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Abstract

The aim of this work is to introduce a new three step iteration scheme for approximating fixed points
of the nonlinear self mappings on a normed linear spaces satisfying Berinde contractive condition. We also
study the sufficient condition to prove that our iteration process is faster than the iteration processes of
Mann, Ishikawa and Agarwal, et al. Furthermore, we give two numerical examples which fixed points are
approximated by using MATLAB. c©2016 All rights reserved.
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1. Introduction and preliminaries

It is well-known that several mathematics problems are naturally formulated as fixed point problem,

Tx = x, (1.1)

where T is some suitable mapping, may be nonlinear.
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For example, for a given mappings φ : [a, b] ⊆ R→ R and K : [a, b]× [a, b]× R→ R, the solution of the
following nonlinear integral equation:

x(c) = φ(c) +

∫ b

a
K(c, r, x(r))dr, (1.2)

where x ∈ C[a, b] (the set of all continuous real-valued functions defined on [a, b] ⊆ R), is equivalently with
fixed point problem for a mapping T : C[a, b]→ C[a, b] which is defined by

(Tx)(c) = φ(c) +

∫ b

a
K(c, r, x(r))dr

for all x ∈ C[a, b].
A solution x∗ of the problem (1.1) is called a fixed point of the mapping T . Throughout this paper, we

denote by Dom(T ) and Fix(T ) the domain of a mapping T and the set of all fixed points of a mapping T ,
respectively.

Consider the fixed point iteration, which is given by

xn+1 = Txn, n = 0, 1, 2, ..., (Pn)

where x0 is arbitrary point but fixed in Dom(T ). Sometime the iterative method (Pn) is also called the
Picard iteration, or the Richardson iteration, or the method of successive substitution. The standard result
for a fixed point iteration is the Banach contraction mapping principle as follows:

Theorem 1.1 ([3]). Let (X, d) be a complete metric space and T : X → X be a contraction mapping, i.e.,
a mapping for which there exists a constant k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y) (1.3)

for all x, y ∈ X. Then T has a unique fixed point x∗ ∈ X and the iterates (Pn) converge to the fixed point
x∗. Moreover, the error estimation is given by:

d(Tnx, x∗) ≤ kn

1− k
d(x, Tx)

for each x ∈ X.

If constant k in condition (1.3) is equal to 1, then T is called a nonexpansive mapping. In fact, the Picard
iteration (Pn) has been successfully employed for approximating the fixed point of contraction mappings
and its variants. This success, however, has not extended to some nonlinear mapping such as nonexpansive
mappings whenever the existence of a fixed point of such mappings is known.

Consider the mapping T : [0, 1] → [0, 1] which is defined by Tx = 1 − x for all x ∈ [0, 1]. Then T is
a nonexpansive mapping on a usual metric with a unique fixed point x∗ = 1

2 . We observe that the Picard
iteration (Pn) of T with the starting value x0 ∈ [0, 1] such that x0 6= 1

2 yield the sequence {1−x0, x0, 1−x0, ...}
for which does not converge to a fixed point x∗ of T . Therefore, when a fixed point of nonexpansive mappings
exists, other approximation techniques are needed to approximate it.

Iteration schemes for numerical reckoning fixed points of various classes of nonlinear operators have
been introduced and studied by many mathematicians. For instance, the class of nonexpansive mappings
via iteration methods is extensively studied in results of Tan and Xu [17] and Thakur et al. [20]. Also,
the class of pseudocontractive mappings in their relation with iteration procedures has been studied by
several researchers under suitable conditions (see main results of Yao et al. [21, 22], Thakur et al. [18, 19],
Dewangan et al. [8, 9]).

Throughout this paper, unless otherwise specified, let E be a normed linear space and T : E → E be a
given mapping. Here, we give some concepts of other approximation techniques.
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The Mann iteration process [13] is defined by the following sequence {xn}:{
x0 ∈ E,
xn+1 = (1− αn)xn + αnTxn, n = 0, 1, 2, ...,

(Mn)

where {αn}∞n=0 is real control sequence in the interval [0, 1].

Remark 1.2. For αn = α ∈ [0, 1] (constant), the iteration (Mn) reduces to the the Krasnoselskij iteration,
while for αn = 1 the iteration (Mn) becomes the Picard iteration (Pn).

In 1974, Ishikawa [12] introduced an iteration process {xn} defined iteratively by
x0 ∈ E,
yn = (1− βn)xn + βnTxn,
xn+1 = (1− αn)xn + αnTyn, n = 0, 1, 2, ...,

(In)

where {αn}∞n=0, {βn}∞n=0 are real control sequences in the interval [0, 1].

Remark 1.3. The Ishikawa iteration (In) reduces to the Mann iteration process (Mn) when take βn = 0 for
all n = 0, 1, 2, ... .

In 2007, Agarwal et al. [2] introduced an iteration process {sn} defined iteratively by
s0 ∈ E,
tn = (1− βn)sn + βnTsn,
sn+1 = (1− αn)Tsn + αnTtn, n = 0, 1, 2, ...,

(ARSn)

where {αn}∞n=0, {βn}∞n=0 are real control sequences in the interval [0, 1].
Now we come back to the contractive condition (1.3). We can easily see that this condition forces T to

be continuous on X. It is then natural to ask that there exist contractive conditions which do not imply
the continuity of T . In 1968, Kannan give answer for this question by considering instead of (1.3) the next
condition of mappings that need not be continuous: there exists k ∈ [0, 1/2) such that

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)] (1.4)

for all x, y ∈ E.

Example 1.4. Let X = R be a usual metric space and T : X → X be defined by

Tx =

{
0, x ∈ (−∞, 2]
−1

2 , x ∈ (2,∞).

Then T is not continuous on R but it satisfies condition (1.4) with k = 1
5 .

In 1975, Subrahmanyam [16] proved that Kannan contractive condition (1.4) characterizes the metric
completeness, that is, a metric space E is complete if and only if every Kannan contraction mapping on E
has a fixed point. Especially, the similar contractive condition of (1.4) has been introduced by Chatterjea
[7] as follows: there exists k ∈ [0, 1/2) such that

d(Tx, Ty) ≤ k[d(x, Ty) + d(y, Tx)] (1.5)

for all x, y ∈ E.

Remark 1.5. Note that conditions (1.3), (1.4) and (1.5) are independent contractive conditions (see in [15]).

In 1972, Zamfirescu [23] obtained a very interesting fixed point theorem, by combining (1.3), (1.4) and
(1.5) as follows:
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Theorem 1.6. Let (X, d) be a complete metric space and T : X → X be a Zamfirescu mapping, i.e., there
exist the real numbers a, b and c satisfying a ∈ [0, 1) and b, c ∈ [0, 1/2) such that for each x, y ∈ X, at least
one of the following is true:

(Z1) d(Tx, Ty) ≤ ad(x, y);

(Z2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)];

(Z3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

Then T has a unique fixed point x∗ and the Picard iteration {xn} defined as (Pn) converges to x∗ for arbitrary
but fixed x0 ∈ X.

In 2004, Berinde [4] introduced a new class of mappings on a metric space (X, d) satisfying

d(Tx, Ty) ≤ δd(x, y) + Ld(x, Tx) for all x, y ∈ X, (1.6)

where 0 ≤ δ < 1 and L ≥ 0.

Remark 1.7. It follows from the symmetry of the metric that the weak contractive condition (1.6) implies
the following condition:

d(Tx, Ty) ≤ δd(x, y) + Ld(y, Ty) for all x, y ∈ X, (1.7)

Therefore, in order to check the weak contractiveness of T , it is necessary to check both (1.6) and (1.7).

He also showed that the class of nonlinear mapping satisfying the condition (1.6) is wider than the class
of Zamfirescu mappings. In next year, Berinde [6] used the Ishikawa iteration process (In) to approximate
fixed points of this class in a normed linear space.

By using the iteration process (ARSn), Hussain et al. [11] proved a general theorem to approximate
fixed points for nonlinear self mappings T on a nonempty closed convex subset C of a normed linear space
E satisfying the condition (1.6) as follows:

Theorem 1.8 ([11]). Let C be a nonempty closed convex subset of a Banach space E and T : C → C be a
mapping satisfying the condition (1.6). Suppose that the sequence {sn} is defined through the iterative process

(ARSn) and s0 ∈ C, where {αn}∞n=0, {βn}∞n=0 are sequences in the interval [0, 1] satisfying
∞∑
n=0

αn = ∞. If

Fix(T ) 6= ∅, then the sequence {sn} converges strongly to the fixed point of T .

They also give some example to show that iteration process (ARSn) is faster than the iteration processes
(Mn) and (In) in the sense of Berinde [5] (see in Definition 1.9).

Definition 1.9 ([5]). Let {an} and {bn} be two sequences of real numbers that converge to a and b,
respectively, and assume that there exists

l := lim
n→∞

|an − a|
|bn − b|

.

(R1) If l = 0, then it can be said that {an} converges faster to a than {bn} to b.

(R2) If 0 < l <∞, then it can be said that {an} and {bn} have the same rate of convergence.

Next, we give the useful concept about rate of convergence due to Abbas and Nazir [1].

Definition 1.10 ([1]). Let (X, ‖ · ‖) be a normed linear space and {un}, {vn} be two sequences in X.
Suppose that {un} and {vn} converging to the same point p ∈ X and the following error estimates

||un − p|| ≤ an, for alln ∈ N;

||vn − p|| ≤ bn, for alln ∈ N;

are available, where {an} and {bn} are two sequences of positive numbers (converging to zero). If {an}
converges faster than {bn}, then {un} converges faster than {vn} to p.
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In this work, the authors deal with the iterates of Berinde mappings, in normed linear spaces, under
a new iteration process (Sn) (see this process in Section 2), with convergence analysis. We also support
analytic proof by numerical examples in Section 3.

2. Approximation results

In this section, we prove the new theorem to approximate fixed points for nonlinear self mappings T on
a nonempty closed convex subset C of normed linear space E satisfying the condition (1.6) through the new
iteration process as follows: 

x0 ∈ C,
yn = (1− βn)xn + βnTxn,
zn = (1− γn)xn + γnyn,
xn+1 = (1− αn)Tzn + αnTyn, n = 0, 1, 2, ...,

(Sn)

where {αn}∞n=0, {βn}∞n=0, {γn}∞n=0 are real control sequences in the interval [0, 1].

Theorem 2.1. Let C be a nonempty closed convex subset of a Banach space (E, ‖ · ‖) and T : C → C be a
mapping satisfying the contractive condition (1.6), with the fixed point w. Suppose that the sequence {xn}
is defined by the iteration process (Sn) and the sequences {αn}∞n=0, {βn}∞n=0, and {γn}∞n=0 are in [α, 1− α],
[β, 1 − β], and [γ, 1 − γ] respectively, with α, β, γ ∈ (0, 12). If α(2 − γ) < γ, then the iteration process (Sn)
converges strongly to the fixed point w of T faster than (ARSn).

Proof. For each n ∈ {0, 1, 2, ...}, by using (Sn), we get

‖xn+1 − w‖ = ‖(1− αn)Tzn + αnTyn − w‖
= ‖(1− αn)(Tzn − w) + αn(Tyn − w)‖
≤ (1− αn)‖Tzn − w‖+ αn‖Tyn − w‖
≤ (1− αn)δ‖zn − w‖+ αnδ‖yn − w‖
≤ (1− αn)‖zn − w‖+ αn‖yn − w‖.

(2.1)

Using (Sn) again, for each n ∈ {0, 1, 2, ...}, we have

‖yn − w‖ = ‖(1− βn)xn + βnTxn − w‖
= ‖(1− βn)(xn − w) + βn(Txn − w)‖
≤ (1− βn)‖xn − w‖+ βn‖Txn − w‖
≤ (1− βn)‖xn − w‖+ βnδ‖xn − w‖
= (1− (1− δ)βn)‖xn − w‖

(2.2)

and

‖zn − w‖ = ‖(1− γn)xn + γnyn − w‖
= ‖(1− γn)(xn − w) + γn(yn − w)‖
≤ (1− γn)‖xn − w‖+ γn‖yn − w‖
≤ (1− γn)‖xn − w‖+ γn(1− (1− δ)βn)‖xn − w‖
= (1− (1− δ)βnγn)‖xn − w‖.

(2.3)

From (2.1), (2.2) and (2.3), we have

‖xn+1 − w‖ ≤ {(1− αn)[1− (1− δ)βnγn] + αn[1− (1− δ)βn]}‖xn − w‖
= {1− (1− δ)βnγn − (1− δ)αnβn(1− γn)}‖xn − w‖
= {1− (1− δ)βn[γn + αn(1− γn)]}‖xn − w‖
≤ {1− (1− δ)β[γ − α+ αγ]}‖xn − w‖
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for all n ∈ {0, 1, 2, ...}. Therefore,

‖xn − w‖ ≤ {1− (1− δ)β[γ − α+ αγ]}n‖x0 − w‖

for all n ∈ {1, 2, ...}. Let

an := {1− (1− δ)β[γ − α+ αγ]}n‖x0 − w‖, n = 1, 2, . . .

Now, let us refer to the (ARSn) iteration. We have

‖sn+1 − w‖ = ‖(1− αn)Tsn + αnTtn − w‖
= ‖(1− αn)(Tsn − w) + αn(Ttn − w)‖
≤ (1− αn)‖Tsn − w‖+ αn‖Ttn − w‖
≤ δ[(1− αn)‖sn − w‖+ αn‖tn − w‖]
≤ (1− αn)‖sn − w‖+ αn‖tn − w‖.

(2.4)

On the other hand,
‖tn − w‖ = ‖(1− βn)sn + βnTsn − w‖

= ‖(1− βn)(sn − w) + βn(Tsn − w)‖
≤ (1− βn)‖sn − w‖+ βn‖Tsn − w‖
≤ (1− βn)‖sn − w‖+ δβn‖Tsn − w‖
= [1− (1− δ)βn]‖sn − w‖.

(2.5)

Using (2.4), and (2.5), we obtain

‖sn+1 − w‖ ≤ [1− (1− δ)αnβn]‖sn − w‖
≤ [1− (1− δ)αβ]‖sn − w‖.

It follows that
‖sn − w‖ ≤ [1− (1− δ)αβ]n‖s0 − w‖, n = 0, 1, 2, . . . .

Let
bn := [1− (1− δ)αβ]n‖s0 − w‖, n = 1, 2, . . . .

Since α(2− γ) < γ, we get that

1− (1− δ)β(γ − α+ αγ) < 1− (1− δ)αβ < 1.

In this respect,
lim
n→∞

‖xn − w‖ ≤ lim
n→∞

{1− (1− δ)β(γ − α+ αγ)}n‖x0 − w‖ = 0,

lim
n→∞

‖sn − w‖ ≤ lim
n→∞

1− (1− δ)αβn‖s0 − w‖ = 0,

lim
n→∞

an
bn

= lim
n→∞

{
1− (1− δ)β(γ − α+ αγ)

1− (1− δ)αβ

}n ‖x0 − w‖
‖s0 − w‖

= 0,

and the conclusion follows.

3. Numerical results

In this section, we consider the following examples to illustrate the theoretical results that our iteration
process (Sn) is faster than the iteration process (ARSn) for mapping satisfying condition (1.6) and then it
is also faster than the iteration processes (Mn) and (In).
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Example 3.1. Let C = [1, 100] be a subset of a usual normed space E = R and T : C → C be a mapping
which is defined by

Tx =
√
x2 − 8x+ 40

for all x ∈ C. Choose α = β = 0.1, γ = 0.2 and αn = βn = γn = 1
2 for all n = 0, 1, 2, ... . By mean valued

theorem, we can prove that T satisfies the condition (1.6). It is easy to see that T has a unique fixed point
w := 5. Also, it clear that sequences {αn}, {βn}, {γn} and parameters α, β, γ satisfy all the conditions of
Theorem 2.1. So our corresponding iteration process (Sn) is faster than the Agarwal et al. iteration process
(ARSn) and then it is also faster than the Mann iteration process (Mn), the Ishikawa iteration process (In).

For the initial point x0 = 100, our corresponding iteration process (Sn), the Agarwal et al. iteration
process (ARSn), the Ishikawa iteration process (In), the Mann iteration process (Mn) are, respectively, given
in Table 1.

Table 1: Comparative results of Example 3.1

Step Iteration (Mn) Iteration (In) Iteration (ARSn) Iteration (Sn)

1 98.062459362791700 97.094973886224900 95.157433249016600 94.673683974767200
2 96.126203567620800 94.192948098135200 90.323288827253500 89.357673090634100
3 94.191285640815600 91.294114752765900 85.498500618548100 84.053241902263000
4 92.257761918007700 88.398684766890500 80.684164558474000 78.761913211678600
5 90.325692322426100 85.506890363085900 75.881577927300300 73.485526099539800
6 88.395140672799500 82.618988003211200 71.092291170561100 68.226328658877100
7 86.466175024695300 79.735261838952700 66.318177306360700 62.987106889142000
8 84.538868049712100 76.856027791591100 61.561526502810500 57.771367836679900
9 82.613297457629000 73.981638402287800 56.825177462530800 52.583606400377400
10 80.689546467432200 71.112488632202200 52.112703944630700 47.429705306909100
...

...
...

...
...

36 31.864913492268900 6.570632482402260 5.000000000005160 5.000000000000020
37 30.078599364633200 5.940916407416960 5.000000000000830 5.000000000000000
38 28.306678330914200 5.548084108494060 5.000000000000130 5.000000000000000
39 26.551066895595100 5.313896276989430 5.000000000000020 5.000000000000000
40 24.814062579901100 5.178022277672790 5.000000000000000 5.000000000000000
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Figure 1: Behavior of of the Mann iteration process (Mn), the Ishikawa iteration process (In), the Agarwal et al. iteration
process (ARSn), and the Sintunavarat iteration process (Sn) for the given function in Example 3.1.
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Example 3.2. Let C = [0, 20] be a subset of a usual normed space E = R and T : C → C be a mapping
which is defined by

Tx = cos(cosx)

for all x ∈ C. Choose α = β = γ = 0.25 and αn = βn = γn = 1
2 + 1

2
√
n+3

for all n = 0, 1, 2, ... . By mean

valued theorem, we can show that T satisfies the condition (1.6). It is easy to see that T has a unique
fixed point w ≈ 0.739085133215161. Also, it is clear that sequences {αn}, {βn}, {γn} and parameters α, β, γ
satisfy all the conditions of Theorem 2.1. So our corresponding iteration process (Sn) is faster than the
Agarwal et al. iteration process (ARSn) and then it is also faster than the Mann iteration process (Mn),
the Ishikawa iteration process (In).

For the initial point x0 = 5, our corresponding iteration process (Sn), the Agarwal et al. iteration
process (ARSn), the Ishikawa iteration process (In), the Mann iteration process (Mn) are, respectively,
given in Table 2.

Table 2: Comparative results of Example 3.2

Step Iteration (Mn) Iteration (In) Iteration (ARSn) Iteration (Sn)

1 1.970027697721000 1.978396159559040 0.968405392132710 0.903759405132275
2 1.214127002979290 1.220146760824190 0.813134967469598 0.786108010872498
3 1.020869628246380 0.970455207657142 0.763601708031390 0.752788371219904
4 0.914519972971912 0.856215366672090 0.747297336769758 0.743142048582790
5 0.850246556143590 0.799726878828884 0.741866585940653 0.740303764756083
6 0.810159605749810 0.770977864281416 0.740036673484997 0.739455781629162
7 0.784808478488821 0.756079417424699 0.739413479402521 0.739199057746805
8 0.768647126128122 0.748244740823917 0.739199273870616 0.739120463031230
...

...
...

...
...

29 0.739091111576946 0.739085212233260 0.739085133215219 0.739085133215162
30 0.739089194508728 0.739085180129703 0.739085133215182 0.739085133215161
31 0.739087895043010 0.739085161120275 0.739085133215168 0.739085133215161
32 0.739087013220185 0.739085149842359 0.739085133215164 0.739085133215161
33 0.739086414168057 0.739085143138995 0.739085133215162 0.739085133215161
34 0.739086006793563 0.739085139147605 0.739085133215161 0.739085133215161
35 0.739085729493707 0.739085136766993 0.739085133215161 0.739085133215161
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Figure 2: Behavior of of the Mann iteration process (Mn), the Ishikawa iteration process (In), the Agarwal et al. iteration
process (ARSn), and the Sintunavarat iteration process (Sn) for the given function in Example 3.2.
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4. Conclusion and open problem

Convergence behavior of the sequence {xn} generated by the fixed point iteration process (Sn) was
investigated under general assumptions on the parameter. The rate of convergence of this iteration process
was studied. Finally, some illustrative numerical results are furnished which demonstrate the validity of the
hypotheses and degree of utility of our results. It shows the behavior of iteration (Sn) with respect to the
Mann iteration process (Mn), the Ishikawa iteration process (In) and the Agarwal et al. iteration process
(ARSn).

On the other hand, stability results established in metric spaces and normed linear spaces have been
studied by several mathematicians such as Haghi et al. [10], Olatinwo and Postolache [14]. Therefore, the
stability of iteration scheme (Sn) still open for interested mathematicians.
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