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Abstract

This paper is concerned with a diffusive prey-predator model with modified Leslie-Gower term and
Holling IT functional response subject to the homogeneous Neumann boundary condition. Firstly, by up-
per and lower solutions method, we prove the global asymptotic stability of the unique positive constant
steady state solution. Secondly, introducing the cross diffusion, we obtain the existence of non-constant
positive solutions. The results demonstrate that under certain conditions, even though the unique positive
constant steady state is globally asymptotically stable for the model with self-diffusion, the non-constant
positive steady states can exist due to the emergency of cross-diffusion, that is to say, cross-diffusion can
create stationary pattern. Finally, using the bifurcation theory and treating cross diffusion as a bifurcation
parameter, we obtain the existence of positive non-constant solutions. (©2016 All rights reserved.
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1. Introduction

The predator-prey relationship is one of the best common relationship in biology. In paper [I], the
authors dealt with the following systems:

du aiv

— = — bju — t

g u(ry 1U i +u)’ >0,

@ =v(re — 42v ) t>0 -
dt V2 u+ ko'’
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with %(0) > 0 and v(0) > 0, where u and v represent the prey and predator population densities at time
t respectively. Parameters ri,b1, a1, k1,72, as, ko are all positive. These parameters are defined as follows:
r1 is the growth rate of prey u, by measures the strength of competition among individuals of species u, ay
is the maximum value which per capita reduction rate of u can attain, k; (respectively, k2) measures the
extent to which environment provides protection to prey wu (respectively, to predator v), ro describes the
growth rate of v, and as has a similar meaning to a;. For a more detailed biological background of the
model, refer to [I] and the references therein.

Given some reasonable restrictions on the model, the authors determined conditions and established
results for boundedness, existence of a positively invariant and attracting set and the global stability of the
coexisting interior equilibrium.

As far as with the homogeneous Neumann boundary condition is concerned in [2, 3], the authors
considered the case k1 = ko = 0 and obtained many interesting results for positive non-constant solutions
(namely, stationary patterns) in the so-called heterogeneous environment. Papers [I0, 12] were mainly
devoted to the study of effects of diffusion coefficients on the positive non-constant solutions to ([1.1)) when
k1 > 0 and ko = 0. For the details, please refer to these references.

In paper [11], after some simple scaling to , the authors considered the special form of

—diAu = u(a —u— 0

1Au =ula —u 1+mu)’ x € Q,

—doAv = v(b— e )s x € Q, (1.2)
m+u

u=uv=0, x € 01,

where a,b and m are positive constants. The authors mainly discussed the positive solutions in the
case that the parameter m is large, and obtain a complete understanding for the existence, multiplicity and
stability of positive solutions of .

In this paper, we will reconsider the model with homogeneous Neumann boundary condition

ou v

E_dlAu:u(a_u_l—i—mu)’ (x,t) € Q x (0,00),

ov mu

a_dQAv_v(b_m—i—u)’ (z,t) € Q x (0,00), (1.3)
ou  Ov

%_%_0, (x,t) € 002 x (0, 00),

u(z,0) = ugp(z) > 0,v(z,0) =vo(z) >0, x€q.

\

In the above, n is the outward unit normal vector of the boundary of 02 which we will assume is smooth. The
homogeneous Neumann boundary conditions indicate that this system is self-contained with zero population
flux across the boundary. Parameters dy, ds, called self-diffusion, are positive.

It is easy to see that, if a > b, then system has a unique positive constant equilibrium (@, ?), where
4 is the unique positive root of equation

b
mu® 4 (— +1—ma)u+b—a=0, (1.4)
m

and satisfies

ma—l—i—i—\/(ma—l—%)2+4m(a—b) b(m + 1)
<a b=20TY
2m m

Firstly, using a comparison argument and iteration technique, we prove the global asymptotic stability
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of (u,v), which implies that the corresponding elliptic system of ([1.3])

v

—d1Au=u(a—u-— Q

1Au =u(a —u 1—|—mu)’ x € Q,

mu

—daAv =v(b— ey u)’ x € €, (1.5)
ou Ov
_——= — = Q
o = on 0, x €0

has no non-constant positive solutions. Secondly, we introduce the cross diffusion, and investigate the

following equations
v

—dlAu:u(a—u—1+mu), x €}
muv
—A(dav + dzuv) = v(b — m+u)’ x €} (1.6)
ou Ov
o Q
= o 0, x € 08,

where parameter dg is called cross diffusion coefficient. In this model, v diffuses with flux
J = =V (dav + dzuv) = —(dg + dsu) Vv — dzvVu.

We observe that, the part —dsvVu of the flux is directed toward the decreasing population density of wu,
which indicate that the prey species congregate and form a huge group to protect themselves from the attack
of the predator. The authors also introduced the same cross-diffusion term in the papers [4, [5, [7, [13].

In this paper, we shall adopt some of the mathematical techniques, which are used in the papers [9} [14].
For system , we have to establish a priori estimates for any positive solutions. Then based on these
estimates, we will use some topological degree arguments to obtain some conclusions concerning the existence
of positive non-constant steady-state solutions to (|1.6]).

The organization of this paper is as follows. Section [2]is devoted to the global stability of (a,?). In
Section |3, we give a priori estimates for positive solutions to . In Section |4, we study the existence of
positive non-constant solutions to system . Section [5| is concerned with the existence of non-constant
positive solutions by virtue of bifurcation theory.

Throughout this paper, we denote by 0 = pg < p1 < pg < -+ < pp < --- the eigenvalues of —A in Q
with the homogeneous Neumann boundary condition. For any k& > 0, we also denote the multiplicity of

by m(p)-
2. Global stability of positive constant equilibrium

In this section, we will prove that the unique constant positive solution (%, ) is globally asymptotically
stable using the technique used in the paper [15]. We first state the following lemma:

Lemma 2.1. Let f(s) be a positive C* function for s > 0, and let d > 0, > 0 be constants. Further, let
T € [0,00) and w € C*1(Q x (T,00)) N CHO(Q x [T, 0)) be a positive function.
(i) If w satisfies

W — dAw < (Z)wl+'8f(w)(a - lU), (l’,t) € x (Ta OO),

0

% —0, (z,t) € 9Q x [T} 00),
and the constant a > 0, then

limsupmaxw(-,t) <« (liminf minw(-,t) > a).
t—o0 Q t—oo
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(i) If w satisfies
wy — dAw < WP f(w)(a —w), (x,t) € Q x (T, 00),
0
%:0, (z,t) € IQ x [T, ),
and the constant o < 0, then
lim sup max w(-,t) < 0.
t—o0 Q
Theorem 2.2. For system (1.3), if
o> tmta) (2.1)

m

holds, then the positive constant solution (u,v) is globally asymptotically stable.

Proof. By the maximum principle of parabolic equations, for any initial values(ug(z),vo(z)) > (0,0), solu-

tions (u(z,t),v(x,t)) of system (|1.3) are positive.
From the first equation of system (|1.3]), we have

ou
— —d1Au < —u).
" di1Au < u(a —u)

By Lemma [2.T] we get
limsup maxu(-,t) < a:= ;.
t—o0 Q
For any given € > 0, there exists t{ > 1 so that
u(x,t) <up+e, Ve, t>15.

From the second equation of (1.3)), for z € Q,t > ¢5,

ov mu
— —doAv<v(b— ——).
g~ BAvs - o)
Lemma 2] tells us that ) -
3
lim sup max v(-,t) < blm &+ +¢) = f.
t—00 Q m
In terms of the arbitrariness of ¢, we obtain that
b(m+u
lim sup max v(-,t) < blm + 1) =) = 7.
t—o00 Q m

Then, there exists t5 > tf such that

v(r,t) <o +e, Ve, t>t5.

b
In turn, because of a > M, from the equation u, we have that there exists €9 such that
b
a>M+5,thenV0<e<€o,
m
9 _
—u—dlAu > ula—u-— Ul+6)
ot 1+ mu ) )
_ u .2 L - (=
= 1—|-umu( u” + (a m)u+m(a (01 +¢€)))

= ()i - )
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where
a—%+y/a—2) +4k(a— (01 +2))
uj = >0
2
and
a— - Jla— 22 +4d(a— (0 +e)
us = < 0.
2
Lemma [2.I] implies that
lim inf min u(-, t) > uj.
t—o0 Q
By virtue of the arbitrariness of ¢, we get
. . . . > 0 . .
hggg)lf min u(-,t) > uy =y
Then for 0 < € < uy, there exists t5, when ¢t > 15 > 5,
w(x,t) >uy —e, VreQ
holds. Here
a— ka2 +aka—n)
U = 5 .
Equation of v can be rewritten as
0
P dyAv > (b — —
ot m+u; —¢€
Thus b
lim inf min v(-, ¢) > bim+w, —e) = V5.
t—o00 Q m
By the arbitrariness of €, we derive that
b
lim inf min v(-,t) > 09 := v; = M
t—o00 Q m
For 0 < ¢ < vy, there exists t] such that when t > t§ > 5,
v(z,t) > v —¢e, Ve
holds. Therefore, equation of u can be rewritten as
ou v —€
— —diAu < —u—
ot 1u—u(auleru)l .
u 2
= - - — —(a — —€
S o= Jut (e (- o))
= 4 (u—ug)(uj —u)
1+ mu 3/ ’
Here
_a—Eyla- L2 +ada— (v -9)
U3 — < O,
2
and
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Similarly to the above, there exists ¢ such that
u(z,t) >ty —e, Ve, t>t>1t.
Here
a- a2t Ak ()
Ug = > 0.
2
Let
()_b(m+s) w()_a—nl@—i-\/(a—rln)Q—i-él%(a—s) .
PpLs) = m ) §) = 9 , S
then ¢'(s) > 0,v/(s) < 0, and the constants @1, U1, u;, v, U2 construed above satisfy
w; < liminf minu(-,¢) < limsupmaxu(-,t) < 4y,
t—oo O t—00 Q
v; < liminf minv(-, ¢) < limsup maxov(-,t) < vy,
t—oo t—o0 Q
vy =) < (i) =01, w =9(1) <P(v) =2 <.
By the inductive method, we can construct four sequences {uw,},{@;}, {v;}, {v:} by
v =o(uy), () =0, u;=v¢@), P)="ui1,
such that
u; < liminf minwu(-,t) < limsup maxu(-,t) < a;,
t—o00 Q t—00 Q
v; < liminfminov(-,¢) < limsupmaxv(-,t) < v;.
t—oo t—oo  Q
By the monotonicity of ¢, ¥, we have
Vi1 < v = p(y) < @(t) =0 < Vi1,
Uy <y =Y(0;) <P(y;) = Uigr < U
We may assume that
lim w; =w, limy, =v, lim 4; =4, lim v; = ©.
t—o0 t—o0 t—o0 t—o0
Evidently, we have 0 < u < % and 0 < v < v, and
u=9(), u1=9Y), v=9p), v=7p). (2.2)
Direct computations show that (2.2)) is equivalent to
v v
— — = 0’ — U — = 5 23
a4 1+mu a-u 14+ mu (2:3)
b b u
p= dmty o bm @) (2.4)
m m
It is deduced from (2.4) that
b
v—v=—(u—u. 2.5
v-v=—(u-u) (2.5)

Substituting the second (first) equation of (2.4]) into the first (second) equation of ([2.3]) respectively, we have

b(m + u)

(a—u)(1+mu)=

(2.6)
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and b
(a—@)(1 + ma) = (mm”) 2.7)
Subtracting (2.6)) from ([2.7)), we have
b
(ma —1)(@ —u) —m(a+u)(@—u) - (@ —u) =0. (2.8)
Suppose, on the contrary, that @ # u, then u > u and it follows from ({2.8]) that
b
u = -1—-—. 2.9
m(u + u) = ma - (2.9)
Noticing that @ satisfies condition (|1.4)), and by using of (2.8)), after some calculations, we have
(0—-v) = (a—w)(1+mu)- b + u)
m
= a—b+ (ma—1—-—)u—mu?
b " b
= mi® +(— —ma+1)a+ (ma—1— —)u—mu? (2.10)
m ) m
= (ﬂ—g)[m(ﬁ%—g)—ka—ma—i—l]
= m(t—u)(a—u).
Similarly, we have
B _ b(m+a) B B
= m(u—a)(a—u).
Combining (2.10) with (2.11)), we have & = u = @, which contradicts with the assumption. Thus @ = u, in

turn, v = wv.
Since system (1.3]) has a unique positive constant equilibrium (@, ?), then

(@a Q) = (ﬂvl_)) = (ﬂ,’LN)).

Therefore, for any initial values (u,v) < (uo,vo) < (@, v), as t = oo, the positive solution (u(z,t),v(x,t)) of

system (|1.3)) uniformly converges to (u, ).

3. A priori estimates

O

The main purpose of this section is to give a priori positive upper and lower bounds for the positive

solutions to ([1.6)). We first state the following lemma which is due to Lou and Ni [6].

Lemma 3.1. (mazimum principle) Let g € C1(Q x R).
(i) If w € C?(Q) N CL(Q) satisfies

Aw+ g(z,w) >0, x€Q,

6)—wg(), x € 01,
ov

and w(xg) = maxg w, then g(xo, w(xg)) > 0.

(i) Ifw € C*(Q)NCHQ) satisfies

Aw+ g(z,w) <0, x€Q,
ow

— > Q
81/_0’ T € 08,

and w(xg) = ming w, then g(xg, w(xg)) < 0.
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Lemma 3.2 (Harnark inequality). Let z € C?(Q) x C1(Q) be a positive solution to Az(z) + c(x)z(x) = 0,

where ¢ € C(Q) satisfying the homogeneous Neumann boundary condition. Then there exists a positive
constant C which depends only on B where ||c||sc < B such that max z < C'min z.
Q Q

Theorem 3.3. Let a,b,m,d, d* > 0 be fized. Then there exist positive constants C(a,b,m,d,d*) and

C(a,b,m,d,d*) such that for all
dladQZda 0<d3§d*7

any positive solution (u,v) of (1.6) satisfies

maxu < C(a,b,m,d,d*) minu, maxv < C(a,b,m,d,d*)minv, (3.1)
Q Q Q Q
and
||’LL,’Uch+a(Q) < C(a7b7m7d> d*) (32)

Proof. We will prove that (3.1)) and

maxu < C(a,b,m,d,d*), maxv < C(a,b,m,d,d"). (3.3)
Q Q

Applying the maximum principle to the equation of u of ((1.6), we find that

maxu < a. (3.4)
Q

Let ¢(x) = dov 4 dsuv, and ¢(zg) = max . Thus
Q

mu(xo)
b
v(@o)( m ~+ u(xp)
It follows from above that "
o) < (m+a)
m

Then we have

b
ds max v < p(z0) = dav(xo) + d3v(xo)u(zo) < (do + ds max u)v(zo) < (dg + d3a)(m:7;a),

which implies that

d*a, (m+ a)b
< (1 —_— 3.5
maxv < (1+ g ) - (3.5)
Applying the Harnack inequality to the equations of u, we see that
maxu < Ci minu, (3.6)
Q Q
where (1 is a positive constant.
We rewrite the equation of v as follows:
muv
—Ap = p(b— dy + dsu)™t = 3.7
p=pb— = )(d2 + dgu)™" = py, (3.7)

where

muv _ 1 d*a, (m+a)b
oo = [|(b— da + dsu) Mo < —(b+ (1 —).
IPlloo = 11(b = —=—)(d2 + dsu) | _@(+(+d) )

Applying the Harnack inequality to (3.7)), we follow that there exists a positive constant Cy such that

max ¢ < Cymin . (3.8)
Q Q
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From the formula of ¢, we have v = L, and
do + dsu
max @
9
max v do + d3minu max @ max
Q Q Q
; < : < — : < C10s.
min v min @ min ¢ minu
Q Q Q Q
do + dz3maxu
Q
It is deduced from above that
maxv < C3minw. (3.9)
Q Q

From — and —, we prove and , respectively.

Now, we prove the estimate (3.2]). Due to , by the regularity for elliptic equations we have that u
and v(ds + dsu) belong to C'+*(2), and the C1T%(Q)) norms of them depend only on the parameters d, d*
and the parameters a,m,b. It follows that v € C1*%(Q) and [v][c1+a(q) depends only on the parameters
d,d* and a, m,b. Using the regularity of elliptic equations again, the estimate follows. O

In the following we give the positive lower bound of positive solutions. We first state a lemma whose
proof is omitted.

Lemma 3.4. Let di; € (0,00), i = 1,2,3 and (uj,v;) be the corresponding positive solution of (1.6) with
d; = dij. Assume that d;j; — d; € [0,00] and (uj,v;) — (u*,v*) uniformly on Q. If u*,v* are constants,
then (u*,v*) must satisfy

v* mu*

a—u'————=0, b-— =0
1+ mu*

In particular, if u*,v* are positive constants, then (u*,v*) = (4, ).

Theorem 3.5 (lower bound). Let d and d* be two fized positive constants. Then there exists a positive
constant C(d,d*) such that, for any dy,ds > d, and 0 < d3 < d*, every positive solution (u,v,w) of
satisfies .

ménu,mﬁinv > ) (3.10)
Proof. If the conclusion does not hold, then there exist a sequence {d1;,ds;, d3; }j’;l satisfying dy;,da; > d,
and 0 < d3; < d* and a sequence of corresponding positive solutions (uj,v;) of with d; = d;;, such
that ming{ming u;, ming v;} — 0. As di;,ds; > d, subject to a subsequence, we may assume that d;; —
d; € [d, 0] for i = 1,2 and d3; — d3 € [0,d*]. By (3.2), we may also assume that (u;,v;) converges to some
nonnegative functions (u,v) in [C?*(Q)]2. It is easy to see that (u,v) also satisfies the estimate , and
ming u = 0 or ming v = 0. Moreover, we observe that, if d, ds < oo, then (u,v) satisfies ; If di = o0, as

U
(uj,vj) satisfies 1} then wu satisfies Au = 0 in € and I 0 on 0f2. Hence u is a nonnegative constant.
n

Analogous conclusions hold for ds.
Next we derive a contradiction for every possible case.

(1) The case of dy,ds < 0. )
If ming v = 0 holds, then v = 0 on €2 by Harnack inequality, and v satisfies

—doAv =v(b—v), xz€Q,

(3.11)
@ =0, x € 0.
on
Then we obtain that v = b or v = 0 on Q. Thus (uj,v;) = (0,b) or (uj,v;) — (0,0), which contradict
with Lemma so ming u > 0.
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If ming v = 0 holds, then Harnack inequality tells us v = 0 on €, and u satisfies

—diAu=ula—u), z€,

(3.12)
% =0, x € 0.
on
It follows from above that u = a on Q. Thus (uj,v;) — (a,0), which contradicts with Lemma SO
ming v > 0.
(2) If di = oo, then u = # is a nonnegative constant. If minu = 0 holds, then @& = 0 on €, and in turn
Q

v=0orv=>bonQ Then (uj,v;) = (0,0) or (uj,vj) — (0,b), from Step 1, we know that this is
impossible. Hence @ > 0.
(2a) When dy < oo, if minv = 0 holds, then we have v = 0 on Q. Thus (uj,v;) — (%,0), and this is a
Q

contradiction with Lemma Hence, ming v > 0.

(2b) When dy = oo, then v = ¥ is a nonnegative constant. If minv = 0 holds, then we have ¥ = 0 on Q.
Q

Thus (uj,v;) = (,0), and this is a contradiction with Lemma Hence, ming v > 0.
(3) If dy = oo, then v = ¥ is a nonnegative constant. If minv = 0 holds, then we have ¥ = 0 on Q. In turn,
Q

we have u = 0 or v = a on Q. Thus (uj,v;) = (0,0) or (uj,v;) — (a,0), and there is a contradiction
with Lemma (3.4} Hence, v > 0.

When d; < oo, if minu = 0 holds, then we have u = 0 on . Thus (uj,v;) — (0,9), which contradicts
Q
with Lemma The proof is complete. O

4. Existence results

In this Section, we shall give the existence of non-constant positive solutions to ([1.6) due to the
emergence of the cross-diffusion.
Let U = (u,v)T, Uy = (4, 9), ®(U) = (d1u, dov + d3uv)”, then system (1.6) is translated into

ula —u — . v )
—A®U) =G(U), with GU) = 4
v(b— )
m+u
Obviously, U is a positive solution of if and only if
FU)=U~-I-2)"He " (DGU) + VUyy(U)VUT] + U} = 0. (4.1)

In particular,

Fy(Un) =T — (I = &)~ @ (U0)Gu (Un) +1}.

Employing the formula for the index of fixed point [§], by the same argument as in [9], we know that in
order to facilitate our computation of index(I — F, Uy), we need to determine the sign of H(u), where H (1)
is defined by

H(p) = det{®{" (Up)} det{pu®y(Uo) — Gu(Uo)}- (4.2)
Directly computing, we have det{®;'(Up)} is positive, and
det{pu®y(Uo) — Gu(Un)} = Ca(ds)u® + Ci(ds)p + Co(ds) = C(ds; p), (4.3)

where

Ca(d3) = di(d2 + dsu) > 0,

dymd ~ ~ mu dsuv

Culds) = g ~ W + W+ A mms) ~ Ty
mau? miv mo

Co(ds) = —(—1+ )

(1+ma)(m+a)2 m+a (1+ma)?”
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In the sequel, we will consider the dependence of C(g,ds; 1) on parameter ds. Let fi1, fio be the roots of
C(ds; p) = 0 satistying Refi; < Refig, then

I det{GU(UQ)}
Hnipe = s .
It is easy to see that if }
mo
-1 <0 4.4
T T may (44)

holds, then det{Gy(Up)} > 0. Combining with Co > 0, we get fi1fia > 0.
After some computations,we have the following limitation

lim =diu = as > 0,
d3—00 Ccéjzi ) ~ .
1 1\as _ =2 1 muv _ uv _
dsse ds A G T rmn W
I Co(d3)
im =0,
d3—00 d3
that is,
C(ds;
lim (ds; 1) azp® + a1p = plasp + aq).
dz—00 d3
When - .
-9 mu uv
— -1 — 4.
It T T T rme <Y (45)

then a; < 0. We only consider the case a; < 0. By continuity, we have that when d3 is large enough, ji; > 0
and fis > 0, and [i1, fio satisfy

lm jip =0, lm jip = — 2% .= ut. (4.6)

d3—00 d3z—00 as
From the above analysis, we have the following conclusion.

Theorem 4.1. Assume that conditions (2.1) and

mu 0]

0<—a(-1+ (1 +ma)2) < (1 + ma)

(4.7)

n

hold, if u* determined by (4.6) satisfies u™ € (pin, pns1) for some n > 2, and > m(uy) is odd, then there
k=2

exists a ds > 0 such that system (1.6)) has at least one non-constant positive solution when ds > ds.

Proof. We argue by contradiction. Assume that for some d3 = d3 > czg, system has no positive
non-constant solutions. In the following, we fix ds = d3 > dg.
For ¢ € [0, 1], define
®(t;U) = (dyu, dav + tdsuv)”

and considering the following system

—A®(t;U) =GU), =z€Q,

4.8
ou =0, x € 0f. (48)
on

Obviously for 0 <t < 1, Uy is the only positive constant solution of system (4.8]) and U is a positive solution
of system ((1.6) if and only if U is a positive solution of system (4.8)) when ¢t = 1. U is a positive solution of
(4.8)) if and only if

FtU)=U—(I-A)"Hoy (:U)[GU) + VURuu(tU)VUT + U} = 0.
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By a priori estimates, it is easy to see that any positive solution of system (4.8) must lie in B, where
B = {(u,v) € C(Q) x C(Q) x C(Q) : C™ <u,v<C}.

and F(t;U) # 0 on 0B. So deg(F(t;U), B,0) is well defined. By the homotopy invariance of topology
degree, we have

Note that
H(t; p) = det{®@y" (t; Up)} det{u®y(t; Uo) — Gu(Uo)},

and when ¢ = 0, under the condition (4.7)), we have that H(0; u) > 0 for all ¢ > 1. By virtue of the formula

index(I — F(t,-),Up) = (—1)2iz1, Hpp<omp) (4.10)
we have
index(I — F(0,-),Up) = (—1)° = 1. (4.11)
Since we assume that system has no positive non-constant solutions, and i m(ug) is odd, then we
have ; =
index(I — F(1,), Up) = (—1)= """ = _1. (4.12)

On the other hand, from the assumption, we know that F(1;U) = 0 and F(0; U) = 0 have a unique positive
solution Uy on B. So

deg(F(0,), B,0) = index(I — F(0,-),Up) = 1, (4.13)
deg(F(1,-),B,0) = index(I — F(1,-),Up) = —1, (4.14)
and (4.13))-(4.14]) contradict with (4.9). So the proof is complete. O

5. Bifurcation

In this section, we will discuss the existence of non-constant positive solutions to system (1.6)) by using
of bifurcation. In the following, we fix the parameters a, b, m, d;,d> and treat d3 as a bifurcation parameter.

Definition 5.1. ((fg, Up) is said to be a bifurcation point of system || if for any ¢ € (0, 623), there exists
d3 € [d3 — 0,d3 + 0] such that system (1.6) has a non-constant positive solution. Otherwise, (dz, Up) is a
regular point.

Define N = {u > 0|H(p) = 0}, and S, = {p2, i3, fta, - - - }, where H(p) is defined by (4.2) and S, consists
of the positive spectrum of —A on € with the homogeneous Neumann boundary condition. To emphasize
the dependence of H(u), F(U) and N on d3, we write H(ds; u), F(ds;U) and N(d3), respectively, where

F(U) is defined by (4.1]).
Theorem 5.2 (Local bifurcation with respect to ds). Let dz > 0.
(1) If S, N N(d3) = 0, then (ds,Uy) is a regular point of system (1.6).
(2) Suppose SpAﬁ N(d3) # 0, and the positive roots of H(ds; ) = 0 are all simple. If EMGN(J?)) m(p;) is
odd, then (ds,Uy) is a bifurcation point of system (1.6]).
Proof. (1) If S,NN(d3) = 0, then H (ds; u;) # 0 for i € {1,2,---}. So it is evident that 0 is not an eigenvalue
of Fy(ds, Uy), which implies that Fyr(ds, Up) is a homeomorphism from X to itself. By virtue of the implicit

function theorem, it follows that for all ds close to d3, U = Uy is the only solution to F(d3;U) = 0 in a
small neighborhood By, 5 of Uy, i.e., (d3,Up) is a regular point of system li
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(2) Suppose SpﬂN((fg) # (0. After a series of calculus, the characteristic polynomial of ;1 —®," (Up) Gy (Up)
is given by
M4 AN+ Ay =0, (5.1)
where

Cy, O
Ay = 21—
2 =3u; + uc+03
3 G20 O Co

C3 Ha = H Cy  Cs
It is easy to verify that 0 is a simple eigenvalue of y;I — @' (Up)Gy (Up) for p; € S, N N(ds), ie., 0is a

A 7/‘2

simple eigenvalue of ]:U(cZg,, Up) for p; € S,NN (623) On the contrary, we assume that there exists a ds >0
such that the following are true:

(a) S,NN(d3) #0 and Zu eN(ds) ™(15)  1s odd; A )
(b) there exists a & € (0,ds) such that for every ds € [d3 — 6,ds + 8], U = Up is the only solution of
F(ds;U) =0 in By, 5.

Since F(ds;-) is a compact perturbation of the identity function, in view of (b), the Leray—Schauder degree
deg(F(ds; ), Bu,,s,0) is well defined and does not depend on d3 € [dg -0, ds + d]. If Fy(ds; Up) is invertible,

then
deg(F (ds; -), Buys,0) = index(I — F(ds;-), Up)

9.2
= (—1)7() = (_1)2121;H<d3;uj)<0m(“j) (5:2)

for dg EN[ng—(s,CZ;),—i-(S]. . o
Let H(ds; ) = det{®y(Uo) } H(d3; p1). For puj € S,NN(ds), we have H(ds; f1;) = 0. Direct computations
show that

ag(d%/ﬁj) 2
od, = t2ky T o #0.
Then we may select § < 1 such that
OH (ds; p; . 5 .
g;”“f) 40, pj€8,NN(ds), ds € [ds—0,ds+3].
3
Therefore, o o
H(d3 + (5;/Lj)H(d3 —J; Nj) < 0,
in turn, R . .
H(ds + 6 puj)H(ds — 05 p5) <0, pj € Sp N N(ds). (5.3)

Since S, does not have any accumulation point, by taking ¢ sufficiently small, we may assume that
Sp N N(d3) = 0 for all d3 € [d3 — d,d3) U (d3,ds + 0]. Therefore, Fi7(ds;Up) is invertible for all ds €
[Cig -9, dg) U (Cig, 623 + 5]
In view of , we have )
deg(F(ds + 6;-), By, s,0) = (—1)v(ds+0),

A (5.4)
deg(F(ds — 8;-), By, 6,0) = (—1)"(479).
If uyje N (Cig), combining |i with the assumptions, we have that
v(ds —0) —v(ds+0)| = Y my) is odd. (5.5)

1 €N (ds)
By virtue of (5.4), it follows that
deg(]:(dg + 57 ')7 BU(),(Sv 0) 7& deg(f(d3 - 5a ')a BU0,57 O)a

which is a contradiction to the homotopy invariance of degree. The proof is complete. O
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