3; ·), BU0,δ, 0) = index(I −F(d3; ·), U0)

= (−1)ν(d3) = (−1)
∑
j≥1;H(d3;µj)<0m(µj)

(5.2)

for d3 ∈ [d̂3 − δ, d̂3 + δ].
Let H̃(d3;µ) = det{ΦU (U0)}H(d3;µ). For µj ∈ Sp∩N(d̂3), we have H̃(d̂3;µj) = 0. Direct computations

show that
∂H̃(d̂3;µj)

∂d3
= a2µ

2
j + a1µj 6= 0.

Then we may select δ � 1 such that

∂H̃(d3;µj)

∂d3
6= 0, µj ∈ Sp ∩N(d̂3), d3 ∈ [d̂3 − δ, d̂3 + δ].

Therefore,
H̃(d̂3 + δ;µj)H̃(d̂3 − δ;µj) < 0,

in turn,
H(d̂3 + δ;µj)H(d̂3 − δ;µj) < 0, µj ∈ Sp ∩N(d̂3). (5.3)

Since Sp does not have any accumulation point, by taking δ sufficiently small, we may assume that

Sp ∩ N(d3) = ∅ for all d3 ∈ [d̂3 − δ, d̂3) ∪ (d̂3, d̂3 + δ]. Therefore, FU (d3;U0) is invertible for all d3 ∈
[d̂3 − δ, d̂3) ∪ (d̂3, d̂3 + δ].

In view of (5.2), we have

deg(F(d̂3 + δ; ·), BU0,δ, 0) = (−1)ν(d̂3+δ),

deg(F(d̂3 − δ; ·), BU0,δ, 0) = (−1)ν(d̂3−δ).

(5.4)

If µj ∈ N(d̂3), combining (5.3) with the assumptions, we have that

|ν(d̂3 − δ)− ν(d̂3 + δ)| =
∑

µj∈N(d̂3)

m(µj) is odd. (5.5)

By virtue of (5.4), it follows that

deg(F(d̂3 + δ; ·), BU0,δ, 0) 6= deg(F(d̂3 − δ; ·), BU0,δ, 0),

which is a contradiction to the homotopy invariance of degree. The proof is complete.
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