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Abstract

In this paper, we introduce some concepts in partial b-metric spaces. We establish fixed point theorems
for some new generalized α − ψ type contractive mappings in the setting of partial b-metric spaces. Some
examples are presented to illustrate our obtained results. Finally, we show that the results generalize some
recent results. c©2016 All rights reserved.
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1. Introduction and Preliminaries

In the last few decades, fixed point theory was one of the most interesting research fields in nonlinear
functional analysis. Fixed point theory results are widely used in the economy, computer science, engineering
etc. The most remarkable result is the Banach Contraction Principle [8] in this direction.

Fixed points theorems for α−ψ type contractive mappings in metric spaces were firstly obtain by Samet
et al. [26] in 2012, and then by Karapinar and Samet [15]. In this direction several authors obtained further
results (see, e.g., [3, 4, 9, 16, 24]).

Let Ψ be family of functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:
(i) ψ is nondecreasing;
(ii)

∑+∞
n=1 ψ

n(t) <∞ for all t > 0, where ψn is the nth iterate of ψ.
It is easy to show that limn→+∞ ψ

n(t) = 0 and this implies ψ(t) < t.

Definition 1.1 ([26]). Let T : X → X and α : X ×X → [0,∞). We say that T is α-admissible if for all
x, y ∈ X we have

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1.
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Definition 1.2 ([26]). Let (X, d) be a metric space and T : X → X be a given mapping. We say that T is
an α−ψ contractive mapping if there exist two functions α : X ×X → [0,∞) and ψ : [0,∞)→ [0,∞) such
that

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), ∀x, y ∈ X.

Remark 1.3. We easily see any α − ψ contractive mapping with α(x, y) = 1 for all x, y ∈ X and ψ(t) =
kt, k ∈ (0, 1) satisfies the Banach contraction.

The concept of b-metric space was introduced by Baktin [7] and by Czerwik in [12, 13]. After that,
several interesting results about the existence of fixed point in b-metric spaces have been obtained (see,
e.g.,[1, 2, 5, 6, 10, 11, 14, 17, 18, 19, 20, 21, 22, 23, 25, 27]). Very recently, Shukla [27] and Mustafa [17]
obtained fixed point theorems in partial b-metric spaces.

Definition 1.4 ([17]). Let X be a nonempty set and the mapping b : X ×X → R+ satisfies:
(b1) b(x, y) = 0 if and only if x = y for all x, y ∈ X;
(b2) b(x, y) = b(y, x) for all x, y ∈ X;
(b3) there exists a real number s ≥ 1 such that b(x, y) ≤ s[b(x, z) + b(z, y)] for all x, y, z ∈ X.

Then b is called a b-metric on X and (X, b) is called a b-metric space with coefficient s.

Definition 1.5 ([17]). Let X be a nonempty set and the mapping p : X × X → R+, for all x, y, z ∈ X
satisfies:

(p1) x = y if and only if p(x, x) = p(x, y) = p(y, y);
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then p is called a partial metric on X and (X, p) is called a partial metric space.

Definition 1.6 ([17]). Let X be a nonempty set and the mapping pb : X × X → R+, for all x, y, z ∈ X
satisfies:

(pb1) x = y if and only if pb(x, x) = pb(x, y) = pb(y, y);
(pb2) pb(x, x) ≤ pb(x, y);
(pb3) pb(x, y) = pb(y, x);
(pb4) there exists a real number s ≥ 1 such that pb(x, y) ≤ s[pb(x, z) + pb(z, y)]− pb(z, z).

Then pb is called a partial b-metric on X and (X, pb) is called a partial b-metric space.

Remark 1.7. Any metric is a partial metric, b-metric and partial b-metric, but the converse is not true in
general.

Remark 1.8. It is clear that every b-metric space is a partial b-metric with coefficient s = 1 and zero self-
distance, and every partial metric space is a partial b-metric with coefficient s = 1. However, the converse
of this fact need not hold.

Example 1.9 ([27]). Let X = R+, q > 1 be a constant and pb : X ×X → R+ be defined by

pb(x, y) = [max{x, y}]q + |x− y|q, for all x, y ∈ X.
Then (X, pb) is a partial b-metric space with the coefficient s = 2q−1 > 1, but it is neither a b-metric nor a
partial space.

Now, we present some definitions and propositions in partial b-metric space.

Definition 1.10 ([17]). Let (X, pb) be a partial b-metric space, then for x ∈ X and ε > 0, the pb-ball with
center x and radius ε is

Bpb(x, ε) = {y ∈ X|pb(x, y) < pb(x, x) + ε}.
For example, let (X, pb) be the partial b-metric space from Example 1.9 (with q = 2). Then

Bpb(1, 4) = {y ∈ X|pb(1, y) < pb(1, 1) + 4} = (0, 2).
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Proposition 1.11 ([17]). Let (X, pb) be a partial b-metric space, for all x ∈ X and r > 0, if y ∈ Bpb(x, r),
then there exist δ > 0 such that Bpb(y, δ) ⊆ Bpb(x, r).

Thus, from the above proposition the family of all pb-balls

4 = {Bpb(x, r)|x ∈ X, r > 0}

is a base of a T0 topology τpb on X which we call the pb-metric topology. It is T0, but need not be T1.

Definition 1.12 ([17]). A sequence {xn} in a partial b-metric space (X, pb) is said to be:

(i) pb-convergent to a x ∈ X if limn→∞ pb(x, xn) = pb(x, x);
(ii) A pb-Cauchy sequence if limn,m→∞ pb(xn, xm) exists (and is finite);
(iii) A partial b-metric space (X, pb) is said to be pb-complete if every pb-Cauchy sequence {xn} in X

pb-converges to a point x ∈ X such that limn,m→∞ pb(xn, xm) = limn,m→∞ pb(xn, x) = pb(x, x).

Note that in a partial b-metric space the limit of convergent sequence may not be unique.

Proposition 1.13 ([17]).

(1) A sequence {xn} is A pb-Cauchy sequence in a partial b-metric space (X, pb) if and only if it is A
b-Cauchy sequence in a b-metric space (X, b).

(2) A partial b-metric space (X, pb) is pb-complete if and only if b-metric space (X, b) is b-complete.

Definition 1.14 ([17]). Let (X, pb) and (X ′, p′b) be two partial b-metric spaces, let T : (X, pb)→ (X ′, p′b) be
a mapping. Then T is said to be pb-continuous at a point a ∈ X if for a given ε > 0, there exists δ > 0 such
that x ∈ X and pb(a, x) < δ + pb(a, a) imply pb(Ta, Tx) < ε+ pb(Ta, Ta). The mapping T is pb-continuous
on X if it is pb-continuous at all a ∈ X.

Lemma 1.15 ([17]). Let (X, pb) and (X ′, p′b) be two partial b-metric spaces. Then T : X → X ′ is pb-
continuous at x ∈ X if and only if it is pb-sequentially continuous at x, that is, whenever {xn} is pb-
convergent to x, then {Txn} is pb-convergent to Tx.

2. Main results

Since that limn→∞ψ
n(t) = 0, for all t > 0 , this implies each ε > 0, there exist N(ε) ∈ N , n ≥ N(ε) such

that ψn(ε) < ε
2s . We use n0 note that N(ε) with ψn0(ε) < ε

2s .

Lemma 2.1. {xn} is a sequence in partial b-metric space. Then

pb(xn+p, xn) ≤
i=p∑
i=1

sipb(xn+i, xn+i−1) for all p, n ∈ N, p ≥ 1.

Proof. Using the triangular inequality, we get

pb(xn+p, xn) ≤ s[pb(xn+p, xn+1) + pb(xn+1, xn)]− pb(xn+1, xn+1)

≤ s[pb(xn+p, xn+1) + pb(xn+1, xn)],

recursively, we can obtain

pb(xn+p, xn) ≤
i=p∑
i=1

sipb(xn+i, xn+i−1).

Definition 2.2. Let (X, pb) be a partial b-metric space and T : X → X be a given mapping. We say
that T is a generalized α − ψ contractive mapping if there exist two functions α : X × X → [0,∞) and
ψ : [0,∞)→ [0,∞) such that

α(x, y)pb(Tx, Ty) ≤ ψ(pb(x, y)), ∀x, y ∈ X. (2.1)
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Theorem 2.3. Let (X, pb) be a complete partial b-metric space. Suppose that T : X → X is a generalized
α− ψ contractive mapping defined by (2.1) which satisfies:

(i) T is α-admissible;

(ii) there exist x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T
n0x0) ≥ 1, there n0 satisfies ψn0(ε) < ε

2s , ε > 0;

(iii) T is continuous.

Then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0, T
n0x0) ≥ 1, there is n0 satisfying ∀ε > 0, ψn(ε) < ε

2s as n ≥ n0. Take
F = Tn0 and xk+1 = Fxk,∀k ∈ N . By condition (i), we can easily show that F is α-admissible, then for all
x, y ∈ X

α(x, y) ≥ 1⇒ α(Fx, Fy) ≥ 1. (2.2)

Since T is α-admissible, for all n ∈ N we easily obtain

α(x, y) ≥ 1⇒ α(Tnx, Tny) ≥ 1. (2.3)

So, by (2.1) and (2.3), for all α(x, y) ≥ 1 we have

pb(Fx, Fy) = pb(T
n0x, Tn0y)

≤ α(Tn0−1x, Tn0−1y)pb(TT
n0−1x, TTn0−1y)

≤ ψ(pb(T
n0−1x, Tn0−1y)),

recursively, it implies that
pb(Fx, Fy) ≤ ψn0(pb(x, y)). (2.4)

Also, From (2.2), we have

α(x0, x1) = α(x0, T
n0x0) ≥ 1⇒ α(x1, x2) = α(Fx0, Fx1) ≥ 1,

by indiction, we get
α(xk, xk+1) ≥ 1, ∀k ∈ N. (2.5)

Using (2.4), we have
pb(xk, xk+1) = pb(Fxk−1, Fxk) ≤ ψn0pb(xk−1, xk). (2.6)

Recursively, we get
pb(xk, xk+1) = pb(Fxk−1, Fxk) ≤ ψn0k(pb(x0, x1)). (2.7)

Let k →∞ in the above inequality, we have pb(xk, xk+1)→ 0.
Now we choose k0 ∈ N , for all ε > 0, k ≥ k0 such that

pb(xk, xk+1) ≤
ε

2s
. (2.8)

According to (2.6), (2.8) and condition(ii), we have

pb(xk+1, xk+2) ≤ ψn0(pb(xk, xk+1)) ≤ ψn0(
ε

2s
) <

ε

(2s)2
,

by indiction, for all p ∈ N, p ≥ 1, we find

pb(xk+p−1, xk+p) <
ε

(2s)p
. (2.9)

Using Lemma 2.1 and (2.9), for all k, p ∈ N, p ≥ 1, k ≥ k0, we derive

pb(xk+p, xk) <

p∑
i=1

ε

2i
<
∞∑
i=1

ε

2i
= ε. (2.10)
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Hence, {xk} is Cauchy sequence in complete partial b-metric space (X, pb). It implies that there exists
x∗ ∈ X such that xn → x∗, then

lim
n→∞

pb(xn, x
∗) = lim

n,m→∞
pb(xn, xm) = pb(x

∗, x∗) = 0. (2.11)

Since T is continuous, by Lemma 1.15, then Txn → Tx∗, i.e.

lim
n→∞

pb(Txn, Tx
∗) = pb(Tx

∗, Tx∗). (2.12)

Next we show x∗ is a fixed point of T . By condition (ii), we have

α(x0, Tx0) ≥ 1⇒ α(Tx0, T
2x0) ≥ 1,

for all n ∈ N , by indiction, we get
α(Tnx0, T

n+1x0) ≥ 1. (2.13)

So, using (2.13) and (2.1), then

pb(xk, Txk) = pb(TT
kn0−1x0, TT

kn0x0)

≤ α(T kn0−1x0, T
kn0x0)pb(TT

kn0−1x0, TT
kn0x0)

≤ ψ(pb(T
kn0−1x0, T

kn0x0)),

recursively, we get
pb(xk, Txk) ≤ ψkn0((pb(x0, Tx0)). (2.14)

Let k →∞, we have
pb(xk, Txk)→ 0. (2.15)

For all k ≥ k0, p ≥ 1, from (2.1), (2.5) and (2.9), we derive

pb(Txk+p−1, Txk+p) ≤ α(xk+p−1, xk+p)pb(Txk+p−1, Txk+p)

≤ ψ(pb(xk+p−1, xk+p)) ≤ ψ(
ε

(2s)p
) <

ε

(2s)p
.

(2.16)

Using Lemma 2.1, similarly, we can obtain

pb(Txk+p, Txk) < ε.

Which implies {Txk} is also a cauchy sequence, so by (2.12), we have

lim
n→∞

pb(Txn, Tx
∗) = lim

n,m→∞
pb(Txn, Txm) = pb(Tx

∗, Tx∗) = 0. (2.17)

Using the triangle inequality, we obtain

pb(x
∗, Tx∗) ≤ s(pb(xn, x∗) + pb(xn, Tx

∗))− pb(xn, xn)

≤ spb(xn, x∗) + s2pb(xn, Txn)) + s2pb(Txn, Tx
∗).

Let n→∞, by (2.11), (2.15), (2.17), we have pb(x
∗, Tx∗) = 0, then x∗ = Tx∗, Therefore x∗ is a fixed point

of T .

Theorem 2.4. Let (X, pb) be a complete partial b-metric space. Suppose that T : X → X is a generalized
α− ψ contractive mapping which satisfies:

(i) T is α− admissible;
(ii) there exist x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T

n0x0) ≥ 1, there n0 satisfies ψn0(ε) < ε
2s , ε > 0;
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(iii) if {xn} is a sequence in (X, pb) such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n→∞, then
α(xn, x) ≥ 1.

Then T has a fixed point.

Proof. Following the proof of Theorem 2.3, we know {xn} satisfying (2.11), (2.15) and the condition (iii),
i.e α(xn, x∗) ≥ 1. Then by (2.1), we have

pb(Txn, Tx∗) ≤ α(xn, x∗)pb(Txn, Tx∗) ≤ ψ(pb(xn, x∗)) ≤ pb(xn, x∗). (2.18)

Let n→∞, from (2.11) we get
lim
n→∞

pb(Txn, Tx
∗) = 0. (2.19)

Also, using the triangle inequality, we have

pb(x
∗, Tx∗) ≤ s(pb(xn, x∗) + pb(xn, Tx

∗))− pb(xn, xn)

≤ sb(xn, x∗) + s2b(xn, Txn) + s2b(Txn, Tx
∗).

Let n → ∞, hence, by (2.11), (2.15), (2.19), we obtain pb(x
∗, Tx∗) = 0, then x∗ = Tx∗, therefore x∗ is a

fixed point of T .

Example 2.5. Let X = R+, endowed with the partial b-metric pb(x, y) = |x − y|2 + (max{x, y})2(with
s = 2) for all x, y ∈ R+. Define the mapping T : X → X by

Tx =

{
2x− 3

2 , x > 1;
x
2 , 0 ≤ x ≤ 1.

We define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1, if x ∈ [0, 1];
0, otherwise.

Clearly T is α-admissible and an α − ψ contractive mapping with ψ(t) = t
4 for all t ≥ 0. In fact, for all

x, y ∈ X, we have

α(x, y)pb(Tx, Ty) ≤ 1

4
pb(x, y).

Moreover, there exists x0 = 1 ∈ X such that

α(x0, Tx0) = α(1,
1

2
) = 1

and

α(x0, T
nx0) = α(1,

1

2n
) = 1.

Obviously T is continuous.
Now, all the hypotheses of Theorem 2.3 are satisfied. T has a fixed point. In this example, 0 and 3

2 are
two fixed point of T .

Example 2.6. Let X = R+, endowed with the partial b-metric pb(x, y) = |x − y|2 + (max{x, y})2(with
s = 2) for all x, y ∈ R+. Define the mapping T : X → X by

Tx =

{
2x− 3

2 , x > 1;
x
4 , 0 ≤ x ≤ 1.

It is clear that T is not continuous at 1. We define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1, if x ∈ [0, 1];
0, otherwise.
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Clearly T is α-admissible and an α − ψ contractive mapping with ψ(t) = t
16 for all t ≥ 0. In fact, for all

x, y ∈ X, we have

α(x, y)pb(Tx, Ty) ≤ 1

16
pb(x, y).

Moreover, there exists x0 = 1 ∈ X such that

α(x0, Tx0) = α(1,
1

4
) = 1

and

α(x0, T
nx0) = α(1,

1

4n
) = 1.

Finally, let {xn} be a sequence such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x as n → ∞. Since
α(xn, xn+1) ≥ 1, we have xn ∈ [0, 1] for all n ∈ N and x ∈ [0, 1]. Then α(xn, x) ≥ 1.

Now, all the hypotheses of Theorem 2.4 are satisfied. T has a fixed point. In this example, 0 and 3
2 are

two fixed point of T .

To the uniqueness of a fixed point of a generalized α − ψ contractive mapping, we will consider the
following hypothesis.

(H): For all x, y ∈ X there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1.

Theorem 2.7. Adding condition (H) to the hypotheses of Theorem 2.3 (resp. Theorem 2.4) we obtain
uniqueness of the fixed point of T .

Proof. Suppose that x∗ and y∗ are two fixed point of T . By condition (H), there exists z ∈ X such that

α(x∗, z) ≥ 1 and α(y∗, z) ≥ 1.

Since T is α-admissible, from the above inequalities, for all n ∈ N , we have

α(x∗, Tnz) ≥ 1 and α(y∗, Tnz) ≥ 1. (2.20)

Using (2.1) and (2.20), we get

pb(x∗, Tnz) = pb(Tx∗, Tnz)
≤ α(x∗, Tn−1z)pb(Tx∗, Tnz)
≤ ψ(pb(x∗, Tn−1z)),

recursively, for all n ∈ N , we obtain

pb(x∗, Tnz) ≤ ψn(pb(x∗, z)),

let n→∞, then
lim
n→∞

pb(x∗, Tnz) = 0. (2.21)

Similarly, we can get
lim
n→∞

pb(y∗, Tnz) = 0. (2.22)

Also, using the triangle inequality, we have

pb(x∗, y∗) ≤ spb(x∗, Tnz) + spb(x∗, Tnz).

Let n→∞, using (2.21) and (2.22), we get pb(x∗, y∗) = 0, then x∗ = y∗.

Definition 2.8. Let (X, pb) be a partial b-metric space and T : X → X be a given mapping. We say
that T is a generalized α − ψ contractive mapping if there exist two functions α : X × X → [0,∞) and
ψ : [0,∞)→ [0,∞), for all x, y ∈ X, s ≥ 1 such that

α(x, y)pb(Tx, Ty) ≤ ψ(max{pb(x, y), pb(x, Tx), pb(y, Ty),
1

2s2
(pb(x, Ty) + pb(y, Tx))}). (2.23)
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Theorem 2.9. Let (X, pb) be a complete partial b-metric space. Suppose that T : X → X is a generalized
α− ψ contractive mapping defined by (2.23) which satisfies:

(i) T is α-admissible;

(ii) there exist x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T
n0x0) ≥ 1, there n0 satisfies ψn0(ε) < ε

2s , ε > 0;

(iii) T is continuous.

Then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T
n0x0) ≥ 1, there n0 satisfying ∀ε > 0, ψn(ε) < ε

2s
as n ≥ n0. Take xn+1 = Txn, n ∈ N , if xn+1 = xn for some n ∈ N , then x∗ = xn is a fixed point of T .
Assumed that xn+1 6= xn, take yk+1 = Fyk, for all k ∈ N , y0 = x0 and F = Tn0 , then we have yk = xn0k

and we may easily show that F is α-admissible, then for all x, y ∈ X

α(x, y) ≥ 1⇒ α(Fx, Fy) ≥ 1. (2.24)

Since T and F are α− admissible, by condition (ii), we get

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1,

α(x0, T
n0x0) = α(x0, xn0) ≥ 1⇒ α(Tx0, Txn0) = α(x1, xn0+1) ≥ 1

and
α(y0, y1) = α(x0, T

n0x0) ≥ 1⇒ α(Fy0, Fy1) = α(y1, y2) ≥ 1,

by indiction, we obtain
α(xn, xn+1) ≥ 1, (2.25)

α(xn, xn+n0) ≥ 1 (2.26)

and
α(yk, yk+1) ≥ 1. (2.27)

From (2.23), (2.25) and the triangle inequality, we have

pb(xn, xn+1) = pb(Txn−1, Txn)

≤ α(xn−1, xn)pb(Txn−1, Txn)

≤ ψ(max{pb(xn−1, xn), pb(xn−1, Txn−1), pb(xn, Txn),

1

2s2
(pb(xn−1, Txn) + pb(xn, Txn−1))})

= ψ(max{pb(xn−1, xn), pb(xn, xn+1),
1

2s2
(pb(xn−1, xn+1) + pb(xn, xn))})

≤ ψ(max{pb(xn−1, xn), pb(xn, xn+1),
1

2s
(pb(xn−1, xn) + pb(xn, xn+1))})

= ψ(max{pb(xn−1, xn), pb(xn, xn+1)}).

(2.28)

If pb(xn−1, xn) < pb(xn, xn+1), by (2.28), then

pb(xn, xn+1) ≤ ψ(pb(xn, xn+1)) < pb(xn, xn+1).

It is a contradiction, hence
pb(xn, xn+1) ≤ pb(xn−1, xn). (2.29)

Then, by (2.28) and (2.29), we get

pb(xn, xn+1) ≤ ψ(pb(xn−1, xn)),
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recursively, we have
pb(xn, xn+1) ≤ ψn(pb(x0, x1)). (2.30)

Hence, from (2.23), (2.26), (2.29) and using the triangle inequality, we obtain

pb(yk, yk+1)

= pb(xn0k, xn0(k+1))

= pb(Txn0k−1, Txn0(k+1)−1)

≤ α(xn0k−1, xn0(k+1)−1)pb(Txn0k−1, Txn0(k+1)−1)

≤ ψ(max{pb(xn0k−1, xn0(k+1)−1), pb(xn0k−1, Txn0k−1), pb(xn0(k+1)−1, Txn0(k+1)−1),

1

2s2
(pb(xn0k−1, Txn0(k+1)−1) + pb(xn0(k+1)−1, Txn0k−1))})

= ψ(max{pb(xn0k−1, xn0(k+1)−1), pb(xn0k−1, xn0k), pb(xn0(k+1)−1, xn0(k+1)),

1

2s2
(pb(xn0k−1, xn0(k+1)) + pb(xn0(k+1)−1, xn0k))})

≤ ψ(max{pb(xn0k−1, xn0(k+1)−1), pb(xn0k−1, xn0k),

1

2s2
(spb(xn0k−1, xn0k) + spb(xn0k, xn0(k+1))

+ spb(xn0k−1, xn0k)) + spb(xn0k−1, xn0(k+1)−1))})
≤ ψ(max{pb(xn0k−1, xn0(k+1)−1), pb(xn0k−1, xn0k),

1

2s
(2pb(xn0k−1, xn0k) + pb(yk, yk+1) + pb(xn0k−1, xn0(k+1)−1))}),

≤ ψ(max{pb(xn0k−1, xn0(k+1)−1), pb(xn0k−1, xn0k),

1

2s− 1
(2pb(xn0k−1, xn0k) + pb(xn0k−1, xn0(k+1)−1))}).

(2.31)

By (2.31), we have

pb(xn0k−1, xn0(k+1)−1) ≤ ψ(max{pb(xn0k−2, xn0(k+1)−2), pb(xn0k−2, xn0k−1),

1

2s− 1
(2pb(xn0k−2, xn0k−1) + pb(xn0k−2, xn0(k+1)−2))}),

(2.32)

recursively, and using (2.30), since ψ is nondecreasing, we can obtain

pb(yk, yk+1) ≤ max{ψn0k(pb(x0, y1)), ψ
n0k(pb(x0, x1)),

1

2s− 1
(2ψn0k(pb(x0, x1)) + ψn0k(pb(x0, y1)))}.

(2.33)

Let k →∞ in (2.33), then

pb(yk, yk+1) ≤ max{ψn0k(pb(x0, y1)), ψ
n0k(pb(x0, x1)),

1

2s− 1
(2ψn0k(pb(x0, x1)) + ψn0k(pb(x0, y1)))} → 0.

(2.34)

Now we choose k0, ∀ε > 0, for all k ≥ k0 such that

pb(yk, yk+1) ≤ max{ψn0k(pb(x0, y1)), ψ
n0k(pb(x0, x1)),

1

2s− 1
(2ψn0k(pb(x0, x1)) + ψn0k(pb(x0, y1)))} ≤

ε

2s
.

(2.35)



X. Wu, J. Nonlinear Sci. Appl. 9 (2016), 3255–3278 3264

Since ψn0(ε) < ε
2s , from (2.35), we have

pb(yk+1, yk+2) ≤ max{ψn0(k+1)(pb(x0, y1)), ψ
n0(k+1)(pb(x0, x1)),

1

2s− 1
(2ψn0k(pb(x0, x1)) + ψn0k(pb(x0, y1)))}

<
ε

(2s)2
,

by induction, for all p ≥ 1, p ∈ N , we get

pb(yk+p−1, yk+p) <
ε

(2s)p
. (2.36)

Using Lemma 2.1 and (2.36), we derive

pb(yk+p, yk) <

p∑
i=1

ε

2i
<
∞∑
i=1

ε

2i
= ε. (2.37)

Hence, {yk} is Cauchy sequence in complete partial b-metric space (X, pb). It implies that there exists
y∗ ∈ X such that yn → y∗, then

lim
n→∞

pb(yn, y
∗) = lim

n,m→∞
pb(yn, ym) = pb(y

∗, y∗) = 0. (2.38)

Since T is continuous, then Tyn → Ty∗, so we have

lim
n→∞

pb(Tyn, Ty
∗) = pb(Ty

∗, T y∗). (2.39)

Finally, we show y∗ is a fixed point of T . By (2.30), we have

pb(Tyk, yk) = pb(xn0k+1, xn0k) ≤ ψn0k(pb(x1, x0)).

Let k →∞ in the above inequality, we have

pb(Tyk, yk)→ 0. (2.40)

Analogous inequality (2.37) of the acquisition process, we can obtain

pb(Tyk+p, Tyk) < ε. (2.41)

Then, {Tyn} is a Cauchy sequence in complete b-metric space (X, pb), by (2.39), for all m,n ∈ N , we get

lim
n→∞

pb(Tyn, T y
∗) = lim

n,m→∞
pb(Tyn, Tym) = b(Ty∗, Ty∗) = 0. (2.42)

Using triangle inequality, we have

pb(y
∗, Ty∗) ≤ s(pb(yn, y∗) + pb(yn, T y

∗))− pb(yn, yn)

≤ spb(yn, y∗) + s2pb(yn, Tyn)) + s2pb(Tyn, T y
∗).

Let n→∞, from (2.38), (2.40) and (2.42), which implies that pb(y
∗, Ty∗) = 0, then y∗ = Ty∗, therefore y∗

is a fixed point of T .

To the uniqueness of a fixed point of a generalized α − ψ contractive mapping, we will consider the
following hypothesis.

(H’): For all x, y ∈ X there exists z ∈ X such that α(x, z) ≥ 1 , α(y, z) ≥ 1. and α(z, Tz) ≥ 1.
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Theorem 2.10. Adding condition (H’) to the hypotheses of Theorem 2.9 we obtain uniqueness of the fixed
point of T .

Proof. Suppose that x∗ and y∗ are two fixed point of T . By condition (H’), there exists z ∈ X such that

α(x∗, z) ≥ 1, α(y∗, z) ≥ 1 and α(z, Tz) ≥ 1,

since T is α-admissible, from the above inequalities, for all n ∈ N , we have

α(x∗, Tnz) ≥ 1, α(y∗, Tn) ≥ 1 and α(Tn−1z, Tnz) ≥ 1. (2.43)

By (2.23), (2.43), and (pb2), we get

pb(x∗, Tnz) = pb(Tx∗, Tnz)
≤ α(x∗, Tn−1z)pb(Tx∗, Tnz)
≤ ψ(max{pb(x∗, Tn−1z), pb(x∗, Tx∗), pb(Tn−1z, Tnz),

1

2s2
(pb(x∗, Tnz) + pb(T

n−1z, Tx∗))})

= ψ(max{pb(x∗, Tn−1z), pb(x∗, x∗), pb(Tn−1z, Tnz),
1

2s2
(pb(x∗, Tnz) + pb(T

n−1z, x∗))})

= ψ(max{pb(x∗, Tn−1z), pb(Tn−1z, Tnz)}).

(2.44)

Also, from (2.23), (2.43), and using the triangle inequality, we have

pb(T
n−1z, Tnz) ≤ α(Tn−2z, Tn−1z)pb(T

n−1z, Tnz)

≤ ψ(max{pb(Tn−2z, Tn−1z), pb(Tn−2z, Tn−1z), pb(Tn−1z, Tnz),
1

2s2
(pb(T

n−2z, Tnz) + pb(T
n−1z, Tn−1z))})

≤ ψ(max{pb(Tn−2z, Tn−1z), pb(Tn−1z, Tnz),
1

2s
(pb(T

n−2z, Tn−1z) + pb(T
n−1z, Tnz))})

≤ ψ(max{pb(Tn−2z, Tn−1z), pb(Tn−1z, Tnz)}),

(2.45)

if pb(T
n−2z, Tn−1z) < pb(T

n−1z, Tnz), then by (2.45), we get

pb(T
n−1z, Tnz) ≤ ψ(pb(T

n−1z, Tnz)) < pb(T
n−1z, Tnz).

It is a contraction. So, by (2.45), we have

pb(T
n−1z, Tnz) ≤ ψ(pb(T

n−2z, Tn−1z)).

Recursively, this implies that

pb(T
n−1z, Tnz) ≤ ψn−1(pb(z, Tz)). (2.46)

Moreover, from (2.44), we can obtain

pb(x∗, Tn−1z) ≤ ψ(max{pb(x∗, Tn−2z), pb(Tn−2z, Tn−1z)}),

recursively, for all n ∈ N , and by (2.46), since ψ is nondecreasing, then

pb(x∗, Tnz) ≤ max{ψn(pb(x∗, z)), ψn(pb(z, Tz))}. (2.47)

Let n→∞ in (2.47), we have
lim
n→∞

pb(x∗, Tnz) = 0. (2.48)

Similarly, we can get
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lim
n→∞

pb(y∗, Tnz) = 0. (2.49)

Also, using the triangle inequality, we have

pb(x∗, y∗) ≤ spb(x∗, Tnz) + spb(y∗, Tnz).

Let n→∞, using (2.48) and (2.49), we get pb(x∗, y∗) = 0, then x∗ = y∗.

Example 2.11. Let X = R+, endowed with the partial b-metric pb(x, y) = (max{x, y})2(with s = 2) for
all x, y ∈ R+. Define the mapping T : X → X by

Tx =

{
x
2 , x > 1;
x√

2
√
1+x

, 0 ≤ x ≤ 1.

We define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1, if y ≤ x;
0, otherwise.

Clearly T is α-admissible and an α − ψ contractive mapping with ψ(t) = t
2 for all t ≥ 0. In fact, for all

x, y ∈ X, we have

α(x, y)pb(Tx, Ty) ≤ 1

2
max{pb(x, y), pb(x, Tx), pb(y, Ty),

1

2s2
(pb(x, Ty) + pb(y, Tx))}.

Moreover, there exists x0 = 1 ∈ X such that

α(x0, Tx0) = 1

and
α(x0, T

nx0) = 1.

Obviously T is continuous , condition (H’) is satisfied.
Now, all the hypotheses of Theorem 2.10 are satisfied. T has a unique fixed point. In this example, 0 is

the unique fixed point of T .

Definition 2.12. Let (X, pb) be a partial b-metric space and T : X → X be a given mapping. We say
that T is a generalized α − ψ contractive mapping if there exist two functions α : X × X → [0,∞) and
ψ : [0,∞)→ [0,∞), for all x, y ∈ X, s ≥ 1 such that

α(x, y)pb(Tx, Ty) ≤ 1

s
ψ(max{pb(x, y), pb(x, Tx), pb(y, Ty),

1

2s
(pb(x, Ty) + pb(y, Tx))}). (2.50)

Theorem 2.13. Let (X, pb) be a complete partial b-metric space. suppose that T : X → X is a generalized
α− ψ contractive mapping defined by (2.50) which satisfies:

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.
Then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1, Take xn+1 = Txn, for all n ∈ N . If xn+1 = xn for some n ∈ N ,
then x∗ = xn is a fixed point of T . Assume that xn+1 6= xn, for all n ∈ N . Since T is α − admissible, we
get

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1,

by indiction, we obtain
α(xn, xn+1) ≥ 1. (2.51)
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So, from (2.50), (2.51) and the triangle inequality, we have

pb(xn, xn+1)

= pb(Txn−1, Txn)

≤ α(xn−1, xn)pb(Txn−1, Txn)

≤ 1

s
ψ(max{pb(xn−1, xn), pb(xn−1, Txn−1), pb(xn, Txn),

1

2s
(pb(xn−1, Txn) + pb(xn, Txn−1))}

≤ 1

s
ψ(max{pb(xn−1, xn), pb(xn−1, xn), pb(xn, xn+1),

1

2s
(pb(xn−1, xn+1) + pb(xn, xn))}

≤ 1

s
ψ(max{pb(xn−1, xn), pb(xn, xn+1),

1

2s
(spb(xn−1, xn) + spb(xn, xn+1))}

≤ 1

s
ψ(max{pb(xn−1, xn), pb(xn, xn+1)}.

(2.52)

If pb(xn−1, xn) < pb(xn, xn+1), by (2.52), then

pb(xn, xn+1) ≤
1

s
ψ(pb(xn, xn+1)) <

1

s
pb(xn, xn+1),

it is a contradiction, hence
pb(xn, xn+1) ≤ pb(xn−1, xn). (2.53)

Then, by (2.52) and (2.53), we get

pb(xn, xn+1) ≤
1

s
ψ(pb(xn−1, xn)), (2.54)

recursively, we can obtain

pb(xn, xn+1) ≤
1

sn
ψn(pb(x0, x1)). (2.55)

Also, fix ε > 0 and n(ε) ∈ N such that ∑
n≥n(ε)

ψn(pb(x0, x1)) < ε. (2.56)

Hence, by (2.55), (2.56) and Lemma 2.1, we get

pb(xn+p, xn) ≤
p∑
i=1

sipb(xn+i, xn+1−1)

≤
p∑
i=1

si
1

sn+i
ψn+i(pb(x0, x1))

≤
p∑
i=1

1

sn
ψn+i(pb(x0, x1))

≤
∑

n≥n(ε)

ψn(pb(x0, x1)) < ε.

(2.57)
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Therefore {xn} is Cauchy sequence in complete partial b-metric space (X, pb). It implies that there exists
x∗ ∈ X such that xn → x∗, then

lim
n→∞

pb(xn, x
∗) = lim

n,m→∞
pb(xn, xm) = pb(x

∗, x∗) = 0. (2.58)

Since T is continue, then xn+1 = Txn → Tx∗, so

lim
n→∞

pb(xn, Tx
∗) = lim

n,m→∞
pb(xn, xm) = pb(Tx

∗, Tx∗) = 0. (2.59)

Also, using the triangle inequality, we have

pb(x
∗, Tx∗) ≤ s(pb(xn, x∗) + pb(xn, Tx

∗))− b(xn, xn)

≤ s(pb(xn, x∗) + pb(xn, Tx
∗)).

Let n → ∞, by (2.57) and (2.58), which implies pb(x
∗, Tx∗) = 0, then x∗ = Tx∗, therefore x∗ is a fixed

point of T .

Theorem 2.14. Let (X, pb) be a complete partial b-metric space. suppose that T : X → X is a generalized
α− ψ contractive mapping defined by (2.50) which satisfies:

(i) T is α− admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) if{xn} is a consequence in (X, pb) such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → ∞,
then α(xn, x) ≥ 1.

Then T has a fixed point.

Proof. Following the proof of Theorem 2.13, we know {xn} satisfying (2.55), (2.57) and the condition (iii),
i.e. α(xn, x∗) ≥ 1. If pb(x

∗, Tx∗) 6= 0, by (2.50), (2.55) and the triangle inequality, we can obtain

pb(x
∗, Tx∗) ≤ spb(xn+1, x

∗) + spb(xn+1, Tx
∗)− pb(xn+1, xn+1)

≤ spb(xn+1, x
∗) + pb(Txn, Tx

∗)

≤ spb(xn+1, x
∗) + sα(xn, x∗)pb(Txn, Tx∗)

≤ spb(xn+1, x
∗) + ψ(max{pb(xn, x∗), pb(xn, Txn), pb(x∗, Tx∗),

1

2s
(pb(xn, Tx∗) + pb(Txn, x∗))})

≤ spb(xn+1, x
∗) + ψ(max{pb(xn, x∗), pb(xn, xn+1), pb(x∗, Tx∗),

1

2s
(spb(xn, x∗) + spb(x∗, Tx∗)) +

1

2s
pb(xn+1, x∗)})

≤ spb(xn+1, x
∗) + ψ(max{pb(xn, x∗),

1

sn
ψn(pb(x0, x1)), pb(x∗, Tx∗),

1

2
(pb(xn, x∗) + pb(x∗, Tx∗)) +

1

2s
pb(xn+1, x∗)}),

(2.60)

take

M = max{pb(xn, x∗),
1

sn
ψn(pb(x0, x1)), pb(x∗, Tx∗),

1

2
(pb(xn, x∗) + pb(x∗, Tx∗)) +

1

2s
pb(xn+1, x∗)}.

There are three cases:

1. if M = max{pb(xn, x∗), 1
snψ

n(pb(x0, x1))}, let n→∞ in (2.59), and by (2.57), we have pb(x
∗, Tx∗) = 0,

it is a contradiction;
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2. if M = pb(x∗, Tx∗), let n → ∞ in (2.59), and by (2.57), we have pb(x
∗, Tx∗) ≤ ψ(pb(x

∗, Tx∗)) <
pb(x

∗, Tx∗), it is a contradiction;

3. if M = 1
2(pb(xn, x∗) + pb(x∗, Tx∗)) + 1

2spb(xn+1, x∗), let n → ∞ in (2.59), and by (2.57), we have
pb(x

∗, Tx∗) ≤ 1
2pb(x

∗, Tx∗), it is a contradiction.

Therefore there must be pb(x
∗, Tx∗) = 0 , then x∗ = Tx∗, therefore x∗ is a fixed point of T .

Theorem 2.15. Adding condition (H’) to the hypotheses of Theorem 2.13 (resp. Theorem 2.14) we obtain
uniqueness of the fixed point of T .

Proof. Suppose that x∗ and y∗ are two fixed point of T . By condition (H’), there exists z ∈ X such that

α(x∗, z) ≥ 1, α(y∗, z) ≥ 1 and α(z, Tz) ≥ 1.

Since T is α-admissible, from the above inequalities, for all n ∈ N , we have

α(x∗, Tnz) ≥ 1, α(y∗, Tn) ≥ 1 and α(Tn−1z, Tnz) ≥ 1. (2.61)

By (2.50), (2.60), and (pb2), we get

pb(x∗, Tnz) = pb(Tx∗, Tnz)
≤ α(x∗, Tn−1z)pb(Tx∗, Tnz)

≤ 1

s
ψ(max{pb(x∗, Tn−1z), pb(x∗, Tx∗), pb(Tn−1z, Tnz),
1

2s
(pb(x∗, Tnz) + pb(T

n−1z, Tx∗))})

=
1

s
ψ(max{pb(x∗, Tn−1z), pb(x∗, x∗), pb(Tn−1z, Tnz),
1

2s
(pb(x∗, Tnz) + pb(T

n−1z, x∗))})

≤ 1

s
ψ(max{pb(x∗, Tn−1z), pb(Tn−1z, Tnz)}).

(2.62)

Also, from (2.50), (2.60), and using the triangle inequality, we have

pb(T
n−1z, Tnz) ≤ α(Tn−2z, Tn−1z)pb(T

n−1z, Tnz)

≤ 1

s
ψ(max{pb(Tn−2z, Tn−1z), pb(Tn−2z, Tn−1z), pb(Tn−1z, Tnz),
1

2s
(pb(T

n−2z, Tnz) + pb(T
n−1z, Tn−1z))})

≤ ψ(max{pb(Tn−2z, Tn−1z), pb(Tn−1z, Tnz),
1

2
(pb(T

n−2z, Tn−1z) + pb(T
n−1z, Tnz))})

≤ ψ(max{pb(Tn−2z, Tn−1z), pb(Tn−1z, Tnz)}).

(2.63)

If pb(T
n−2z, Tn−1z) < pb(T

n−1z, Tnz), by (2.62), we get

pb(T
n−1z, Tnz) ≤ ψ(pb(T

n−1z, Tnz)) < pb(T
n−1z, Tnz).

It is a contraction. So, by (2.62), we have

pb(T
n−1z, Tnz) ≤ ψ(pb(T

n−2z, Tn−1z)).
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Recursively, this implies that

pb(T
n−1z, Tnz) ≤ ψn−1(pb(z, Tz)). (2.64)

Moreover, from (2.61), we can obtain

pb(x∗, Tn−1z) ≤ ψ(max{pb(x∗, Tn−2z), pb(Tn−2z, Tn−1z)}),

recursively, for all n ∈ N , and by (2.63), since ψ is nondecreasing, then

pb(x∗, Tnz) ≤ max{ψn(pb(x∗, z)), ψn(pb(z, Tz))}. (2.65)

Let n→∞ in (2.64), we have
lim
n→∞

pb(x∗, Tnz) = 0. (2.66)

Similarly, we can get
lim
n→∞

pb(y∗, Tnz) = 0. (2.67)

Also, using the triangle inequality, we have

pb(x∗, y∗) ≤ spb(x∗, Tnz) + spb(y∗, Tnz).

Let n→∞, using (2.65) and (2.66), we get pb(x∗, y∗) = 0, then x∗ = y∗.

Definition 2.16. Let f, g : X → X and α : X × X → [0,∞). We say that a pair (f, g) of mappings is
α-admissible if for all x, y ∈ K, and we have

α(x, y) ≥ 1⇒ α(fx, gy) ≥ 1 and α(gx, fy) ≥ 1.

Definition 2.17. Let (X, pb) be a partial b-metric space and f, g : X → X be a given mapping. We
say that a pair (f, g) of self-mappings is a generalized α − ψ contractive pair if there exist two functions
α : X ×X → [0,∞) and ψ : [0,∞)→ [0,∞), for all x, y ∈ X, s ≥ 1 such that

α(x, y)pb(Tx, Ty) ≤ 1

s
ψ(max{pb(x, y), pb(x, fx), pb(y, gy),

1

2s
(pb(x, gy) + pb(y, fx))}). (2.68)

Theorem 2.18. Let (X, pb) be a complete partial b-metric space. suppose that f, g : X → X, and (f, g) is
a generalized α− ψ contractive pair defined by (2.67) which satisfies:

(i) (f, g) is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;

(iii) f and g are continuous.

Then f and g have a fixed point.

Proof. Let x0 ∈ X such that α(x0, fx0) ≥ 1, We construct a sequence {xn} in X such that x2n+1 = fx2n
and x2n+2 = gx2n+1 ∀n ∈ N . Since (f, g) is α-admissible, then

α(x0, fx0) = α(x0, x1) ≥ 1⇒ α(fx0, gx1) ≥ 1 = α(x1, x2) ≥ 1

⇒ α(gx1, fx2) = α(x2, x3) ≥ 1,

by indiction, we have
α(xn, xn+1) ≥ 1. (2.69)
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If x2n+1 = x2n for some n ∈ N , then x2n = fx2n. Thus x2n+1 = x2n is a fixed point of f . This must
x2n = x2n+1 is fixed point of g, i.e. x2n+1 = gx2n+1. Indeed, if x2n+1 6= gx2n+1, then pb(x2n+1, x2n+2) 6= 0,
so by (2.67), (2.68), (pb2) and the triangle inequality, we get

pb(x2n+1, x2n+2) = pb(fx2n, gx2n+1)

≤ α(x2n, x2n+1)pb(fx2n, gx2n+1)

≤ 1

s
ψ(max{pb(x2n, x2n+1), pb(x2n, fx2n), pb(x2n+1, gx2n+1),

1

2s
(pb(x2n, gx2n+1) + pb(x2n+1, fx2n))})

=
1

s
ψ(max{pb(x2n, x2n+1), pb(x2n, x2n+1), pb(x2n+1, x2n+2),

1

2s
(pb(x2n, x2n+2) + pb(x2n+1, x2n+1))})

≤ 1

s
ψ(max{pb(x2n, x2n+1), pb(x2n+1, x2n+2),

1

2s
(spb(x2n, x2n+1) + spb(x2n+1, x2n+2))})

=
1

s
ψ(max{pb(x2n, x2n+1), pb(x2n+1, x2n+2)})

=
1

s
ψ(pb(x2n+1, x2n+2))

<
1

s
pb(x2n+1, x2n+2),

(2.70)

which gives a contradiction. Therefore pb(x2n+1, x2n+2) = pb(x2n+1, gx2n+1) = 0, then x2n = x2n+1 is a
fixed point of g.

Similarly, if x2n+2 = x2n+1 for some n ∈ N , we obtain x2n+1 is fixed point of g and f . Therefore we
assume that xn 6= xn+1. If pb(x2n+1, x2n+2) > pb(x2n, x2n+1), from (2.69) we get

pb(x2n+1, x2n+2) ≤
1

s
ψ(pb(x2n+1, x2n+2)) <

1

s
pb(x2n+1, x2n+2),

it is a contradiction. Hence,

pb(x2n+1, x2n+2) ≤ pb(x2n, x2n+1).

Moreover, from (2.69), we have

pb(x2n+1, x2n+2) ≤
1

s
ψ(pb(x2n, x2n+1)).

Similarly, we can show that

pb(x2n, x2n+1) ≤
1

s
ψ(pb(x2n−1, x2n)).

Recursively, we get

pb(x2n+1, x2n+2) ≤
1

s2n+1
ψ2n+1(pb(x0, x1))

and

pb(x2n, x2n+1) ≤
1

s2n
ψ2n(pb(x0, x1)).
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Then, by the above two inequalities, which imply that

pb(xn, xn+1) ≤
1

sn
ψn(pb(x0, x1)). (2.71)

Also, fix ε > 0 and n(ε) ∈ N such that ∑
n≥n(ε)

ψn(pb(x0, x1)) < ε. (2.72)

Hence, by (2.70), (2.71) and Lemma 2.1, we can obtain

pb(xn+p, xn) ≤
p∑
i=1

sipb(xn+i, xn+i+1)

≤
p∑
i=0

si
1

sn+i
ψn+i(pb(x0, x1))

≤
∑

n≥n(ε)

ψn(pb(x0, x1)) < ε.

(2.73)

It shows that {xn} is Cauchy sequence in complete partial b-metric space (X, pb). Which implies that
there exists x∗ ∈ X such that xn → x∗, then

lim
n→∞

pb(xn, x
∗) = lim

n,m→∞
pb(xn, xm) = pb(x

∗, x∗) = 0. (2.74)

Moreover
lim
n→∞

pb(x2n+1, x
∗) = lim

n,m→∞
pb(x2n+1, x2m+1) = pb(x

∗, x∗) = 0, (2.75)

and
lim
n→∞

pb(x2n, x
∗) = lim

n,m→∞
pb(x2n, x2m) = pb(x

∗, x∗) = 0. (2.76)

Since f is continuous, then x2n+1 = fx2n → fx∗ as n→∞.

lim
n→∞

pb(x2n+1, fx
∗) = lim

n,m→∞
pb(x2n+1, x2m+1) = pb(fx

∗, fx∗) = 0. (2.77)

Using the triangle inequality, we have

pb(x
∗, fx∗) ≤ s(pb(x2n+1, x

∗) + pb(x2n+1, fx
∗))− b(x2n+1, x2n+1)

≤ s(pb(x2n+1, x
∗) + pb(x2n+1, fx

∗)).

Let n→∞, by (2.74) and (2.76), then pb(x
∗, fx∗) = 0, it implies x∗ = fx∗, therefore x∗ is a fixed point of

f . Similarly, we can obtain x∗ is a fixed point of g.

Theorem 2.19. Let (X, pb) be a complete partial b-metric space. suppose that f, g : X → X, and (f, g) is
a generalized α− ψ contractive pair defined by (2.67) which satisfies:

(i) (f, g) is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;

(iii) if {xn} is a consequence in (X, pb) such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → ∞,
then α(xn, x) ≥ 1.

Then f and g have a fixed point.
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Proof. Following the proof of Theorem 2.18, we know {xn} satisfying (2.70), (2.74), (2.75) and the condition
(iii), i.e. α(xn, x∗) ≥ 1 , if pb(x

∗, fx∗) 6= 0, then by (2.67), (2.70) and using the triangle inequality, we obtain

pb(x
∗, fx∗) ≤ spb(gx2n+1, x

∗) + spb(gx2n+1, fx
∗)− pb(x2n+1, x2n+1)

≤ spb(xn+2, x
∗) + spb(gx2n+1, fx

∗)

≤ spb(x2n+2, x
∗) + sα(x2n+1, x∗)pb(gx2n+1, fx∗)

≤ spb(x2n+2, x
∗) + ψ(max{pb(x2n+1, x∗), pb(x2n+1, gx2n+1), pb(x∗, fx∗),

1

2s
(pb(x2n+1, fx∗) + pb(gx2n+1, x∗))})

≤ spb(x2n+2, x
∗) + ψ(max{pb(x2n+1, x∗), pb(x2n+1, x2n+2), pb(x∗, fx∗),

1

2s
(pb(x2n+1, fx∗) + pb(x2n+2, x∗))})

≤ spb(x2n+2, x
∗) + ψ(max{pb(x2n+1, x∗), pb(x2n+1, x2n+2), pb(x∗, fx∗),

1

2s
(spb(x2n+1, x∗) + spb(x∗, fx∗) + pb(x2n+2, x∗))})

≤ spb(x2n+2, x
∗) + ψ(max{pb(x2n+1, x∗),

1

s2n+1
ψ2n+1(pb(x0, x1)), pb(x∗, fx∗),

1

2
(pb(x2n+1, x∗) + pb(x∗, fx∗)) +

1

2s
pb(x2n+2, x∗)}),

(2.78)

take

N = max{pb(x2n+1, x∗),
1

s2n+1
ψ2n+1(pb(x0, x1)), pb(x∗, fx∗),

1

2
(pb(x2n+1, x∗) + pb(x∗, fx∗)) +

1

2s
pb(x2n+2, x∗)}.

There are three cases:

1. if N = max{pb(x2n+1, x∗), 1
s2n+1ψ

2n+1(pb(x0, x1))}, let n→∞ in (2.77), by (2.74) and (2.75), we have
pb(x∗, fx∗) = 0, it is a contradiction;

2. if N = pb(x∗, fx∗), let n→∞ in (2.77), by (2.74) and (2.75), we have pb(x∗, fx∗) ≤ ψ(pb(x
∗, fx∗)) <

pb(x
∗, fx∗), it is a contradiction;

3. if N = 1
2(pb(x2n+1, x∗) + pb(x∗, fx∗)) + 1

2spb(x2n+2, x∗), let n→∞ in (2.77), by (2.74) and (2.75), we
have pb(x

∗, fx∗) ≤ 1
2pb(x

∗, fx∗), it is a contradiction.

Hence, pb(x
∗, fx∗) = 0, then x∗ = fx∗, therefore x∗ is a fixed point of f . Similarly, we can obtain x∗ is a

fixed point of g.

Theorem 2.20. Adding condition (H’) to the hypotheses of Theorem 2.18 (resp. Theorem 2.19) we obtain
uniqueness of the fixed point of T .

Proof. In the proof of Theorem 2.15, take T = f to get the result.

Example 2.21. Let X = R+, endowed with the partial b-metric pb(x, y) = (max{x, y})2 (with s = 2) for
all x, y ∈ R+. Define the mapping f, g : X → X by

fx =


x
2 , x > 1;

x√
2
√
1+x

, 0 ≤ x ≤ 1.

gx =
x

4
, x ∈ [0,∞).
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We define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1, if y ≤ x;
0, otherwise.

Clearly (f, g) is α-admissible pair and an α− ψ contractive pair with ψ(t) = t
2 for all t ≥ 0. In fact, for all

x, y ∈ X, we have

α(x, y)pb(Tx, Ty) ≤ 1

2
max{pb(x, y), pb(x, fx), pb(y, gy),

1

2s2
(pb(x, gy) + pb(y, fx))}.

Obviously, f and g are continuous and condition (H’) is satisfied. Moreover, there exists x0 = 1 ∈ X such
that

α(x0, fx0) = 1.

Hence, all conditions of Theorem 2.20 are satisfied. f and g have a unique fixed point (which is z = 0).

3. Consequences

We will show that many latest existing Theorems in the literature can be deduced easily from our results
Firstly, the following results from our Theorem 2.7.
Let ψ(t) = λt, λ ∈ [0, 1), we obtain the following result.

Corollary 3.1 ([27]). Let (X, pb) be a complete partial b-metric space. T : X → X be a given mapping, for
all x, y ∈ X and λ ∈ [0, 1) such that

pb(Tx, Ty) ≤ λpb(x, y). (3.1)

Then T has a unique fixed point.

In Corollary 3.1 take s = 1 and for all x, y ∈ X, pb(x, y) = 0 if only if x = y, we obtain the following
result.

Corollary 3.2 ([26]). Let (X, d) be a complete metric space. Suppose that T : X → X is a generalized
α− ψ contractive mapping defined by (2.1) for all x, y ∈ X. Which satisfies:

(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is continuous or {xn} is a sequence in (X, d) such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X
as n→∞, then α(xn, x) ≥ 1.

Then T has a fixed point, if condition (H) is satisfied, one has uniqueness of the fixed point.
Secondly, the following results from our Theorem 2.10.
Let α(x, y) = 1 for all x, y ∈ X, we obtain,

Corollary 3.3. Let (X, pb) be a complete partial b-metric space. T : X → X be a given continuous mapping,
suppose there exists a function ψ ∈ Ψ, for all x, y ∈ X such that

pb(Tx, Ty) ≤ ψ(max{pb(x, y), pb(x, Tx), pb(y, Ty),
1

2s2
(pb(x, Ty) + pb(y, Tx))}). (3.2)

Then T has a unique fixed point.

The following results follow immediately from Corollary 3.3.

Corollary 3.4. Let (X, pb) be a complete partial b-metric space. T : X → X be a given continuous mapping,
for all x, y ∈ X and λ ∈ [0, 12) such that

pb(Tx, Ty) ≤ λ[pb(x, Tx) + pb(y, Ty)]. (3.3)

Then T has a unique fixed point.
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Corollary 3.5. Let (X, pb) be a complete partial b-metric space. T : X → X be a given continuous mapping,
for all x, y ∈ X and λ ∈ [0, 1) such that

pb(Tx, Ty) ≤ λmax{pb(x, y), pb(x, Tx), pb(y, Ty)}. (3.4)

Then T has a unique fixed point.

Corollary 3.6. Let (X, pb) be a complete partial b-metric space. T : X → X be a given continuous mapping,
for all x, y ∈ X , A,B,C ≥ 0, A+B + C ∈ [0, 1) such that

pb(Tx, Ty) ≤ Apb(x, y) +Bpb(x, Tx) + Cpb(y, Ty). (3.5)

Then T has a unique fixed point.

Corollary 3.7. Let (X, pb) be a complete partial b-metric space. T : X → X be a given continuous mapping,
for all x, y ∈ X and λ ∈ [0, 1) such that

pb(Tx, Ty) ≤ λmax{pb(x, y),
1

2
(pb(x, Tx) + pb(y, Ty)),

1

2s2
(pb(x, Ty) + pb(y, Tx))}. (3.6)

Then T has a unique fixed point.

Corollary 3.8. Let (X, pb) be a complete partial b-metric space. T : X → X be a given continuous mapping,
for all x, y ∈ X and λ ∈ [0, 1) such that

pb(Tx, Ty) ≤ λmax{pb(x, y), pb(x, Tx), pb(y, Ty),
1

2s2
(pb(x, Ty) + pb(y, Tx))}. (3.7)

Then T has a unique fixed point.

From Theorem 2.10, we will deduce very easily the following results on a partial b-metric space endowed
with a partial ordered.

Corollary 3.9. Let (X,� pb) be a complete ordered partial b-metric space. Let T : X → X be a continuous
and nondecreasing mapping with respect to � and satisfying (3.1) for all x, y ∈ X with y � x. If there exists
x0 such that x0 � Tx0.

Then T has a fixed point. If for all x, y ∈ X there exists z ∈ X such that x � z and y � z, one has
uniqueness of the fixed point.

Corollary 3.10. Let (X,� pb) be a complete ordered partial b-metric space. Let T : X → X be a continuous
and nondecreasing mapping with respect to �, suppose there exists a function ψ ∈ Ψ satisfying (3.2) for all
x, y ∈ X with y � x. If there exists x0 such that x0 � Tx0.

Then T has a fixed point. If for all x, y ∈ X there exists z ∈ X such that x � z, y � z and z � Tz, one
has uniqueness of the fixed point.

Corollary 3.11. Let (X,� pb) be a complete ordered partial b-metric space. Let T : X → X be a continuous
and nondecreasing mapping with respect to � and satisfying (3.3) for all x, y ∈ X with y � x. If there exists
x0 such that x0 � Tx0.

Then T has a fixed point. If for all x, y ∈ X there exists z ∈ X such that x � z, y � z and z � Tz, one
has uniqueness of the fixed point.

Corollary 3.12. Let (X,� pb) be a complete ordered partial b-metric space. Let T : X → X be a continuous
and nondecreasing mapping with respect to � and satisfying (3.4) for all x, y ∈ X with y � x. If there exists
x0 such that x0 � Tx0.

Then T has a fixed point. If for all x, y ∈ X there exists z ∈ X such that x � z, y � z and z � Tz, one
has uniqueness of the fixed point.
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Corollary 3.13. Let (X,� pb) be a complete ordered partial b-metric space. Let T : X → X be a continuous
and nondecreasing mapping with respect to � and satisfying (3.5) for all x, y ∈ X with y � x. If there exists
x0 such that x0 � Tx0.

Then T has a fixed point. If for all x, y ∈ X there exists z ∈ X such that x � z, y � z and z � Tz, one
has uniqueness of the fixed point.

Corollary 3.14. Let (X,� pb) be a complete ordered partial b-metric space. Let T : X → X be a continuous
and nondecreasing mapping with respect to � and satisfying (3.6) for all x, y ∈ X with y � x. If there exists
x0 such that x0 � Tx0.

Then T has a fixed point. If for all x, y ∈ X there exists z ∈ X such that x � z, y � z and z � Tz, one
has uniqueness of the fixed point.

Corollary 3.15. Let (X,� pb) be a complete ordered partial b-metric space. Let T : X → X be a continuous
and nondecreasing mapping with respect to � and satisfying (3.7) for all x, y ∈ X with y � x. If there exists
x0 such that x0 � Tx0.

Then T has a fixed point. If for all x, y ∈ X there exists z ∈ X such that x � z, y � z and z � Tz, one
has uniqueness of the fixed point.

Corollary 3.16 ([17]). Let (X,� pb) be a complete ordered partial b-metric space. Let T : X → X be a
continuous and nondecreasing mapping with respect to �, for all x, y ∈ X with y � x such that

pb(Tx, Ty) ≤ k

s
max{pb(x, y), pb(x, Tx), pb(y, Ty),

1

2s
(pb(x, Ty) + pb(y, Tx))}. (3.8)

If there exists x0 such that x0 � Tx0. Then T has a fixed point. If for all x, y ∈ X there exists z ∈ X such
that x � z, y � z and z � Tz, one has uniqueness of the fixed point.

Thirdly, the following results from our Theorem 2.15.
Let ψ(t) = λst, λs < 1, we obtain the following results.

Corollary 3.17 ([27]). Let (X, pb) be a complete partial b-metric space. T : X → X be a given mapping,
for all x, y ∈ X and λ ∈ [0, 12), λs < 1 such that

pb(Tx, Ty) ≤ λ[pb(x, Tx) + pb(y, Ty)]. (3.9)

Then T has a unique fixed point.

Corollary 3.18 ([27]). Let (X, pb) be a complete partial b-metric space. T : X → X be a given mapping,
for all x, y ∈ X and λ ∈ [0, 1), λs < 1 such that

pb(Tx, Ty) ≤ λmax{pb(x, y), pb(x, Tx), pb(y, Ty)}. (3.10)

Then T has a unique fixed point.

Let s = 1 and for all x, y ∈ X, pb(x, y) = 0 if and only if x = y, we obtain the following results.

Corollary 3.19. Let (X, d) be a complete metric space. suppose that T : X → X is a generalized α − ψ
contractive mapping defined by the following inequality

α(x, y)d(Tx, Ty) ≤ ψ(max{d(x, y), d(x, Tx), pb(y, Ty)),
1

2
d(x, Ty) + d(y, Tx))}), (3.11)

for all x, y ∈ X, and which satisfies:

(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
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(iii) T is continuous or {xn} is a sequence in (X, d) such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X
as n→∞, then α(xn, x) ≥ 1.

Then T has a fixed point, if condition (H’) is satisfied, one has uniqueness of the fixed point.

Corollary 3.20 ([15]). Let (X, d) be a complete metric space. Suppose that T : X → X is a generalized
α− ψ contractive mapping defined by the following inequality

α(x, y)d(Tx, Ty) ≤ ψ(max{d(x, y),
1

2
d(x, Tx), pb(y, Ty)),

1

2
d(x, Ty) + d(y, Tx))}), (3.12)

for all x, y ∈ X, and which satisfies:

(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is continuous or {xn} is a sequence in (X, d) such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X
as n→∞, then α(xn, x) ≥ 1.

Then T has a fixed point, if condition (H’) is satisfied, one has uniqueness of the fixed point.

Finally, the following results from our Theorem 2.20. Let α(x, y) = 1 for all x, y ∈ X, we obtain the
following results.

Corollary 3.21. Let (X, pb) be a complete partial b-metric space. f, g : X → X be two given mappings,
suppose that there exists a function ψ ∈ Ψ, for all x, y ∈ X such that

pb(Tx, Ty) ≤ 1

s
ψ(max{pb(x, y), pb(x, fx), pb(y, gy),

1

2s
(pb(x, gy) + pb(y, fx))}). (3.13)

Then f and g have a unique fixed point.

Corollary 3.22 ([17]). Let (X,�, pb) be a complete ordered partial b-metric space. Also f, g : X → X be
two given mappings with fx ≤ gfx, gx ≤ fgx,∀x ∈ X, and for all x, y ∈ X with y � x such that

pb(Tx, Ty) ≤ k

s
max{pb(x, y), pb(x, fx), pb(y, gy),

1

2s
(pb(x, gy) + pb(y, fx))}, (3.14)

if f is continuous or {xn} is a nondecreasing sequence in (X,�, pb) such that xn → x ∈ X as n→∞, then
(xn � x) for all n ∈ N .

Then f and g have a fixed point, if for all x, y ∈ X there exists z ∈ X such that x � z, y � z and
z � Tz, one has uniqueness of the fixed point.
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