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Abstract

This paper introduces the notions of pseudo null curves in Minkowski 4-space. Meanwhile, some geometri-
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1. Introduction

Minkowski space is a real vector space with a symmetric bilinear form. And Minkowski space form with
the positive curvature is called de Sitter space. We know that de Sitter 3-space is a vacuum solution of
the Einstein equation and an important cosmological model for physical universe [2, 4, 7]. The Euclidean
rectifying curves have many interesting geometric properties. In Minkowski 3-space, the rectifying curves
have similar geometric properties as in the Euclidean 3-space. However, in Minkowski 4-space, it is more
interesting for the rectifying curves using the null frame vector. The pseudo null hypersurfaces and pseudo
hyperbolic hypersurfaces are two of those rectifying surfaces. The authors have considered the geometrical
properties of spacelike curves and spacelike surfaces in Minkowski space [5]; Bilici obtained the geometrical
properties of involutes of spacelike curves in Minkowski 3-space [1]. In particular, when the Frenet frame
along a spacelike or a timelike curve contains a null vectors, such curve is said to be a pseudo null curve.
The Frenet equations of a pseudo null curve, lying fully in R4

1, are given in [6, 11]. However, most of
papers and books are studying the geometrical properties of spacelike curves without any null Fernet frames
in Minkowski 4-space. In this paper, we consider the pseudo null hypersurfaces and pseudo hyperbolic
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hypersurfaces, which are generated by pseudo null curves on de Sitter 3-space, as the most elementary case
for the study of the singularities of pseudo hyperbolic hypersurfaces in non-flat Lorentzian space forms.

On the other hand, singularity theory, which is a direct descendant of differential calculus, is certain
to have a great deal of interest to say about geometry, equation, physic, astronomy and other disciplines
[3, 5, 8, 9, 10]. In general, the current theory always does not allow for singularities. However, it is
unavoidable in some real life circumstances. Thus, we apparently need to understand the ontology of
singularities if we want to research the nature of space and time in the actual universe. At present, the
studying of singularities is mainly concentrated in general surfaces [3, 5, 8, 9]. The authors considered a
classification of the singularities of lightlike surfaces with co-dimensional two for generic space-like curves on
de Sitter 3-space and a geometric characterization of the singularities [5], which motivate us to investigate
the differential geometry of pseudo null curves. The most interesting case is the contact of pseudo null
curves with hyperbolic 3-space. We consider the geometric characterizations of pseudo null curves and the
singularities of pseudo null hypersurfaces and pseudo hyperbolic hypersurfaces in this paper.

The remainder of this paper is organized as follows: Section 2 reviews some basic notions about the
Minkowski space and gives the main results about the classifications of singularities (Theorem 2.1 and
Theorem 2.2). Section 3 considers some height functions on pseudo null curves. Also, the versal properties
of those height functions are used to prove Theorem 2.1 and Theorem 2.2 in Section 4. Section 5 gives the
generic properties of pseudo null curves on de Sitter 3-space to introduce the stability of singularity. In the
last section of this paper, we supply an example to explain the singular of pseudo null hypersurfaces and
pseudo hyperbolic hypersurfaces of pseudo null curves, respectively.

We shall assume that all the maps and manifolds in this paper are C∞, unless the contrary is explicitly
stated.

2. Preliminaries and the main result

Let R4 = {(x1, x2, x3, x4)|xi ∈ R (i = 1, 2, 3, 4) } be a 4-dimensional vector space. For any two vectors
x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) in R4, the symmetric bilinear form of x and y is defined by

〈x,y〉 = x1y1 + x2y2 + x3y3 − x4y4.

(R4, 〈, 〉) is called 4-dimensional Minkowski space and written by R4
1.

A vector x in R4
1 is called a spacelike vector , a null vector or a timelike vector if 〈x,x〉 is positive,

zero or negative, respectively. The norm of x ∈ R4
1 is defined by ‖x‖ = (sign(x)〈x,x〉)1/2, where sign(x)

denotes the signature of x which is given by sign(x)=1, 0 or -1 when x is spacelike, lightlike or timelike
vector. For any two vectors x and y in R4

1, we say x is pseudo-perpendicular to y if 〈x,y〉 = 0. For vectors
x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) and z = (z1, z2, z3, z4) in R4

1, we define a vector x ∧ y ∧ z by∣∣∣∣∣∣∣∣
e1 e2 e3 −e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ ,
where (e1, e2, e3, e4) is the canonical base of R4

1. One can easily show that

〈a,x ∧ y ∧ z〉 = det(a,x,y, z).

In R4
1, we introduce some typical manifolds,

de Sitter 3-space S31 = {x ∈ R4
1 | 〈x,x〉 = 1},

hyperbolic 3-space H3 = {x ∈ R4
1 | 〈x,x〉 = −1},

lightcone LC∗ = {x ∈ R4
1 \ {0} | 〈x,x〉 = 0},
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we call S31,H3,LC∗ the pseudo spheres in Minkowski 4-space. For a vector v = (v1, v2, v3, v4) ∈ LC∗, if
v4 = 1, vector v is denoted by ṽ.

Let γ : I → R4
1 by γ(t) = (x1(t), x2(t), x3(t), x4(t)) be a regular curve in R4

1 (i.e., γ̇(t) 6= 0 for any t ∈ I),
where I is an open interval. For any t ∈ I, a curve γ is called spacelike curve, null (lightlike) curve or
timelike curve if 〈γ̇(t), γ̇(t)〉 > 0, 〈γ̇(t), γ̇(t)〉 = 0 or 〈γ̇(t), γ̇(t)〉 < 0, respectively. The arc-length of a non
null curve γ(t) measured from γ(t0) (t0 ∈ I) is

s(t) =

∫ t

t0

‖γ̇(t)‖dt.

The parameter s is determined as ‖γ ′(s)‖ = 1 for a non null curve, where γ ′(s) = (dγ/ds)(s). For a curve
γ(s) on de Sitter 3-space, we call curve γ(s) be pseudo null curve if its tangent vector t(s) = γ ′(s) is spacelike
vector, the normal vector n1(s) and the binormal vector n2(s) are null vectors. The pseudo-orthonormal
frame of pseudo null curve γ(s) is {γ(s), t(s), n1(s), n2(s)} satisfying

〈γ(s),γ(s)〉 = 〈t(s), t(s)〉 = 〈n1(s),n2(s)〉 = 1,

〈γ(s), t(s)〉 = 〈γ(s),n1(s)〉 = 〈γ(s),n2(s)〉 = 0,

〈t(s),n1(s)〉 = 〈t(s),n2(s)〉 = 0,

〈n1(s),n1(s)〉 = 〈n2(s),n2(s)〉 = 0.

The Frenet type formulas as following [6],
γ ′(s) = t(s),
t′(s) = −γ(s) + n1(s) + κ(s)n2(s),
n′1(s) = −κ(s)(s)t(s) + τ(s)n1(s),
n′2(s) = −t(s)− τ(s)n2(s),

(2.1)

where κ(s) = 〈t′(s),n1(s)〉 and τ(s) = 〈n′1(s),n2(s)〉.
Let γ : I → S31 be a pseudo null curve, we define two maps, one is L : I × R× R→ R4

1 by

L(s, µ, η) = γ(s) + µn1(s) + ηn2(s).

We call the image of L the pseudo null hypersurface associated to the pseudo null curve γ(s); the other is
L̂ : I × R→ H3 by

L̂(s, µ) = γ(s) + µn1(s)−
2

µ
n2(s).

We call the image of L̂ the pseudo hyperbolic hypersurface on hyperbolic 3-space. And it is obvious that the
pseudo hyperbolic hypersurface is a special pseudo null hypersurface when µη = −2.

Let F : S31 −→ R be a submersion and f : I −→ S31 be a pseudo null curve. We say that f and F−1(0)
have k-point contact at t = t0 if the function g(t) = (F ◦ f)(t) satisfies g(t0) = g′(t0) = · · · = g(k−1)(t0) = 0
and g(k)(t0) 6= 0. We also say that f and F−1(0) have at least k-point contact at t = t0 if the function
g(t) = (F ◦ f)(t) satisfies g(t0) = g′(t0) = · · · = g(k−1)(t0) = 0. The main results as following:

Theorem 2.1. Let γ(s) be a pseudo null curve on de Sitter 3-space with κ′(s)− 2τ(s)κ(s) 6= 0 for ∀s ∈ I.
v0 = L(s0, µ0, η0) and osculating sphere LC(v0) = {u ∈ S31 | 〈u,v0〉 = 1}, we have the following,

1. γ(s) and LC(v0) have at least 2-point contact for s0.

2. γ(s) and LC(v0) have at least 3-point contact for s0 if and only if

v0 = γ(s0) +
τ(s0)

κ′(s0)− 2τ(s0)κ(s0)
n1(s0) +

κ′(s0)− 3τ(s0)κ(s0)

κ′(s0)− 2τ(s0)κ(s0)
n2(s0)

and σ(s) = τ(s)κ′′(s) + (2κ(s) + τ ′(s) − τ2(s))κ′(s) − 2κ(s)τ(s)τ ′(s) − 2κ(s)τ3(s) 6= 0. Under this
condition, the germ of image L at L(s0, µ0, η0) is diffeomorphic to the cuspidal edge C × R. (Fig. 1)
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3. γ(s) and LC(v0) have at least 4-point contact for s0 if and only if

v0 = γ(s0) +
τ(s0)

κ′(s0)− 2τ(s0)κ(s0)
n1(s0) +

κ′(s0)− 3τ(s0)κ(s0)

κ′(s0)− 2τ(s0)κ(s0)
n2(s0)

and σ(s) = 0, σ′(s) 6= 0, where σ(s) is a new geometry invariant, which can effect the singularities of
the hypersurfaces. Under this condition, the germ of image L at L(s0, µ0, η0) is diffeomorphic to the
swallowtail SW. (Fig. 2).

When the condition κ′(s)− 2τ(s)κ(s) = 0, we have the following result.

Theorem 2.2. Let γ(s) be a pseudo null curve on de Sitter 3-space, v̂0 = L̂(s0, µ0) ∈ H3 and hyperbolic

osculating sphere L̂C(v̂0) = {u ∈ S31 | 〈u, v̂0〉 = 1} we have the following,

1. γ(s) and L̂C(v̂0) have at least 2-point contact for s0.

2. γ(s) and L̂C(v̂0) have at least 3-point contact for s0 if and only if

v̂0 = γ(s0) +
1±

√
1 + 8κ(s0)

2κ(s0)
n1(s0) +

1∓
√

1 + 8κ(s)

2
n2(s0)

and σ̂(s) = κ′(s) − 2κ(s)τ(s) = 0, σ̂′(s) 6= 0, κ(s) 6= 0. Under this condition, the germ of image L̂ at
L̂(s0, µ0) is diffeomorphic to the cuspidal edge C × R. (Fig. 1)

3. γ(s) and L̂C(v̂0) have at least 4-point contact for s0 if and only if

v̂0 = γ(s0) +
1±

√
1 + 8κ(s0)

2κ(s0)
n1(s0) +

1∓
√

1 + 8κ(s0)

2
n2(s0)

and σ̂(s) = σ̂′(s) = 0, ̂̃σ(s) = κ′′′(s) − 12κ(s)τ(s)τ ′(s) + 4κ(s)τ3(s) − κ(s)τ ′′(s) − κ(s)τ(s)τ ′′(s) 6=
0, κ(s) 6= 0. Under this condition, the germ of image L̂ at L̂(s0, µ0) is diffeomorphic to the swallowtail
SW. (Fig. 2)

Remark 2.3. When γ(s) be a pseudo null curve on de Sitter 3-space with the curvature κ(s) = 0, by the
same methods in [6], we know the curve γ(s) is a plane curve, and γ(s) has only one order contact with
hyperbolic 3-space.

Here C×R = {(x1, x2, x3) | x1 = u, x2 = ±v1/2, x3 = v1/3} is the cuspidal edge and SW = {(x1, x2, x3) |
x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} is the swallowtail.

Figure 1: cuspidaledge
Figure 2: swallowtail
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3. Pseudo null height function and pseudo hyperbolic height function

The section is to construct a germ of family of functions F : I ×R4
1 → R with parameter space R4

1, such
that the germ at s0 of the subset in question is the bifurcation set or discriminant of the family, and to
show that the family of functions is a versal deformation of the germ at s0 of the function h(s) defined by
hv(s) = H(s,v).

Let γ(s) be a pseudo null curve on de Sitter 3-space, we define a function H : I × R4
1 → R by

H(s,v) = 〈γ(s),v〉 − 1,

which is called pseudo null height function of γ(s). Denoted hv(s) = H(s,v) for any fixed vector v ∈ R4
1.

Also, we can define three functions to describe the contact relationship between pseudo null curves and
pseudo spheres: pseudo de Sitter height function H̃ : I × S31 → R by

H̃(s, ṽ) = 〈γ(s), ṽ〉 − 1,

pseudo lightcone height function H : I × LC∗ → R by

H(s,v) = 〈γ(s),v〉 − 1,

pseudo hyperbolic height function Ĥ : I ×H3 → R by

Ĥ(s, v̂) = 〈γ(s), v̂〉 − 1.

Proposition 3.1. Suppose γ(s) be a pseudo null curve on de Sitter 3-space with κ′(s)− 2τ(s)κ(s) 6= 0 for
∀s ∈ I and v ∈ R4

1. Then,

1. hv(s) = h′v(s) = 0 if and only if there exist two real numbers µ, η such that v = γ(s) + µn1(s) + ηn2(s).

2. hv(s) = h′v(s) = h′′v(s) = 0 if and only if v = γ(s) + µn1(s) + (1− κ(s)µ)n2(s).

3. hv(s) = h′v(s) = h′′v(s) = h
(3)
v (s) = 0 if and only if

v = γ(s) +
τ(s)

κ′(s)− 2τ(s)κ(s)
n1(s) +

κ′(s)− 3τ(s)κ(s)

κ′(s)− 2τ(s)κ(s)
n2(s)

and σ(s) = τ(s)κ′′(s) + (2κ(s) + τ ′(s)− τ2(s))κ′(s)− 2κ(s)τ(s)τ ′(s)− 2κ(s)τ3(s) 6= 0.

4. hv(s) = h′v(s) = h′′v(s) = h
(3)
v (s) = h

(4)
v (s) = 0 if and only if

v = γ(s) +
τ(s)

κ′(s)− 2τ(s)κ(s)
n1(s) +

κ′(s)− 3τ(s)κ(s)

κ′(s)− 2τ(s)κ(s)
n2(s)

and σ(s) = 0, σ′(s) 6= 0.

Proof.

1. Supposing there are four real numbers λ, ω, µ, η satisfying v = λγ(s) +ωt(s) +µn1(s) + ηn2(s) ∈ R4
1, we

obtain ω = 0 and λ = 1 by hv(s) = h′v(s) = 0. Therefore, the assertion 1 follows.

2. The easy computation is that

h′′v(s) = 〈−γ(s) + n1(s) + κ(s)n2(s), λγ(s) + ωt(s) + µn1(s) + ηn2(s)〉 = 0, (3.1)

we can obtain −1 + κ(s)µ+ η = 0. Hence, the assertion 2 holds.
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3. Basing on the above assumption and using Equations (2.1), we have

h(3)v (s) = 〈−γ′(s) + n′1(s) + κ′(s)n2(s) + κ(s)n′2(s),v〉
= 〈τ(s)n1(s) + (κ′(s)− κ(s)τ(s))n2(s)),v〉
= τ(s)η + (κ′(s)− κ(s)τ(s))µ

= 0.

(3.2)

Substituting the formula 1 − κ(s)µ + η = 0 into Equation (3.2), we can obtain µ = τ(s)
κ′(s)−2τ(s)κ(s) and

η = κ′(s)−3τ(s)κ(s)
κ′(s)−2τ(s)κ(s) .

4. By the Equations (2.1) and (3.2), we have

h(4)v (s) = 〈(τ ′(s) + τ ′′(s))n1(s) + (κ′′(s)− 2κ′(s)τ(s)− κ(s)τ ′(s) + κ(s)τ2(s))n2(s),v〉,
= τκ′′(s) + (2κ(s) + τ ′ − τ2(s))κ′(s)− 2κ(s)ττ ′(s)− 2κ(s)τ3,

= 0.

(3.3)

By assertion 3,

σ(s) = τ(s)κ′′(s) + (2κ(s) + τ ′(s)− τ2(s))κ′(s)− 2κ(s)τ(s)τ ′(s)− 2κ(s)τ3(s) = 0

and σ′(s) 6= 0.
When κ′(s)− 2τ(s)κ(s) = 0, κ(s) 6= 0, we can consider the other contact relation.

Proposition 3.2. Suppose γ(s) be a pseudo null curve on de Sitter 3-space and v ∈ H3, for ∀s ∈ I. Then,

1. ĥv(s) = 0 if and only if there exist three real numbers λ, µ, η such that v = γ(s)+λt(s)+µn1(s)+ηn2(s)
and 1 + λ2 + µη = −1.

2. ĥv(s) = ĥ′v(s) = 0 if and only if v = γ(s) + µn1(s) + (1− κ(s)µ)n2(s) and µη = −2.

3. ĥv(s) = ĥ′v(s) = ĥ′′v(s) = 0 if and only if

v = γ(s) +
1±

√
1 + 8κ(s)

2κ(s)
n1(s) +

1∓
√

1 + 8κ(s)

2
n2(s)

and σ̂(s) = κ′(s)− 2κ(s)τ(s) 6= 0.

4. ĥv(s) = ĥ′v(s) = ĥ′′v(s) = ĥ
(3)
v (s) = 0 if and only if

v = γ(s) +
1±

√
1 + 8κ(s)

2κ(s)
n1(s) +

1∓
√

1 + 8κ(s)

2
n2(s)

and σ̂(s) = 0, σ̂′(s) 6= 0.

5. ĥv(s) = ĥ′v(s) = ĥ′′v(s) = ĥ
(3)
v (s) = ĥ

(4)
v (s) = 0 if and only if

v = γ(s) +
1±

√
1 + 8κ(s)

2κ(s)
n1(s) +

1∓
√

1 + 8κ(s)

2
n2(s)

and σ̂(s) = σ̂′(s) = 0, ̂̃σ(s) = κ′′′(s)− 12κ(s)τ(s)τ ′(s) + 4κ(s)τ3(s)− κ(s)τ ′′(s)− κ(s)τ(s)τ ′′(s) 6= 0.

The proof is the same as the proof of Proposition 3.1, we omit it here. Meanwhile, we can obtain the
similar propositions for the pseudo de Sitter height function and pseudo lightcone height function.
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4. Singularities of pseudo null hypersurfaces and pseudo hyperbolic hypersurfaces

In this section, we study the geometric properties of pseudo null hypersurfaces and pseudo hyperbolic
hypersurfaces of pseudo null curves on de Sitter 3-space. Meanwhile, we use some general results on the
singularity theory for families of function germs [3]. These properties will be stated following.

Proposition 4.1. Suppose γ(s) be a pseudo null curve on de Sitter 3-space, the following assertions are
established,

1. The singularities of L(s, µ, η) and L̂(s, µ) are the set {(s, µ, η) | η = −1 + κ(s)µ, s ∈ I} and {(s, µ) |
µ =

1±
√

1+8κ(s)

2κ(s) , σ̂(s) 6= 0}, respectively.

2. If v0 is a constant vector, then γ(s) ∈ LC(v0) and µκ′(s)− τ(s) = 0.

3. If v̂0 ∈ H3 is a constant vector, then γ(s) ∈ L̂C(v̂0) and one can obtain τ(s)κ′(s)+τ2(s)κ(s)+2κ′2(s) =
0.

4. If v0 ∈ LC∗ is a constant vector, then γ(s) ∈ LC(v0) = {u ∈ S31 | 〈u,v0〉 = 1} and one can obtain
τ(s)κ′(s) + τ2(s)κ(s) + κ′2(s) = 0.

5. If ṽ0 ∈ S31 is a constant vector, then γ(s) ∈ L̃C(ṽ0) = {u ∈ S31 | 〈u, ṽ0〉 = 1} and one can obtain
κ′(s)− κ(s)τ(s) = 0 or τ(s) = 0.

Proof.

1. Since L(s, µ, η) = γ(s) + µn1(s) + ηn2(s), we have

∂L(s, µ, η)/∂s = γ ′(s) + µn′1(s) + ηn′2(s),

= (1− κ(s)µ− η)t(s) + µτ(s)n1(s)− ητ(s)n2(s),

∂L(s, µ, η)/∂µ = n1(s),

∂L(s, µ, η)/∂η = n2(s).

(4.1)

The above three vectors are linearly dependent if and only if η = −1 + κ(s)µ. Hence, the assertion (1) is
complete.

2. For two smooth functions ν, η : I → R, we define a mapping fν,η : I → R4
1 by

fν,η(s) = γ(s) + ν(s)n1(s) + η(s)n2(s).

Supposing v0 = L(s0, ν, η) is constant, we have

dfν,η(s)

ds
= γ ′(s) + ν(s)n′1(s) + ν ′(s)n1 − (κ(s)µ(s))′n2 + (1− κ(s)µ(s))n′2,

= (ν ′(s) + ν(s)τ(s))n1(s) + [(κ(s)µ(s))′ − τ(s) + ν(s)κ(s)τ(s)]n2(s),

= 0.

(4.2)

One obtains νκ′(s)− τ(s) = 0 and 〈γ(s),v0〉 = 1. Hence, γ(s) is belonged to LC(v0) and νκ′(s)− τ(s) = 0.

3. If v0 ∈ H3 and µ = τ(s)
κ′(s) , one can obtain that the formula τ(s)κ′(s)+τ2(s)κ(s)+2κ′2(s) = 0 is established.

The other two cases are the same as assertion 3. Thus, we omit them here.
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Let F : (R × Rr, (s0,x0)) → R be a function germ. We call F an r-parameter unfolding of f , where
f(s) = Fx0(s,x0). We call f(s) has Ak-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k and f (k+1)(s0) 6= 0.
We say that f(s) has A≥k-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k. Let F be an unfold-
ing of f and f(s) has Ak-singularity (k ≥ 1) at s0. Denote the (k − 1)-jet of the ∂F/∂xi at s0 by
j(k−1)(∂F/∂xi)(s,x0)(s0) = Σk−1

j=1αji(s−s0)j for i = 1, 2, . . . , r. Then F is called a (p) versal unfolding if the
(k− 1)× r matrix of coefficients αji has rank (k− 1)(k− 1 ≤ r). Under the same as the above, F is called a
versal unfolding if the k×r matrix of coefficients (α0i, αji) has rank k(k ≤ r), where α0i = (∂F/∂xi)(s0, x0).
Let function germ F : (R × Rr, (s0, x0)) → R be an unfolding of f , we now introduce three important sets
concerning the unfolding. The unfolding set of F is given by

QF = {(s, x) ∈ R× Rr | there exists s, x with
∂F

∂s
(s, x) = 0}.

The discriminant set of F is given by

DF = {x ∈ Rr | there exists s withF (s, x) =
∂F

∂s
(s, x) = 0}.

The bifurcation set of F is the critical value set of the restriction to QF is given by

BF = {x ∈ Rr | there exists s with
∂F

∂s
(s, x) =

∂2F

∂s2
(s, x) = 0}.

And the main theorems are following [3],

Theorem 4.2. Let F : (R×Rr, (s0, x0))→ R be an r-parameter unfolding of f(s) which has Ak-singularity
at s0.

(1): Supposing F is a versal unfolding of f ,

1. If k = 1 then DF is locally diffeomorphic to {0} × Rr−1,
2. If k = 2 then DF is locally diffeomorphic to C × Rr−2,
3. If k = 3 then DF is locally diffeomorphic to SW ×Rr−3, a point x0 ∈ Rr is called a fold point of

a map germ f : (Rr,x0)→ (Rr, f(x0)) if there exist diffeomorphism germs φ : (Rr,x0)→ (Rr, 0)
and ψ : (Rr, f(x0))→ (Rr, 0) such that ψ ◦ φ(x1, . . . , xr) = (x1, . . . , xr−1, x

2).

(2): Supposing that F is a(p) versal unfolding of f ,

1. If k = 2 then (s0, x0) is the fold point of π |QF
and BF is locally diffeomorphic to {0} × Rr−1,

2. If k = 3 then BF is locally diffeomorphic to C × Rr−2.

By the Proposition 3.1, the discriminant sets of the height functions are given by

D
H̃

= {v = γ(s) + λini(s) | s, λi ∈ R, i = 1, 2},

DH = {v = γ(s) + µn1(s)−
1

µ
n2(s) | s, µ ∈ R},

or

D
Ĥ

= {v = γ(s) + µn1(s)−
2

µ
n2(s) | s, µ ∈ R},

and the bifurcation set of H is given by

BH = {v = γ(s) + µn1(s)− (1− κ(s)µ)n2(s) | s, µ ∈ R}.

For those height functions H̃,H, Ĥ,H, we can consider the following theorems as [3].
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Theorem 4.3. Let H(s,v) be pseudo null height function of pseudo null curve γ(s) and v ∈ DH . If hv has
Ak-singularity at s (k = 1, 2, 3), then h is a versal unfolding of hv.

Proof. We denote
γ(s) = (x1(s), x2(s), x3(s), x4(s)) and v = (v1, v2, v3, v4) ∈ R4

1,

then
H(s,v) = 〈γ(s),v〉 − 1 = x1v1 + x2v2 + x3v3 − x4v4 − 1. (4.3)

Thus,
(∂H/∂vi)(s, v) = xi(i = 1, 2, 3), (∂H/∂v4)(s, v) = −x4,

∂(∂H/∂vi)/∂s(s, v) = x′i(i = 1, 2, 3), ∂(∂H/∂v4)/∂s(s, v) = −x′4,

∂2(∂H/∂vi)/∂
2s(s, v) = x′′i (i = 1, 2, 3), ∂2(∂H/∂v4)/∂

2s(s, v) = −x′′4.

Let (x′is+ (1/2)x′′i s
2)∓ (vi/v4)(x

′′
4s+ (1/2)x′′4s

2) be the 2-jet of ∂H/∂vi at s0.
The condition for (p) versal can be checked as follows:

(1): By Proposition 3.1, h has the A1-singularity at s0 if and only if v = γ(s) +µn1(s) + (1−µκ(s))n2(s),
when h has A1-singularity at s0, we require the 1 × 4 matrix (x1, x2, x3, x4) to have rank 1, which
always does since γ(s) is regular.

(2): It also follows from Proposition 3.1 that h has A≥2-singularity at s0 if and only if v = γ(s) +µn1(s) +
(1−µκ(s))n2(s) and σ(s) = τ(s)κ′′(s) + (2κ(s) + τ ′(s)− τ2(s))κ′(s)−2κ(s)τ(s)τ ′(s)−2κ(s)τ3(s) 6= 0,
when h has A≥2-singularity at s0, we require the 2× 3 matrix x1 x′1

x2 x′2
x3 x′3


to have rank 2, which follows from the proof of the case (3).

(3): By Proposition 3.1, h has the A3-singularity at s0 if and only if v = γ(s) + µn1(s) + (1− µκ(s))n2(s)
and σ(s) = 0, σ′(s) 6= 0 and

∂H
∂vi

(s0, v0) + j2(∂H∂vi )(s0, v0) = ∂H
∂vi

(s0, v0) + ∂
∂s(

∂H
∂vi

)(s0, v0)(s− s0) + 1
2
∂2

∂2s
(∂H∂vi )(s0, v0)(s− s0)

2

= α0,i + α1,i(s− s0) + 1
2α2,i(s− s0)2,

(4.4)
when h has A3-singularity at s0, we require the 4× 4 matrix

A =


α0,1 α0,2 α0,3 α0,4

α1,1 α1,2 α1,3 α1,4

α2,1 α2,2 α2,3 α2,4

α3,1 α3,2 α3,3 α3,4

 =


x1 x2 x3 −x4
x′1 x′2 x′3 −x′4
x′′1 x′′2 x′′3 −x′′4
x′′′1 x′′′2 x′′′3 −x′′′4


to be nonsingular. Thus,

detA = det(γ(s0),γ
′(s0),γ

′′(s0),γ
′′′(s0)),

= 〈γ(s0) ∧ γ ′(s0) ∧ γ ′′(s0),γ ′′′(s0)〉,
= τ(s)− κ(s)κ′(s) + κ2(s)τ(s) 6= 0.

(4.5)

Which implies that the rank of A is 4, which finishes the proof.

Theorem 4.4. Let Ĥ(s, v̂) be pseudo hyperbolic height function of pseudo null curve γ(s) and v̂ ∈ D
Ĥ
. If

ĥv̂ has Ak-singularity at s (k = 1, 2, 3), then Ĥ is a versal unfolding of ĥv̂.
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Proof. We denote
γ(s) = (x1(s), x2(s), x3(s), x4(s)) and v̂ = (v̂1, v̂2, v̂3, v̂4) ∈ H3,

then

Ĥ(s, v̂) = 〈γ(s), v̂〉 − 1 = x1v̂1 + x2v̂2 + x3v̂3 − x4v̂4 − 1. (4.6)

Thus,

(∂Ĥ/∂v̂i)(s, v) = xi ∓ (v̂i/v̂4)x4,

∂(∂Ĥ/∂v̂i)/∂s(s, v̂) = x′i ∓ (v̂i/v̂4)x
′
4,

∂2(∂Ĥ/∂v̂i)/∂
2s(s, v̂) = x′′i ∓ (v̂i/v̂4)x

′′
4,

where v̂4 = ±
√
v̂21 + v̂22 + v̂23 + 1 (i = 1, 2, 3), so the 2-jet of ∂Ĥ/∂v̂i at s0 is

(x′is+ (1/2)x′′i s
2)∓ (v̂i/v4)(x

′′
4s+ (1/2)x′′4s

2).

The condition for (p) versal can be checked as follows:

(1): ĥ has the A1-singularity at s0 if and only if v̂ = γ(s) +µn1(s)− 2
µn2(s), when ĥ has A1-singularity at

s0, we require the 1× 3 matrix (x1 ∓ (v̂1/v̂4)x4, x2 ∓ (v̂2/v̂4)x4, x3 ∓ (v̂3/v̂4)x4) to have rank 1, which
it always does since γ(s) is regular.

(2): It also follows from Proposition 3.1 that ĥ has A≥2-singularity at s0 if and only if v̂ = γ(s) +µn1(s)−
2
µn2(s) and σ̂(s) = τ(s)κ′′(s) + (2κ(s) + τ ′(s)− τ2(s))κ′(s)− 2κ(s)τ(s)τ ′(s)− 2κ(s)τ3(s) 6= 0, when ĥ
has A≥2-singularity at s0, we require the 2× 3 matrix x1 ∓ (v̂1/v̂4)x4 x′1 ∓ (v̂1/v̂4)x

′
4

x2 ∓ (v̂2/v̂4)x4 x′2 ∓ (v̂2/v̂4)x
′
4

x3 ∓ (v̂3/v̂4)x4 x′3 ∓ (v̂3/v̂4)x
′
4


to have rank 2, which follows from the proof of the case (3).

(3): ĥ has the A3-singularity at s0 if and only if

v̂ = γ(s) + µn1(s)− (2/µ)n2(s)

and σ̂(s) = σ̂′(s) = 0, when ĥ has A3-singularity at s0, we require the 3× 3 matrix

A =

 α0,1 α0,2 α0,3

α1,1 α1,2 α1,3

α2,1 α2,2 α2,3


to be nonsingular, where

j2(∂Ĥ/∂v̂i)(s, v̂0)(s0) =
∂Ĥ

∂v̂i
(s0, v̂0) +

∂

∂s
(
∂Ĥ

∂v̂i
)(s0, v̂0)(s− s0) +

1

2

∂2

∂2s
(
∂Ĥ

∂v̂i
)(s0, v̂0)(s− s0)2

= α0,i + α1,i(s− s0) +
1

2
α2,i(s− s0)2.

(4.7)

One denotes that

A(i, j, k) = det

 xi(s) xj(s) xk(s)
x′i(s) x′j(s) x′k(s)

x′′i (s) x′′j (s) x′′k(s)

 .
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We have

detA = −(A(1, 2, 3)∓ v̂1
v̂4
A(4, 2, 3)∓ v̂2

v̂4
A(1, 4, 3)∓ v̂3

v̂4
A(1, 2, 4))

= ±(1/v̂4)〈v̂,γ(s) ∧ γ ′(s) ∧ γ ′′(s)〉.
(4.8)

Since v̂ ∈ D
Ĥ

is a singular point, v̂ = γ(s) + µn1(s)− 2
µn2(s) and

γ(s) ∧ γ ′(s) ∧ γ ′′(s) = γ(s) ∧ γ ′(s) ∧ (−γ(s) + n1(s) + κ(s)n2(s))

= n2(s)− κ(s)n1(s).
(4.9)

Therefore,

detA = ±(1/v̂4)〈γ(s) + µn1(s)−
2

µ
n2(s),n2(s)− κ(s)n1(s)〉

= ± 1

v̂4

κ(s)(2κ′(s)− 2τ(s)κ(s)) + τ2(s)

τ(s)(κ′(s)− 2τ(s)κ(s))
6= 0.

(4.10)

This completes the proof.

Proof of Theorem 2.1. Let γ(s) be a pseudo null curve on de Sitter 3-space with κ′(s)− 2τ(s)κ(s) 6=
0. We define a function G : S31 → R by G(u) = 〈u,v〉 − 1. Then we have hv0(s) = G(γ(s),v0), since
LC(v0) = G−1(0) and 0 is a regular value of G. hv0 has the Ak-singularity at s0 if and only if γ(s) and
LC(v0) have (k + 1)-point contact at s0. By Proposition 3.1 and Theorems 4.2, 4.3, we get the results of
Theorem 2.1.

Proof of Theorem 2.2. Let γ(s) be a pseudo null curve on de Sitter 3-space with κ′(s)− 2τ(s)κ(s) =
0. We define a function Ĝ : S31 → R by Ĝ(u) = 〈u, v̂〉 − 1. Then we have ĥv̂0(s) = Ĝ(γ(s), v̂0), since

L̂C(v̂0) = Ĝ−1(0) and 0 is a regular value of Ĝ. ĥv̂0(s) has the Ak-singularity at s0 if and only if γ(s) and

L̂C(v̂0) have (k + 1)-point contact at s0. By Proposition 3.2 and Theorems 4.2, 4.4, we get the results of
Theorem 2.2.

For the other two types of height functions H̃,H, there are the same conclution as above, I omit
them here. By well-known uniqueness theorems which follow easily from the definition of versality [5], the
discriminant of the family is diffeomeomorphic to the discriminant of a standard versal deformation of a
function having the same type of singularity. Therefore, the generic properties of pseudo null curves are the
same as in [5].

5. Example

In this section, an example is given in order to verify the idea of Theorem 2.1 and Theorem 2.2.

Example 5.1. Let γ(s) be a pseudo null curve on S31 defined by

γ(s) = {
√

3

3
s,

1

18
s2 − 1, 2,

1

18
s2 + 2}

with respect to a distinguished parameter s, (Fig. 3) the Frenet frames as following

t(s) = γ ′(s) =
√

3{
√

3

3
,
1

9
s, 0,

1

9
s},

n1(s) = {252
√

3− 4
√

3s2 + ℘, 1
s (%s− 3

√
3(252

√
3− 4

√
3s2 + ℘),

3
2%−

(18
√
3+
√
3s)252

√
3−4
√
3s2+℘

12s , %},
(5.1)
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n2(s) = {252
√

3− 4
√

3s2 − ℘, 1
s (%s− 3

√
3(252

√
3− 4

√
3s2 − ℘),

3
2%−

(18
√
3+
√
3s)252

√
3−4
√
3s2−℘

12s , %},
(5.2)

where ℘ = 36
√

147− 405s2 − 21s3 − 7s4, % = s4 + 84s2 + 1620.

Hence, the curvatures κ(s) = 252
√
3−4
√
3s2+℘

s and τ(s) = 45℘−13
√
3℘′%−63%+36
12s3℘

. Thus, the pseudo null

hypersurfaces (Fig. 3) (when η = 1) as

L(s, µ, η) ={
√

3

3
s+ µ(252

√
3− 4

√
3s2 + ℘)− η(252

√
3− 4

√
3s2 − ℘),

1

18
s2 − 1 + µ(

1

s
(%s− 3

√
3(252

√
3− 4

√
3s2 + ℘)) + η(

1

s
(%s− 3

√
3(252

√
3− 4

√
3s2 − ℘)),

2 + µ(
3

2
%− (18

√
3 +
√

3s)252
√

3− 4
√

3s2 + ℘

12s
) + η(

3

2
%− (18

√
3 +
√

3s)252
√

3− 4
√

3s2 − ℘
12s

),

1

18
s2 + 2 + (µ+ η)%},

the pseudo hyperbolic hypersurfaces on hyperbolic 3-space (Fig. 4) as

L̂(s, µ) ={
√

3

3
s+ µ(252

√
3− 4

√
3s2 + ℘)− 2

µ
(252
√

3− 4
√

3s2 − ℘),

1

18
s2 − 1 + µ(

1

s
(%s− 3

√
3(252

√
3− 4

√
3s2 + ℘))− 2

µ
(
1

s
(%s− 3

√
3(252

√
3− 4

√
3s2 − ℘)),

2 + µ(
3

2
%− (18

√
3 +
√

3s)252
√

3− 4
√

3s2 + ℘

12s
)− 2

µ
(
3

2
%− (18

√
3 +
√

3s)252
√

3− 4
√

3s2 − ℘
12s

),

1

18
s2 + 2 + (µ− 2

µ
)%}.

Figure 3: the pseudo null hypersurfaces when η = 1
Figure 4: the pseudo hyperbolic hypersurfaces on hyper-
bolic 3-space
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