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Abstract

This paper is concerned with nonlinear fractional differential equations with the Caputo derivative.
Existence results are obtained for terminal value problems and initial value problems with initial conditions
at inner points. It is also proved that the sufficient condition in order that a locally closed subset be a viable
domain is the tangency condition. As a corollary, the existence of positive solutions is obtained. c©2016 All
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1. Introduction

This paper is mainly concerned with the existence and viability results for the nonlinear fractional
differential equation

cDα
a y(x) = f(x, y(x)), x ≥ x0 ∈ (a, b), (1.1)

with the initial value condition at an inner point (IVP for short)

y(x0) = y0, (1.2)

where 0 < α ≤ 1, cDα
a is the Caputo fractional derivative, f : [a, b]×Rm → Rm is a given function satisfying

some assumptions that will be specified later.
Fractional differential equations arise in many engineering and scientific disciplines as the mathematical

modeling of systems and processes in the fields of physics, chemistry, biology, economics, control theory,
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signal and image processing, etc. which involve fractional order derivatives. Fractional differential equations
also serve as an excellent tool for the description of hereditary properties of various materials and processes.
Consequently, the subject of fractional differential equations is gaining much importance and attention; see
[8, 9, 10, 13, 15, 20, 23, 24]. There are a large number of papers dealing with the existence or properties of
solutions to fractional differential equations. For an extensive collection of such results, we refer the reader
to the monograph [13] by Kilbas et al.. Very recently, a new fractional derivative without singular kernel
was introduced by Caputo and Fabrizio in [4] and the properties of such fractional derivative are discussed
in [16]. Some applications to nonlinear Fisher’s reaction-diffusion equations and heat transfer model are
studied in [1] and [2] respectively.

The viability problem was initialed in 1940s [18] and is still one of the active directions of differential
equations, see [3, 5, 6, 11, 17, 19, 21, 22]. As for the fractional version, J. Ciotie and A. Rǎscanu first showed
in [7] some viability results for multidimensional time-dependent stochastic differential equations driven by
a fractional Brownian motion. They proved a type of the Nagumo theorem on the viability inspired by
the work of Nualart and Rǎscanu [20]. Later in [12], E. Girejko et al. proved a sufficient condition for the
viability of nonlinear fractional differential equations with the Caputo fractional derivative. A brief reviews
of the main contributions in this area can be found in [12].

In the mentioned papers for viability results of the fractional version, the authors considered the case
that the initial conditions are at the endpoints of the definition interval of the Caputo fractional derivative
(Definition 2.2). However, the fractional derivative is in fact an interval function, which depends on the
starting-point of the definition interval. And this is the most significant difference from the classical integer
order derivative.

Let us investigate the fractional differential equations

cDα
0 y1(x) = x2, x ≥ 1 (1.3)

and
cDα

1 y2(x) = x2, x ≥ 1 (1.4)

with 0 < α < 1 and the same initial value condition

y1(1) = y2(1) =
2

Γ(3 + α)
.

A direct computation deduces that the solutions to the above initial value problems are

y1(x) =
2x2+α

Γ(3 + α)

and

y2(x) =
2(x− 1)2+α

Γ(3 + α)
+

2(x− 1)1+α

Γ(2 + α)
+

(x− 1)α

Γ(1 + α)
+

2

Γ(3 + α)

respectively. By a numerical method we can find that y1(x) 6= y2(x) for x > 1. This example shows that cDα
0

and cDα
1 are two different ‘fractional derivatives’ and equations (1.3) and (1.4) are two different equations.

Recall that a subset D ⊂ Rm is said to be the viable domain of the differential equation

y′(x) = f(x, y(x)), x ∈ (a, b), (1.5)

if for every (x0, y0) ∈ (a, b)×D, there is a T > 0 with x0 +T < b such that equation (1.5) admits a solution
y(·) : [x0, x0 +T ]→ D satisfying y(x0) = y0. What should be noticed here is that the initial point x0 ∈ (a, b)
is arbitrary while the equation is fixed. To generalize the viability problem to the fractional case, one should
retain the fact that the equations are fixed and independent of the initial value.

Motivated by the above comment, in this paper, we study the existence and viability of solutions to
the nonlinear Caputo fractional differential equation modeled as (1.1), with the initial conditions at inner
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points of the definition interval of the fractional derivative. Inspired by [5] and [11], we only suppose that
the function f on the right hand side of the equation is of Caratheodory type. To the best of my knowledge,
there is no result on the fractional viability with the initial values at inner points. In this case, the equivalent
integral equation is a Volterra-Fredholm equation. The technical difficulty comes from the Fredholm part,
which is in fact a delayed problem, that the approximate solutions should be constructed different from the
Volterra case.

The paper is organized as follows. In Section 2 we introduce the definitions of fractional integrals and
derivatives, and some basic results that will be used for viability. In Section 3 we give the existence results
for terminal value problems and initial value problems under several assumptions. In Section 4 we study a
sufficient condition for the viability to problem (1.1).

2. Preliminaries and lemmas

In this section we collect some definitions and results needed in our further investigations.
Let C([a, b];Rm) be the Banach space of all continuous functions u : [a, b]→ Rm with the norm ‖u‖∞ =

sup{‖u(x)‖ : x ∈ [a, b]} and L1((a, b);Rm) the Banach space of all measurable functions u : [a, b] → Rm

which are Lebesgue integrable, equipped with the norm ‖u‖1 =
∫ b
a ‖u(x)‖dx. Here the vector norm ‖u‖ =√

u2
1 + u2

2 + · · ·+ u2
m for u ∈ Rm.

Definition 2.1 ([9]). Let α > 0 be a fixed number. The Riemann-Liouville fractional integral of order
α > 0 of the function h : [a, b]→ Rm is defined by

Iαa h(x) =
1

Γ(α)

∫ x

a
(x− t)α−1h(t)dt, x ∈ [a, b],

where Γ(·) denotes the Gamma function, i.e., Γ(z) =
∫∞

0 e−ttz−1dt.

It has been shown that the fractional integral operator Iαa transforms the space L1((a, b);Rm) into
C([a, b];Rm) and some other properties of Iαa are referred to [9].

Definition 2.2 ([9]). Let h : [a, b]→ Rm, α > 0 and m = [α] + 1. The Caputo fractional derivative of order
α of h at the point x is defined by

cDα
ah(x) =

1

Γ(m− α)

∫ x

a
(x− t)m−α−1h(m)(t)dt, x ∈ [a, b].

cDα
a is also called the Caputo fractional differential operator.

A function f : [a, b] × Rm → Rm is said to satisfy the Caratheodory condition if f(·, y) : [a, b] → Rm
is measurable for every y ∈ Rm and f(x, ·) : Rm → Rm is continuous for almost every x ∈ [a, b]. A
Caratheodory type function has the following Scorza Dragoni property ([14]). We denote by m the Lebesgue
measure on R.

Theorem 2.3. Let X,Y be separable metric spaces, I = (a, b) and f : I ×X → Y a function satisfying the
Caratheodory condition. Then for each ε > 0, there exists a compact subset K ⊂ I such that m(I\K) < ε
and the restriction of f to K ×X is continuous.

Similar to the case for ordinary differential equations, we define the viability of the subset for fractional
differential equations.

Definition 2.4. Let D ⊂ Rm be nonempty and f : (a, b)×D → Rm be of the Caratheodory type. We say
that D is a viable domain of the fractional differential equation (1.1) if for a.e. x0 ∈ (a, b) and every y0 ∈ D,
there is a T > 0 with x0 + T < b, such that (1.1) has at least one solution y : [x0, x0 + T ] → D satisfying
the initial condition (1.2).
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Let D ⊂ Rm be a locally closed subset, i.e., for each ζ ∈ D, there is a ρ > 0 such that B(ζ, ρ) ∩ D is
closed ([22]) and f : (a, b)× Rm → Rm a function of the Caratheodory type (as usual, here B(ζ, ρ) = {x ∈
Rm : ‖x − ζ‖ ≤ ρ}, the closed ball centered at ζ with radius ρ). The condition often in consideration for
viable domains is the following tangency condition ([5, 18]).

Definition 2.5. We say that f satisfies the tangency condition with respect to the set D if

lim inf
h↓0

1

h
d(y0 + hf(x0, y0), D) = 0 (2.1)

for a.e. x0 ∈ (a, b) and all y0 ∈ D, where d(η,D) denote the distance from the point η ∈ Rm to the subset
D ⊂ Rm.

The following property is useful for fractional cases. The proof is similar to the one in [12], so we omit
it.

Lemma 2.6. Let D ⊂ Rm be a locally closed subset and η ∈ Rm. Then the equality (2.1) holds if and only
if for every ε > 0, there exist h ∈ (0, ε) and ph ∈ B(0, ε) with the property

x0 +
hα

Γ(α+ 1)
f(x0, y0) + ph ∈ D.

Since we only consider the case that 0 < α < 1, the equality (2.1) is equivalent to

lim inf
h↓0

1

hα
d(y0 + hαf(x0, y0), D) = 0.

Using this expression as well as Theorem 2.3 and mimicking the process of the proof of [5, Theorem 2.3],
one can obtain the following result, which is also a variant of the Lebesgue derivative type.

Theorem 2.7. Let D ⊂ Rm be nonempty and f : (a, b) × D → Rm be of Caratheodory type. Then there
exists a negligible subset Z ⊂ (a, b) such that for every x ∈ (a, b)\Z, one has

lim inf
h↓0

1

hα

∫ x+h

x
(x+ h− t)α−1f(t, u(t))dt = f(x, u(x)) (2.2)

for all continuous functions u : (a, b)×D → Rm.

3. Existence results

In this section, we study the initial value problem for nonlinear fractional differential equations with
initial conditions at inner points. More precisely, we will prove a Peano type theorem of the fractional
version. Since the fractional derivative of a function y at an inner point x ∈ (a, b) is determined by the
values of y on the interval [a, x], we begin with the so called terminal value problem{

cDα
a y(x) = f(x, y(x)), a ≤ x ≤ x0 ∈ (a, b),

y(x0) = y0.
(3.1)

As indicated in [9], Problem (3.1) is equivalent to the integral equation

y(x) = y0 +

∫ x

a

(x− t)α−1

Γ(α)
f(t, y(t))dt−

∫ x0

a

(x0 − t)α−1

Γ(α)
f(t, y(t))dt. (3.2)
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Theorem 3.1. Let 0 < α < 1 and G = [a, b] × Rm. Let f : G → Rm be continuous and fulfill a Lipschitz
condition with respect to the second variable with a Lipschitz constant L, i.e.

‖f(x, y2)− f(x, y1)‖ ≤ L‖y2 − y1‖, (x, y1), (x, y2) ∈ G.

Then for (x0, y0) ∈ G with x0 < a +
(Γ(α+1)

2L

)1/α
, there exists a unique solution y ∈ C([a, x0];Rm) to the

terminal value problem (3.1).

Proof. We define a mapping T : C([a, x0],R)→ C([a, x0],R) by

(Ty)(x) = y0 +

∫ x

a

(x− t)α−1

Γ(α)
f(t, y(t))dt−

∫ x0

a

(x0 − t)α−1

Γ(α)
f(t, y(t))dt

for y ∈ C([a, x0],R) and x ∈ [a, x0]. Then for any y1, y2 ∈ C([a, x0],R) and x ∈ [a, x0], we have

‖(Ty2)(x)− (Ty1)(x)‖ ≤
∫ x

a

(x− t)α−1

Γ(α)
‖f(t, y2(t))− f(t, y1(t))‖dt

+

∫ x0

a

(x0 − t)α−1

Γ(α)
‖f(t, y2(t))− f(t, y1(t))‖dt

≤L
∫ x

a

(x− t)α−1

Γ(α)
‖y2(t)− y1(t)‖dt

+ L

∫ x0

a

(x0 − t)α−1

Γ(α)
‖y2(t)− y1(t)‖dt

≤2L(x0 − a)α

Γ(α+ 1)
‖y2 − y1‖∞.

And hence
‖Ty2 − Ty1‖∞ ≤ K‖y2 − y1‖∞

with K = 2L(x0−a)α

Γ(α+1) . Since x0 < a+
(Γ(α+1)

2L

)1/α
, we get that 2L(x0−a)α

Γ(α+1) < 1. Thus an application of Banach’s

fixed point theorem yields the existence and uniqueness of solution to our integral equation (3.2).

Remark 3.2. The condition x0 < a +
(Γ(α+1)

2L

)1/α
means that the point x0 cannot be far away from a.

However, the following example shows that we cannot expect that there exists a solution to (3.1) for each
x0 ∈ (a, b].

Example 3.3. Consider the differential equation with the Caputo fractional derivative

cD
1/2
0 y(x) =

2
√
x√
πc
y2(x),

where c > 0 is a constant. A direct computation shows that it admits a solution

y(x) =
1√
c− x

,

whose existence interval is [0, c).
However, from the proof of Theorem 3.1 we can see that if the Lipschitz constant L is small enough,

then x0 can be extended to the whole interval. Thus we have the following result.

Theorem 3.4. Let 0 < α < 1 and G = [a, b] × Rm. Let f : G → Rm be continuous and fulfill a Lipschitz

condition with respect to the second variable with a Lipschitz constant L. If L < Γ(α+1)
2(b−a))α , then for every

(x0, y0) ∈ G, there exists a unique solution y ∈ C[a, x0] to the terminal value problem (3.1).
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Now we prove an existence result to the initial value problem at inner points (1.1)-(1.2) based on the
generalized Banach contraction principle.

Theorem 3.5. Let 0 < α < 1 and G = [a, b] × Rm. Let f : G → Rm be continuous and fulfill a Lipschitz
condition with respect to the second variable with a Lipschitz constant L. Suppose (x0, y0) ∈ G with x0 <

a+
(Γ(α+1)

2L

)1/α
. Then for h > 0, there exists a unique solution on [a, x0 + h] to IVP (1.1)-(1.2) .

Proof. In view of [9], a function y ∈ C([a, x0 + h];Rm) is a solution to (1.1)-(1.2) if and only if y satisfies

y(x) = y0 +

∫ x

a

(x− t)α−1

Γ(α)
f(t, y(t))dt−

∫ x0

a

(x0 − t)α−1

Γ(α)
f(t, y(t))dt (3.3)

for t ∈ [a, x0 + h].
By Theorem 3.1, there exists a unique function y∗ ∈ C([a, x0];Rm) satisfying

y∗(x) = y0 +

∫ x

a

(x− t)α−1

Γ(α)
f(t, y∗(t))dt−

∫ x0

a

(x0 − t)α−1

Γ(α)
f(t, y∗(t))dt. (3.4)

Extend y∗ to [a, x0 + h], also denoted by y∗, by{
y∗(x) = y∗(x), x ∈ [a, x0],

y∗(x) = y0, x ∈ [x0, x0 + h].
(3.5)

For z ∈ C([x0, x0 + h];Rm) with z(x0) = 0, we extend z to [a, x0 + h], still denoted by z̃, by{
z̃(x) = 0, x ∈ [a, x0],

z̃(x) = z(x), x ∈ [x0, x0 + h].
(3.6)

It is easily seen that a function y ∈ C([a, x0 + h];Rm) satisfies (3.3) if and only if there is a function
z ∈ C([x0, x0 + h];Rm) with z(x0) = 0 such that y = y∗ + z̃ on [a, x0 + h]. Moreover, y and y∗ agree on
[a, x0] and for x ∈ [x0, x0 + h], we have

z̃(x) =
1

Γ(α)

∫ x

a
(x− t)α−1f(t, y∗(t) + z̃(t))dt− 1

Γ(α)

∫ x0

a
(x0 − t)α−1f(t, y∗(t) + z̃(t))dt

=
1

Γ(α)

∫ x0

a

[
(x− t)α−1 − (x0 − t)α−1

]
f(t, y∗(t) + z̃(t))dt+

1

Γ(α)

∫ x

x0

(x− t)α−1f(t, y∗(t) + z̃(t))dt.

Due to (3.5) and (3.6) this equation can be rewritten as

z(x) =
1

Γ(α)

∫ x0

a

[
(x− t)α−1 − (x0 − t)α−1

]
f(t, y∗(t))dt+

1

Γ(α)

∫ x

x0

(x− t)α−1f(t, z(t) + y0)dt

= g(x) +
1

Γ(α)

∫ x

x0

(x− t)α−1f(t, z(t) + y0)dt

(3.7)

for x ∈ [x0, x0 + h], where g(x) = 1
Γ(α)

∫ x0
a

[
(x − t)α−1 − (x0 − t)α−1

]
f(t, y∗(t))dt with g(x0) = 0. Since y∗

is uniquely determined on [a, x0], g is a known function. Let W = {z ∈ C([x0, x0 + h];Rm) : z(x0) = 0}
endowed with the supremum norm ‖z‖∞ = supx∈[x0,x0+h] ‖z(x)‖. Then W becomes a Banach space. Define
an operator T : W →W by

(Tz)(x) = g(x) +
1

Γ(α)

∫ x

x0

(x− t)α−1f(t, z(t) + y0)dt

for z ∈ W and all x ∈ [x0, x0 + h]. Obviously if z is a fixed point of T , then y = y∗ + z̃ is a solution to
(1.1)-(1.2) and vise versa. Below we prove that T has a unique fixed point in W by the generalized Banach
contraction principle.
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We first note that T is well-defined due to the continuity of the function g and the fact that g(x0) = 0.
Next we prove that for any z1, z2 ∈W ,

‖Tnz2 − Tnz1‖∞ ≤
(Lhα)n

Γ(nα+ 1)
‖z2 − z1‖∞

for every n ∈ N. In fact, take arbitrary z1, z2 ∈W . Then for every x ∈ [x0, x0 + h], we have

∥∥Tz2(x)− Tz1(x)
∥∥ ≤ 1

Γ(α)

∫ x

x0

(x− t)α−1
∥∥f(t, z2(t) + y0)− f(t, z1(t) + y0)

∥∥dt
≤ L

Γ(α)

∫ x

x0

(x− t)α−1
∥∥z2(t)− z1(t)

∥∥dt
=LIαx0‖z2(·)− z1(·)‖(x).

Then we have∥∥T 2z2(x)− T 2z1(x)
∥∥ ≤ 1

Γ(α)

∫ x

x0

(x− t)α−1
∥∥f(t, T z2(t) + y0)− f(t, T z1(t) + y0)

∥∥dt
≤ L

Γ(α)

∫ x

x0

(x− t)α−1
∥∥Tz2(t)− Tz1(t)

∥∥dt
=

L2

Γ(α)

∫ x

x0

(x− t)α−1
(
Iαx0‖z2 − z1‖(t)

)
dt

=L2I2α
x0 ‖z2(·)− z1(·)‖(x).

By induction, we deduce that for n ∈ N and every x ∈ [x0, x0 + h],

∥∥Tnz2(x)− Tnz1(x)
∥∥ ≤ LnInαx0 ∥∥z2(·)− z1(·)

∥∥(x) =
Ln

Γ(nα)

∫ x

x0

(x− t)nα−1
∥∥z2(t)− z1(t)

∥∥dt
≤ Ln

Γ(nα)

∫ x

x0

(x− t)nα−1dt
∥∥z2 − z1

∥∥
∞

=
Ln

Γ(nα+ 1)
(x− x0)nα

∥∥z2 − z1

∥∥
∞

≤ Ln

Γ(nα+ 1)
hnα

∥∥z2 − z1

∥∥
∞.

Take supremum on both side we obtain that

∥∥Tnz2 − Tnz1

∥∥
∞ ≤

(Lhα)n

Γ(nα+ 1)

∥∥z2 − z1

∥∥
∞

for every n ∈ N. Since limn→∞
(Lhα)n

Γ(nα+1) = 0, we can take a natural number n0 large enough such that
(Lhα)n0

Γ(n0α+1) <
1
2 . Hence

‖Tn0z2 − Tn0z1‖∞ ≤
1

2
‖z2 − z1‖∞.

By the generalized Banach contraction principle, T has a unique fixed point z in W and this completes the
proof.

Remark 3.6. Although x0 is bounded with respect to the Lipschitzian constant L and the fractional order
α, the number h > 0 is unrestricted. That is to say, we actually get a global existence result for IVP (1.1)
with initial conditions (1.2) at inner points. It is interesting to compare with [8] and [13], where the authors
considered the Riemann-Liouville type fractional, with x0 being unbounded and h > 0 being bounded.
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Remark 3.7. The existence and uniqueness of solutions to the fractional differential equations with initial
conditions at inner points (1.1)-(1.2) was studied in [13] (Theorem 3.20 for Riemann-Liouville fractional
derivative and Theorem 2.27 for Caputo version). However, by a careful check of the proof one can find
that the existence results are discussed in the interval (x0 − h, x0 + h). From the definition of the solutions
to problem (1.1)-(1.2), (see also Theorem 6.18 in [9]), this is not appropriate.

Next we want to study the case that f satisfies the Caratheodory condition. For simplicity, we limit to
the case that f is locally bounded. We list the hypotheses.

(H1) f : [a, b]× C([a, b];Rm)→ C([a, b];Rm) satisfies the Caratheodory condition.

(H2) For every r > 0, there is a constant Mr > 0, such that ‖f(x, y)‖ ≤ Mr for a.e. x ∈ [a, b] and y ∈ Rm
with ‖y‖ ≤ r.

We prove a local existence result.

Theorem 3.8. Let 0 < α < 1 and G = [a, b] × Rm. Assume that the hypotheses (H1) − (H2) hold and
suppose (x0, y0) ∈ G. Further assume that there exists a real number r > 0 solving the inequality

(x0 − a)α

Γ(α+ 1)

Mr

r
<

1

2
. (3.8)

Then there exists an h > 0 such that the IVP (1.1)-(1.2) has at least a solution y ∈ C([x0, x0 + h];Rm).

Proof. On account of the hypothesis (3.8), we can find constants r0 > 0 and h > 0 with

‖y0‖+
2(x0 + h− a)αMr0

Γ(α+ 1)
< r0. (3.9)

Define an operator T : C([a, x0 + h];Rm)→ C([a, x0 + h];Rm) by

Ty(x) = y0 +
1

Γ(α)

(∫ x

a
(x− t)α−1f(t, y(t))dt−

∫ x0

a
(x0 − t)α−1f(t, y(t))dt

)
for y ∈ C([a, x0 +h];Rm) and x ∈ [a, x0 +h]. It then follows from the hypotheses (H1)− (H2) as well as the
Lebesgue dominated convergence theorem that T is well-defined, i.e., Ty is continuous on [a, x0 +h] for every
y ∈ C([a, x0 + h];Rm) and that T is continuous. Further, let Br0 = {y ∈ C([a, x0 + h];Rm) : ‖y‖∞ ≤ r0}.
Then Br0 is a bounded closed subset of C([a, x0 + h];Rm). For every y ∈ Br0 and x ∈ [a, x0 + h], we have

‖Ty(x)‖ ≤‖y0‖+
1

Γ(α)

(∫ x

a
(x− t)α−1‖f(t, y(t))‖dt+

∫ x0

a
(x0 − t)α−1‖f(t, y(t))‖dt

)
≤‖y0‖+

Mr0

Γ(α)

(∫ x

a
(x− t)α−1dt+

∫ x0

a
(x0 − t)α−1dt

)
≤‖y0‖+

2Mr0(x0 + h− a)α

Γ(α+ 1)
≤ r0

due to (H2) and (3.9), which implies that TBr0 ⊂ Br0 .
Now we show that T is completely continuous. To this end, we first prove that T maps bounded

subsets in C([a, x0 + h];Rm) into bounded subsets. It suffices to show that TBr is bounded for every
Br = {y ∈ C([a, x0 + h];Rm) : ‖y‖∞ ≤ r} with fixed r > 0. Let y ∈ Br. Then by (H2) we have for every
x ∈ [a, x0 + h],

‖Ty(x)‖ ≤‖y0‖+
1

Γ(α)

(∫ x

a
(x− t)α−1‖f(t, y(t))‖dt+

∫ x0

a
(x0 − t)α−1‖f(t, y(t))‖dt

)
≤‖y0‖+

Mr

Γ(α)

(∫ x

a
(x− t)α−1dt+

∫ x0

a
(x0 − t)α−1dt

)
≤‖y0‖+

2Mrb
α

Γ(α+ 1)
.
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It follows that ‖Ty‖∞ ≤ ‖y0‖+ 2Mrbα

Γ(α+1) which is independent of y ∈ Br. Hence TBr is bounded.
Next we prove that T maps bounded subsets into equicontinuous subsets. Let y ∈ Br be arbitrary and

x1, x2 ∈ [a, x0 + h] with x1 < x2. Then we have

‖Ty(x2)− Ty(x1)‖ ≤ 1

Γ(α)

(∫ x1

a

∣∣(x2 − t)α−1 − (x1 − t)α−1
∣∣‖f(t, y(t))‖dt

+

∫ x2

x1

(x2 − t)α−1‖f(t, y(t))‖dt
)

≤ Mr

Γ(α)

(∫ x1

a

[
(x1 − t)α−1 − (x2 − t)α−1

]
dt+

∫ x2

x1

(x2 − t)α−1dt
)

≤ Mr

Γ(α+ 1)

[
(x2 − a)α − (x1 − a)α

]
,

which converges to 0 as x2 − x1 → 0 and the convergence is independent of y ∈ Br. Thus TBr is equicon-
tinuous.

We have shown that T maps bounded subsets in C([a, x0+h];Rm) to bounded and equicontinuous subsets.
By Arzela-Ascoli’s theorem, we conclude that T is a completely continuous operator. An application of the
Schauder fixed point theorem shows that there exists at least a fixed point y of T in Br0 , which is the
solution to (1.1)-(1.2) on [x0, x0 + h] and the proof is completed.

4. Viability

In this section we discuss the viability of solutions for the nonlinear fractional differential equation (1.1).
The main result is the following theorem.

Theorem 4.1. Let D ⊂ Rm be a locally closed subset, 0 < α < 1 and assume that the hypotheses (H1)−(H2)

hold. Further, assume that there is a number r0 > 0 satisfying
(b−a)αMr0
Γ(α+1)r0

< 1
2 . If f satisfies the tangency

condition (2.1) for every y0 ∈ D, then D is the viable domain of the fractional differential equation (1.1).

To prove Theorem 4.1, we need the following lemma. Let x0 ∈ (a, b) and y0 ∈ D be arbitrary. Take
r > 0 such that B(y0, r) ∩D is closed. From Theorem 3.8, there is a ȳ ∈ C([a, b];R) satisfying

ȳ(x) =
1

Γ(α)

∫ x

a
(x− t)α−1f(t, ȳ(t))dt (4.1)

for x ∈ [a, x0] and ȳ(x0) = y0, i.e. ȳ(x0) = 1
Γ(α)

∫ x0
a (x0− t)α−1f(t, ȳ(t))dt. Let r1 = supx∈[a,x0] ‖ȳ(x)‖. Then

by (H2), there exists an Mr1 with ‖f(x, ȳ(x))‖ ≤Mr1 for all x ∈ [a, x0]. Since for x > x0,

1

Γ(α)
‖
∫ x0

a

(
(x− t)α−1 − (x0 − t)α−1

)
f(t, ȳ(t))‖dt ≤Mr1

Γ(α)

∫ x0

a

∣∣∣(x− t)α−1 − (x0 − t)α−1
∣∣∣dt

=
Mr1

Γ(α)

[
(x− a)α − (x0 − a)α − (x− x0)α

]
,

we can choose T > 0 such that

1

Γ(α)

∥∥∥∫ x0

a

(
(x− t)α−1 − (x0 − t)α−1

)
f(t, ȳ(t))

∥∥∥dt ≤ r

3
(4.2)

for all x ∈ [x0, x0 + T ]. Notice that we also have

1

Γ(α)

∥∥∥∫ x0

a

(
(x2 − t)α−1 − (x1 − t)α−1

)
f(t, ȳ(t))

∥∥∥dt ≤ r

3
(4.3)

for all x1, x2 ∈ [x0, x0 + T ]. Moreover, we can choose T small enough such that

MrT
α

Γ(α+ 1)
≤ r

3
. (4.4)
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Lemma 4.2. Suppose that the hypotheses of Theorem 4.1 hold and Z is the set given by Theorem 2.7. Then
for each (x0, y0) ∈ (a, b) ×D and n ∈ N and each open subset Ln ∈ R with Z ∈ Ln and m(Ln) < 1

n , there
exist an x̄ ∈ [x0, x0 + T ]\Z, an increasing sequence {xni }∞i=1 ⊂ [x0, x0 + T ] and an approximate solution yn

on [x0, x0 + T ] in the following sense:

(i) xn0 = x0, x
n
i+1 − xni = dni <

1
n , limi→∞ x

n
i = x0 + T ;

(ii) yn(x0) = y0, y
n(xni ) = yni ∈ D ∩B(y0, r);

(iii) hn(t) = f(xni , y
n(xni )) in the case xni /∈ Ln, while hn(t) = f(x̄, yn(xni )) in the case xni ∈ Ln for

t ∈ [xni , x
n
i+1);

(iv) yn(x) = yni + 1
Γ(α)

∫ x
xni

(x − t)α−1hn(t)dt + (x − xni )pni + 1
Γ(α)

∫ xni
a [(x − t)α−1 − (xni − t)α−1]hn(t)dt for

x ∈ [xni , x
n
i+1), where yni ∈ D, pni ∈ Rm with ‖pni ‖ < 1

n .

Proof. Let x0 ∈ (a, b), y0 ∈ D and n ∈ N be given. We assume that the tangency condition (2.1) holds
for every x ∈ [x0, x0 + T ]\Ln. Fix x̄ ∈ [x0, x0 + T ]\Ln. We construct yn, hn and xni by induction. Let
hn(t) = f(t, ȳ(t)) for t ∈ [a, x0], where ȳ is the function obtained by Theorem 3.8 and satisfying (4.1). Set
xn0 = x0 and yn(x) = ȳ(x) for x ∈ [a, x0]. So yn(xn0 ) = y0. To simplify notation, we drop n as a superscript
for xi, yi, y, pi etc.

Suppose that y and h are constructed on [x0, xi]. Then we define xi+1 in the following manner. If
xi = x0 + T , set xi+1 = x0 + T and if xi < x0 + T , then we define xi+1 as in the following two cases.

In the case that xi ∈ Ln, we set

δi = sup
{
h ∈ (0,

1

n
];xi + h ≤ x0 + T, [xi, xi + h] ⊂ Ln,

d(yi +
hα

Γ(α+ 1)
f(x̄, yi);D) ≤ h

6n

}
.

(4.5)

By Lemma 2.6, it is easily seen that δi > 0. Choose a number di ∈ (1
2δi, δi] such that

d(yi +
dαi

Γ(α+ 1)
f(x̄, yi);D) ≤ di

6n
. (4.6)

Define xi+1 = xi + di. By (4.6), there is a yi+1 ∈ D such that

‖yi +
dαi

Γ(α+ 1)
f(x̄, yi)− yi+1‖ ≤

di
3n
.

Consequently, yi+1 can be written as

yi+1 = yi +
1

Γ(α)

∫ xi+1

xi

(xi+1 − t)α−1f(x̄, yi)dt+ (xi+1 − xi)pi

+
1

Γ(α)

∫ xi

a

[
(xi+1 − t)α−1 − (xi − t)α−1

]
h(t)dt.

(4.7)

with ‖pi‖ ≤ 1
3n . Define h on [xi, xi+1) as h(t) = f(x̄, yi).

In the case that xi /∈ Ln, we set

δi = sup
{
h ∈ (0,

1

n
];xi + h ≤ x0 + T,

d(yi +
hα

Γ(α+ 1)
f(xi, yi);D) ≤ h

6n

}
.

(4.8)
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By Lemma 2.6, we know that δi > 0. Choose a number di ∈ (1
2δi, δi] such that

d(yi +
dαi

Γ(α+ 1)
f(xi, yi);D) ≤ di

6n
. (4.9)

Define xi+1 = xi + di. By (4.9), there is a yi+1 ∈ D such that

‖yi +
dαi

Γ(α+ 1)
f(xi, yi)− yi+1‖ ≤

di
3n
.

Consequently, yi+1 can be written as

yi+1 = yi +
1

Γ(α)

∫ xi+1

xi

(xi+1 − t)α−1f(xi, yi)dt+ (xi+1 − xi)pi

+
1

Γ(α)

∫ xi

a

[
(xi+1 − t)α−1 − (xi − t)α−1

]
h(t)dt

(4.10)

with ‖pi‖ ≤ 1
3n . In this case, we define h on [xi, xi+1) as h(t) = f(xi, yi). In both cases, we define y on

[xi, xi+1] as

y(x) = yi +
1

Γ(α)

∫ x

xi

(x− t)α−1h(t)dt+ (x− xi)pi

+
1

Γ(α)

∫ xi

a

[
(x− t)α−1 − (xi − t)α−1

]
h(t)dt.

(4.11)

Let us define the step functions αn and βn as αn(t) = xi in the case xi /∈ Ln, αn(t) = x̄ in the case
xi ∈ Ln and βn(t) = xi for t ∈ [xi, xi+1). Then hn can be written as h(t) = f(α(t), y(β(t)). By the induction
hypotheses, y can be written in the form

y(x) = y0 +
1

Γ(α)

∫ x

x0

(x− t)α−1h(t)dt+
i−1∑
k=0

(xk+1 − xk)pk + (x− xi)pi

+
1

Γ(α)

∫ x0

a

[
(x− t)α−1 − (x0 − t)α−1

]
h(t)dt

(4.12)

for x ∈ [xi, xi+1). We now check that yn(x) ∈ B(y0, r) for sufficiently large n. We first notice that ‖pk‖ ≤ 1
3n

for k = 0, 1, · · · , i and ‖h(t)‖ ≤Mr by (H2). Therefore, from (4.10), (4.3) and (4.4) we have

‖y(x)− y0‖ ≤
1

Γ(α)

∥∥∥∫ x

x0

(x− t)α−1h(t)dt
∥∥∥+

∥∥∥ i−1∑
k=0

(xk+1 − xk)pk + (x− xi)pi
∥∥∥

+
1

Γ(α)

∥∥∥∫ x0

a

[
(x− t)α−1 − (x0 − t)α−1

]
h(t)dt

∥∥∥
≤Mr(x− x0)α

Γ(α+ 1)
+ (x− x0)

1

3n
+
r

3

≤ MrT
α

Γ(α+ 1)
+
T

3n
+
r

3

≤r
3

+
T

3n
+
r

3
< r

(4.13)

for sufficiently large n. This implies that yn(x) ∈ B(y0, r) for all x ∈ [x0, xi+1]. Thus, the properties (ii),
(iii) and (iv) are verified.

To prove property (i), we first note that limi→∞ xi exists since {xi}∞i=1 is increasing and xi ≤ x0 + T
for all i = 1, 2, · · · . Suppose that limi→∞ xi = x∗, then x∗ ≤ x0 + T . We have to prove that x∗ = x0 + T .
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For this end, we first verify that limi→∞ yi exists. In fact, let j > i. Using (4.10) for x = xi and x = xj
respectively, we derive that

‖yj − yi‖ ≤
1

Γ(α)

∥∥∥∫ xi

x0

[
(xj − t)α−1 − (xi − t)α−1

]
h(t)dt

+

∫ xj

xi

(xj − t)α−1h(t)dt
∥∥∥+

∥∥∥ i−1∑
k=0

(xk+1 − xk)pk + (x− xi)pi
∥∥∥

+
1

Γ(α)

∥∥∥∫ x0

a

[
(xj − t)α−1 − (xi − t)α−1

]
h(t)dt

∥∥∥
≤ Mr

Γ(α+ 1)

[
(xj − x0)α − (xi − x0)α + 2(xj − xi)α

]
+
xj − xi
n

+
Mr

Γ(α+ 1)

[
(xj − a)α − (xi − a)α + (xj − x0)α − (xi − x0)α

]
.

(4.14)

From the fact that {xi}∞i=1 is a Cauchy sequence, it is easily seen from (4.12) that {yi}∞i=1 is also a Cauchy
sequence in Rm. Hence limi→∞ yi = y∗ exists and y∗ ∈ B(y0, r) ∩D since B(y0, r) ∩D is closed. We define
y(x∗) = y∗. By (4.9), we have

‖y(x)− yi‖ ≤
1

Γ(α)

∥∥∥∫ x

xi

(x− t)α−1h(t)dt
∥∥∥+

∥∥∥(x− xi)pi
∥∥∥

+
1

Γ(α)

∥∥∥∫ xi

a

[
(x− t)α−1 − (xi − t)α−1

]
h(t)dt

∥∥∥
≤ Mr

Γ(α+ 1)

[
2(x− xi)α + (x− a)α − (xi − a)α

]
+
x− xi
n

.

(4.15)

This, alone with the fact that limi→∞ yi = y∗ implies that limx↑x∗ y(x) = y∗. Accordingly, y is continuous
on [a, x∗].

We assert that x∗ /∈ Ln for sufficiently large n. Indeed, if x∗ ∈ Ln, then there are only finitely many
xi /∈ Ln since [x0, x

∗]\Ln is closed. Hence there is a positive integer i0 such that xi ∈ Ln for all i ≥ i0. But
then [xi0 , x

∗] ⊂ Ln by (4.5), which contradicts the fact that m(Ln) < 1
n for sufficiently large n.

Now we assume by negation that x∗ < x0 + T . Then we can choose h∗ ∈ (0, 1
n ] such that

d(y∗ +
h∗α

Γ(α+ 1)
f(x∗, y∗);D) ≤ h∗

8n
. (4.16)

Since di >
1
2δi and di = xi+1 − xi → 0 as i → ∞, there is a positive integer i0 such that δi < h∗ for all

i > i0. On the basis of (4.8), we have

d(yi +
h∗α

Γ(α+ 1)
f(xi, yi);D) >

h∗

6n
(4.17)

for all i > i0 and xi /∈ Ln. Letting i → ∞ in (4.17), one gets an inequality which contradicts (4.16).
Therefore x∗ = x0 + T , which completes the proof.

Proof of Theorem 4.1. Let {Ln} be the sequence of open subsets of R such that Z ⊂ Ln and m(Ln) < 1
n for

all n ∈ N. Take L = ∩n≥1Ln and a sequence of n-approximate solutions {yn} and {xni } obtained in Lemma
4.2. Define

gn(x) =

i−1∑
k=0

(xk+1 − xk)pk + (x− xni )pni
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for x ∈ [xi, xi+1). Then ‖gn(x)‖ ≤ T
n for all x ∈ [x0, x0 + T ] and yn can be written in the form

yn(x) =y0 +
1

Γ(α)

∫ x

x0

(x− t)α−1hn(t)dt+ gn(x) +
1

Γ(α)

∫ x0

a

[
(x− t)α−1 − (x0 − t)α−1

]
hn(t)dt

=y0 +
1

Γ(α)

∫ x

a
(x− t)α−1hn(t)dt− 1

Γ(α)

∫ x0

a
(x0 − t)α−1hn(t)dt+ gn(x).

(4.18)

From the construction of yn we know that {yn} is uniformly bounded. We now prove that {yn} is
equicontinuous. Take x′, x′′ ∈ [x0, x0 + T ] with x′ < x′′. Then for any n ∈ N, by (4.18) we have

‖y(x′′)− y(x′)‖ ≤ 1

Γ(α)

∥∥∥∫ x′

a

[
(x′′ − t)α−1 − (x′ − t)α−1

]
hn(t)dt

+

∫ x′′

x′
(x′′ − t)α−1hn(t)dt

∥∥∥+
∥∥∥gn(x′′)− gn(x′)

∥∥∥
≤ Mr

Γ(α+ 1)

[
(x′′ − a)α − (x′ − a)α + 2(x′′ − x′)α

]
+
x′′ − x′

n
,

(4.19)

which converges to 0 as x′′−x′ → 0 and the convergence is independent of n. Hence {yn} is equicontinuous.
By Arzela-Ascoli’s theorem, {yn} is relatively compact in C([a, x0 + T ];Rm) and hence has a convergent
subsequence. Without loss of generality, we may assume that {yn} itself is convergent and

lim
n→∞

yn(x) = y(x)

uniformly on [x0, x0 + T ] (recall that yn(x) ≡ ȳ(x) for x ∈ [a.x0]). Notice that limn→∞ g
n(x) = 0 uniformly

for x ∈ [x0, x0 + T ]. Let us investigate hn(t) = f(αn(t), yn(βn(t))). If t /∈ L, then t /∈ Ln for sufficiently
large n and then we have αn(t) → t as n → ∞. Also we have βn(t) → t as n → ∞ for all t ∈ [x0, x0 + T ].
Therefore hn(t) → f(t, y(t)) as n → ∞ for a.e t ∈ [x0, x0 + T ]. Moreover, yn(βn(t)) ∈ B(y0, r) ∩D implies
y(t) ∈ B(y0, r) ∩D (which is closed). Finally, passing to the limit in (4.18), one obtains that

y(x) =y0 +
1

Γ(α)

∫ x

a
(x− t)α−1f(t, y(t))dt− 1

Γ(α)

∫ x0

a
(x0 − t)α−1f(t, y(t))dt

and y(x) ∈ B(y0, r) ∩D for x ∈ [x0, x0 + T ], which completes the proof.

Concerning the continuation of the solution to (1.1) satisfying (1.2). Recall that a solution ỹ : [x0, x0 +
T1]→ Rm to (1.1) with T1 > T is said to be a continuation to the right of the solution y : [x0, x0 +T ]→ Rm
to (1.1), if ỹ(x) = y(x) for all x ∈ [x0, x0 + T ]. A solution ỹ is said to be non-continuable if it has no
proper continuation. Using a standard argument based on Zorn’s lemma, one can easily verify that, if the
hypotheses of Theorem 4.1 hold and ỹ : [x0, b0)→ Rm is a non-continuable solution to (1.1) satisfying (1.2),
then either b0 = b or limx↑b0 ‖ỹ(x)‖ = +∞. Precisely, we have

Theorem 4.3. Under the hypotheses of Theorem 4.1, a sufficient condition for every x0 ∈ (a, b), y0 ∈ D
to have a non-continuable solution y(x) ∈ D to (1.1) satisfying (1.2) is the tangency condition (2.1).

Consider D = Rm+ = {y = (y1, y2, · · · , ym) ∈ Rm : yi > 0, i = 1, 2, · · · ,m}. If y0 ∈ Rm+ and f is
continuous, then the tangency condition (2.1) is satisfied automatically since Rm+ is open. In this case, we
can get the existence of a positive solution for IVP (1.1)-(1.2) from Theorem 4.1.

Corollary 4.4. Suppose that D = Rm+ and f is continuous. If y0 ∈ Rm+ , then there exists a T > 0 with
x0 + T ≤ b such that the IVP (1.1)-(1.2) has a positive solution on [x0, x0 + T ].
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