
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 2631–2637

Research Article

Scrambled sets of shift operators

Xinxing Wua,∗, Guanrong Chenb

aSchool of Sciences, Southwest Petroleum University, Chengdu, Sichuan, 610500, People’s Republic of China.
bDepartment of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, People’s Republic of China.

Communicated by M. Eslamian

Abstract

In this paper, some characterizations about orbit invariants, p-scrambled points and scrambled sets are
obtained. Applying these results solves a conjecture and two problems given in [X. Fu, Y. You, Nonlinear
Anal., 71 (2009), 2141–2152]. c©2016 All rights reserved.

Keywords: Li-Yorke chaos, scrambled (chaotic) set, shift operator.
2010 MSC: 54H20, 26A18, 37E05.

1. Introduction and preliminaries

A topological dynamical system (briefly, dynamical system), is denoted by a pair (X, f), where X is a
complete metric space without isolated points and f : X −→ X is continuous. Let N = {1, 2, 3, . . .} and
Z+ = {0, 1, 2, . . .}. For a dynamical system (X, f), the set of fixed points and periodic points of f are denoted
by Fix(f) and Per(f), respectively. The positive orbit of x is the set orb+

f (x) = {fn(x) : n ∈ Z+}.
The complexity of a dynamical system is a central topic of research since the term of chaos was introduced

by Li and Yorke [5] in 1975, known as Li-Yorke chaos today. In their study, Li and Yorke suggested
considering ‘divergent pairs’ (x, y), which are proximal but not asymptotic, i.e.,

lim inf
n→∞

d(fn(x), fn(y)) = 0, lim sup
n→∞

d(fn(x), fn(y)) > 0.

In this context, a subset D ⊂ X containing at least two points is called a scrambled set of (X, f) or simply
of f , if for any pair of distinct points x, y ∈ D, (x, y) is proximal but not asymptotic. If a scrambled set D
of f is also uncountable, it is called a Li-Yorke chaotic set for f , and f is said to be chaotic in the sense of
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Li-Yorke. As is well known, sensitivity is widely understood as a key ingredient of chaos and was popularized
by the meteorologist Lorenz thought the so-called ‘butterfly effect’. More recent results on sensitivity can
be found in [4, 10, 11, 13].

A generalization of Li-Yorke chaos is proposed by Schweizer and Smı́tal in [8], which is equivalent to
having a positive topological entropy and some other concepts of chaos when restricted to a compact interval
[8] or a hyperbolic symbolic space [6]. It is remarkable that this equivalence does not transfer to higher
dimensions, e.g. positive topological entropy does not imply distributional chaos in the case of triangular
maps in the unit square [9] (the same happens when the dimension is zero [7]).

For any pair (x, y) ∈ X ×X and for any n ∈ N, the distributional function Fnx,y : R −→ [0, 1] is defined
by

Fnx,y(t, f) =
1

n

∣∣{i : d(f i(x), f i(y)) < t, 1 ≤ i ≤ n
}∣∣ ,

where |A| denotes the cardinality of the set A. The lower and upper distributional functions generated by
f , x and y are defined as

Fx,y(t, f) = lim inf
n→∞

Fnx,y(t, f),

and
F ∗x,y(t, f) = lim sup

n→∞
Fnx,y(t, f),

respectively. Both functions Fx,y and F ∗x,y are non-decreasing and Fx,y ≤ F ∗x,y.
A dynamical system (X, f) is distributionally ε-chaotic for a given ε > 0 if there exists an uncountable

subset S ⊂ X such that for any pair of distinct points x, y ∈ S, one has F ∗x,y(t, f) = 1 for all t > 0 and
Fx,y(ε, f) = 0. The set S is a distributionally ε-chaotic set and the pair (x, y) a distributionally ε-chaotic
pair. If (X, f) is distributionally ε-chaotic for any given 0 < ε < diamX, then (X, f) is said to exhibit
maximal distributional chaos.

Definition 1.1 ([2, 3]). For an integer p > 0, a point x ∈ X is p-scrambled if the pair (x, fp(x)) is proximal
but not asymptotic, i.e.,

lim inf
n→∞

d(fn(x), fn(fp(x))) = 0, lim sup
n→∞

d(fn(x), fn(fp(x))) > 0.

In [3], Fu and You proved that if for all p ∈ N, x is p-scrambled, then the orbf (x) is a scrambled set. In
section 2 below, more results on p-scrambled points will be given.

Definition 1.2 ([3]). A map γ is said to be orbit invariant on D ⊂ X under f , if

(1) γ : ∪+∞n=0f
n(D) −→ (0, 1) is a function;

(2) γ|D is injective;

(3) γ(fn(x)) = γ(x), ∀x ∈ D, ∀n ≥ 0,

i.e., γ has the same value on an orbit, but different values on different orbits.

Let A = {0, 1, . . . , N − 1} for some integer N ≥ 2 with a discrete metric d, and denote by Σ(N) the
space consisting of one-sided sequences in A. So, x ∈ Σ(N) may be denoted by x = x1x2 · · · , xi ∈ A, ∀i ∈ N.
Let Σ(N) be endowed with the product topology. Then, Σ(N) is metrizable, and a metric on Σ(N) can be
chosen to be

ρ(x, y) =

∞∑
i=1

d(xi, yi)

2i
, ∀x = x1x2 · · · , y = y1y2 · · · ∈ Σ(N).

Define σ : Σ(N) −→ Σ(N) by
σ(x1x2 · · · ) = x2x3 · · · ,

called the shift on Σ(N), which is continuous. Also, (X,σ|X) is called a shift space or subshift, where X is
a closed and invariant subset of Σ(N).

To characterize the scrambled sets of σ, Fu and You [3] proved the following result.
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Theorem 1.3 ([3]). Let D ⊂ Σ(2) with |D| ≥ 2. If there exists an orbit invariant on D under σ, and
η(x, y) = 1 for all x, y ∈ D, then D is a scrambled set of σ, and moreover ∃p ∈ Per(σ), such that ∀m,n ∈ Z+,
m 6= n, σm(D) ∩ σn(D) ⊂ orb+

σ (p), where

η(x, y) = lim sup
n→∞

1

n
|{k : xk = yk, 1 ≤ k ≤ n}| .

At the same time, the following conjecture was made in [3]:

Conjecture 1.4 ([3]). The condition η(x, y) = 1 for x, y ∈ D in Theorem 1.3 may be replaced by a weaker
condition that η(x, y) ≥ δ for some (or any given) positive constant δ < 1.

At the end of [3], Fu and You also posed the following two open problems on the scrambled sets of σ:

Question 1.5 ([3]). Is it possible to formulate some necessary and sufficient conditions for D to be a
scrambled set of σ?

Question 1.6 ([3]). Does there exists a subshift (X,σ|X) with the whole space X being a scrambled set of
σ|X?

In this paper, we further investigate the structures of the Li-Yorke chaotic sets and the distributionally
chaotic sets generated by shift and weighted-shift operators. In Section 2, we prove Conjecture 1.4 and
answer Question 1.5 and Question 1.6 (see Example 2.6, Theorem 2.3, and Theorem 2.5, respectively).

2. Scrambled (chaotic) sets and orbit invariants

In this section, we further study the structure of Li-Yorke chaotic sets of the shift operator. Note that
some results of the Li-Yorke chaotic sets for the shift operator is already obtained by Fu et al. in [2, 3]. Our
new contribution here is to characterize Li-Yorke chaotic sets by orbit invariants, Furstenberg families and
p-scrambled points. Applying these concepts and relevant results, Conjecture 1.4 and Question 1.5 are both
solved.

Theorem 2.1. For a dynamical system (X, f), there exists an orbit invariant map on D ⊂ X if and only
if |D| ≤ |(0, 1)| and orb+

f (x) ∩ orb+
f (y) = ∅, ∀x, y ∈ D, x 6= y.

Proof. Sufficiency. Because |D| ≤ |(0, 1)|, there exists an injection γ∗ : D −→ (0, 1). Define

γ : ∪+∞n=0f
n(D) −→ (0, 1)

by
γ(orb+

f (x)) = γ∗(x), x ∈ D.

As orb+
f (x) ∩ orb+

f (y) = ∅ holds for any x, y ∈ D with x 6= y, γ is well defined and it can be verified that γ
is an orbit invariant map on D.

Necessity. Let α : ∪+∞n=0f
n(D) −→ (0, 1) be an orbit invariant map on D. It is clear that |D| = |α(D)| ≤

|(0, 1)|.
It remains to show that orb+

f (x) ∩ orb+
f (y) = ∅, ∀x, y ∈ D, x 6= y.

Suppose that there exist x, y ∈ D with x 6= y such that orb+
f (x) ∩ orb+

f (y) 6= ∅. This implies that there

exist m,n ∈ Z+ such that fm(x) = fn(y). Thus

α(x) = α(fm(x)) = α(fn(y)) = α(y), (2.1)

which contradicts that α is orbit invariant.

Theorem 2.2. Let D be a scrambled set of f with |D| ≤ |(0, 1)| and Per(f) 6= ∅. Then, the following
statements are equivalent:
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(1) There exists an orbit invariant map on D.

(2) fm(D) ∩ fn(D) ⊂ Per(f), ∀m,n ∈ Z+, m 6= n.

(3) There exists a p ∈ Per(f) such that ∀m,n ∈ Z+, m 6= n, fm(D) ∩ fn(D) ⊂ orb+
f (p).

(4) orb+
f (x) ∩ orb+

f (y) = ∅, ∀x, y ∈ D, x 6= y.

Proof. Applying Theorem 2.1 and [2, Theorem 2.2, Lemma 2.3], we have (2)⇐⇒ (3) =⇒ (1)⇐⇒ (4), so it
suffices to show that (4) =⇒ (2).

Given any fixed m,n ∈ Z+ with m < n, for any x∗ ∈ fm(D) ∩ fn(D), there exist x, y ∈ D such that
fm(x) = x∗ = fn(y). Combining this with hypothesis (4), it follows that x = y, so that

fm(x) = x∗ = fn−m(fm(x)) = fn−m(x∗) ∈ Per(f). (2.2)

In [3], Fu and You thought that a possible route to solve Question 1.5 is to re-define the function η(·, ·).
Theorem 2.3 shows that this works. For this, let us first recall some notations [1]. For the set of positive
integers N, denote by P = P(N) the collection of all subsets of N. A subset F of P is called a Furstenberg
family (briefly, a family), if it is hereditary upward, i.e., F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F . Let Finf be
the family of all infinite subsets of N. A subset F of N is called thick if it contains arbitrarily long runs of
positive integers, i.e., for any n ∈ N, there exists some an ∈ N such that {an + 1, . . . , an + n} ⊂ F . The
families of all thick sets of N is denoted by Ft. For A ⊂ Z+, define

d(A) = lim sup
n→+∞

1

n
|A ∩ [0, n− 1]| and d(A) = lim inf

n→+∞

1

n
|A ∩ [0, n− 1]| .

Then, d(A) and d(A) are the upper density and the lower density of A, respectively.
Similarly, define the upper Banach density and the lower Banach density of A as

BD∗(A) = lim sup
|I|→+∞

|A ∩ I|
|I|

and BD∗(A) = lim inf
|I|→+∞

|A ∩ I|
|I|

,

where I is over all non-empty finite intervals of Z+. It is well known that A ⊂ Z+ is thick if and only
if BD∗(A) = 1. Moreover, define DIF (x, y) = {k ∈ N : xk 6= yk} and IDE(x, y) = {k ∈ N : xk = yk},
∀x, y ∈ Σ(N). Clearly, η(x, y) = d(IDE(x, y)).

Theorem 2.3. D ⊂ Σ(N) is a scrambled set of σ if and only if for any x, y ∈ D with x 6= y, DIF (x, y) ∈
Finf and IDE(x, y) ∈ Ft, i.e., BD∗(IDE(x, y)) = 1.

Proof. Sufficiency. Given any x, y ∈ D with x 6= y, since DIF (x, y) ∈ Finf , we may assume that
DIF (x, y) = {nk}k∈N. Then, for any k ∈ N, we have ρ(σnk−1(x), σnk−1(y)) ≥ 1

2 . This implies that

lim sup
n→∞

ρ(σn(x), σn(y)) ≥ lim sup
k→∞

ρ(σnk−1(x), σnk−1(y)) ≥ 1

2
. (2.3)

As IDE(x, y) ∈ Ft, for any m ∈ N, there exists some am ∈ N such that {am + 1, . . . , am +m} ∈
IDE(x, y). Hence,

d(σam(x), σam(y)) ≤
∞∑

i=m+1

1

2i
=

1

2m
. (2.4)

Thus
lim inf
n→∞

ρ(σn(x), σn(y)) ≤ lim inf
m→∞

ρ(σam(x), σam(y)) = 0. (2.5)
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Since x and y are arbitrary, it follows that D is a scrambled set of σ.
Necessity. For any fixed x, y ∈ D with x 6= y, it is clear that DIF (x, y) ∈ Finf as

lim sup
n→∞

ρ(σn(x), σn(y)) > 0.

Since lim infn→∞ ρ(σn(x), σn(y)) = 0, it follows that for any k ∈ N, there exists some bk ∈ N such that
ρ(σbk(x), σbk(y)) ≤ 1

2k+1 . This implies that the first k symbols of σbk(x) and σbk(y) coincide correspondingly
for any k ∈ N. So

∞⋃
k=1

{bk + 1, . . . , bk + k} ⊂ IDE(x, y) and
∞⋃
k=1

{bk + 1, . . . , bk + k} ∈ Ft. (2.6)

Therefore, IDE(x, y) ∈ Ft which is equivalent to BD∗(IDE(x, y)) = 1.

Theorem 2.4. Assume that N ≥ 2 and x ∈ Σ(N). Then, the following statements are equivalent:

(1) x is 1-scrambled.

(2) x is p-scrambled for all p ∈ N.

(3) orb+
σ (x) is a scrambled set of σ.

Proof. It is clear that (3) =⇒ (2) =⇒ (1). Combining this with [3, Lemma 3.2] which shows that (2) =⇒ (3),
it suffices to show that (1) =⇒ (2).

Denote x = x1x2 · · · . Theorem 2.3 and (1) together imply that DIF (x, σ(x)) = {k ∈ N : xk 6= xk+1} ∈
Finf and IDE(x, σ(x)) = {k ∈ N : xk = xk+1} ∈ Ft.

Claim 1. For any p ≥ 2, lim supn→∞ ρ(σn(x), σn(σp(x))) > 0.

Suppose that there exists some p ≥ 2 such that lim supn→∞ ρ(σn(x), σn(σp(x))) = 0. This implies that
there exists a K∗ ∈ N such that {k ∈ N : k ≥ K∗} ⊂ IDE(x, σp(x)) = {k ∈ N : xk = xk+p}. Combining this
with DIF (x, σ(x)) ∈ Finf , it can be verified that there exist 0 ≤ j1 < j2 ≤ p− 1 such that for any n ∈ N,

xK∗+j1+np = xK∗+j1 6= xK∗+j2 = xK∗+j2+np. (2.7)

This means that IDE(x, σ(x)) /∈ Ft, which is a contradiction.

Claim 2. For any p ≥ 2, lim infn→∞ ρ(σn(x), σn(σp(x))) = 0.

Given any fixed p ≥ 2, since IDE(x, σ(x)) ∈ Ft, for any k ∈ N there exists ak ∈ N such that
xak+1 = · · · = xak+k. This implies that for any k > p and any ak + 1 ≤ i ≤ ak + k − p, σi(x) = σi(σp(x)),
i.e.,

∞⋃
k=p+1

{ak + 1, . . . , ak + k − p} ⊂ IDE(x, σp(x)) ∈ Ft. (2.8)

Thus,
lim inf
n→∞

ρ(σn(x), σn(σp(x))) = 0. (2.9)

Combining Claim 1 with Claim 2 implies that x is p-scrambled for all p ≥ 2, hence for all p ∈ N.

For the shift operator σ, Theorem 2.4 characterizes p-scrambled points. Now, we may further ask if
Theorem 2.4 holds for a general dynamical system (X, f)? We conjecture that this is true. The following
theorem gives a negative answer to Question 1.6. In contrast with Theorem 2.5, we [12] obtained that
(Σ(2), σ) contains an invariant distributionally ε-chaotic set for any 0 < ε < diamΣ(2).

Theorem 2.5. Dynamical system (Σ(N), σ) does not contain invariant scrambled closed subsets.
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Proof. It suffices to check the case of N = 2, because the rest cases can be verified similarly. Suppose that D
is an invariant scrambled closed subset of σ. Noting that for any fixed x ∈ D, lim infn→∞ d(σn(x),σn(σ(x)))=
0, it follows that there exists an increased sequence {nk}∞k=1 ⊂ N such that limk→∞ d(σnk(x), σnk(σ(x))) = 0.
Without loss of generality, assume that limk→∞ σ

nk(x) = z ∈ D. Then,

d(z, σ(z)) = lim
k→∞

d(σnk(x), σnk(σ(x))) = 0, i.e., z ∈ D ∩ Fix(f).

For any p, q ∈ D∩Fix(f), it can be verified that d(p, q) = lim infn→∞ d(σn(p), σn(q)) = 0, implying that the
set D∩Fix(f) only contains an element. Without loss of generality, assume that D∩Fix(f) = {(0, 0, 0, . . .)}.

Given any fixed x = (x1, x2, x3, . . .) ∈ D \ Fix(f), as (x, σ(x)) is proximal but not asymptotic, Theorem
2.3 implies that

{i ∈ N : xi 6= xi+1} ∈ Finf , (2.10)

and
{i ∈ N : xi = xi+1} ∈ Ft. (2.11)

Applying (2.11) implies that for any k ∈ N, there exists nk ∈ N such that xnk
= xnk+1 = · · · = xnk+k.

(a) If {k ∈ N : xnk
= xnk+1 = · · · = xnk+k = 1 for some nk ∈ N} is infinite, then we have (1, 1, 1, . . .) ∈

ω(x, σ) ⊂ D. This is a contradiction as D ∩ Fix(f) = {(0, 0, 0, . . .)}.

(b) If {k ∈ N : xnk
= xnk+1 = · · · = xnk+k = 1 for some nk ∈ N} is finite, then there exists K ∈ N

such that for any k ≥ K, xnk
= xnk+1 = · · · = xnk+k = 0. Combining this with (2.10) yields that

(1, 0, 0, . . .) ∈ ω(x, σ) ⊂ D. This is impossible because limn→∞ d(σn(0, 0, 0, . . .), σn(1, 0, 0, . . .)) = 0.

Finally in this section, we show an example that Conjecture 1.4 mentioned earlier does not hold. More-
over, this example shows that [3, Corollary 3.6] is not true.

Example 2.6. Define

X0 =
{
x1x2 · · · ∈ Σ(2) : x4n+1 = 1, x4n+2 = x4n+3 = 0, ∀n ∈ Z+

}
,

X1 =
{
x1x2 · · · ∈ Σ(2) : x4n+4 = 1, x4n+1 = x4n+2 = 0,∀n ∈ Z+

}
,

X2 =
{
x1x2 · · · ∈ Σ(2) : x4n+3 = 1, x4n+1 = x4n+4 = 0,∀n ∈ Z+

}
,

and
X3 =

{
x1x2 · · · ∈ Σ(2) : x4n+2 = 1, x4n+3 = x4n+4 = 0,∀n ∈ Z+

}
.

It is easy to see that σ(Xj) = Xj+1 (mod 4) and X := ∪3j=0Xj is a closed invariant set under σ. For any

x = x1x2 · · · , y = y1y2 · · · ∈ X, denote x ∼ y, if orb+
σ (x) ∩ orb+

σ (y) 6= ∅. It can be verified that ‘∼’ is an
equivalence relation on X. For any x ∈ X, it is easy to see that the set {y ∈ X : y ∼ x} is countable and so
the quotient set X/ ∼ is uncountable. Taking a representative in each equivalence class of X/ ∼, we get an
uncountable set E. Without loss of generality, we may assume that E ⊂ X0.

Fix a point z ∈ E and define D = (E \ {z}) ∪ {σ(z)}. Theorems 2.1 and Theorem 2.3 imply that the
following three claims hold.

• Claim 1. There exists a surjective map γ : ∪+∞n=0σ
n(D) −→ (0, 1) such that γ|D is injective and

γ (σn(x)) = γ(x) for all x ∈ D and for any n ∈ Z+.

• Claim 2. η(x, y) ≥ 1
4 for any x, y ∈ D.

• Claim 3. D is not a scrambled set of σ.
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[9] J. Smı́tal, M. Štefánková, Distributional chaos for triangular maps, Chaos Solitons Fractals, 21 (2004), 1125–1128.

1
[10] X. Wu, G. Chen, On the large deviations theorem and ergodicity, Commun. Nonlinear Sci. Numer. Simul., 30

(2016), 243–247.1
[11] X. Wu, J. Wang, G. Chen, F -sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal.

Appl., 429 (2015), 16–26.1
[12] X. Wu, P. Zhu, Invariant scrambled set and maximal distributional chaos, Ann. Polon. Math., 109 (2013), 271–

278.2
[13] X. Ye, R. Zhang, On sensitive sets in topological dynamics, Nonlinearity, 21 (2008), 1601–1620.1


	1 Introduction and preliminaries
	2 Scrambled (chaotic) sets and orbit invariants

