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Abstract

Fixed points of strict pseudocontractions and zero points of two monotone operators are investigated
based on a viscosity iterative method. A strong convergence theorem of common solutions is established in
the framework of Hilbert spaces. The results obtained in this paper improve and extend many corresponding
results announced recently. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Quasi-variational inclusion problem was recently extensively investigated by many authors. The problem
has emerged as an interesting branch of applied mathematics with a wide range of applications in industry,
finance, economics, optimization, and medicine; see [1, 2, 4, 8, 9, 17, 18] and the references therein. The ideas
and techniques for solving quasi-variational inclusion problem are being applied in a variety of diverse areas
of sciences and proved to be productive and innovative. Fixed point methods are efficient and powerful
to solving the inclusion problem. In this paper, we use a viscosity fixed point method, which first was
introduced by Moudafi [13], to study a quasi-variational inclusion problem. Strong convergence theorems
are established without any compact assumptions imposed on the framework of the spaces and the operators.

Throughout this paper, we always assume that H is a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H. From now on, we use → and ⇀
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to denote the strong convergence and weak convergence, respectively. Recall that a space is said to satisfy
Opial’s condition [14] if, for any sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖,

holds for every y ∈ H with y 6= x. Indeed, the above inequality is equivalent to the following

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

Let S be a mapping. We use F (S) to stand for the fixed point set of S; that is, F (S) := {x ∈ C : x = Sx}.
Recall that S is said to be α-contractive iff there exists a constant α ∈ (0, 1) such that

‖Sx− Sy‖ ≤ α‖x− y‖, ∀x, y ∈ C.

S is said to be nonexpansive iff

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

It is known that the fixed point set of the mapping is not empty if the subset C is bounded in the
framework of Hilbert spaces.

S is said to be κ-strictly pseudocontractive iff there exists a constant κ ∈ [0, 1) such that

∀x, y ∈ C, ‖Sx− Sy‖2 ≤ ‖x− y‖2 + κ‖(x− Sx)− (y − Sy)‖2.

The class of κ-strictly pseudocontractive mappings was introduced by Browder and Petryshyn [5]. Note
that the class of κ-strictly pseudocontractive mappings strictly includes the class of nonexpansive mappings.
That is, S is nonexpansive iff κ = 0. The class of κ-strict pseudocontractions has been extensively investi-
gated based on viscosity iterative methods since it has a close relation with monotone operators; see [5] and
the references therein.

A multivalued operator B : H → 2H with the domain Dom(B) = {x ∈ H : Bx 6= ∅} and the range
Ran(B) = {Bx : x ∈ Dom(B)} is said to be monotone if for x1 ∈ Dom(B), x2 ∈ Dom(B), y1 ∈ Bx1
and y2 ∈ Bx2, we have 〈x1 − x2, y1 − y2〉 ≥ 0. A monotone operator B is said to be maximal if its graph
Graph(B) = {(x, y) : y ∈ Bx} is not properly contained in the graph of any other monotone operator. Let
I denote the identity operator on H and B : H → 2H be a maximal monotone operator. Then we can
define, for each λ > 0, a nonexpansive single valued mapping (I +λB)−1. It is called the resolvent of B. We
know that B−10 = F ((I + λB)−1) for all λ > 0. We also know that (I + λB)−1 is firmly nonexpansive; see
[7, 10, 15] and the references therein.

Let A : C → H be a single-valued mapping. Recall that A is said to be monotone iff

∀x, y ∈ C, 〈Ax−Ay, x− y〉 ≥ 0.

A is said to be ξ-strongly monotone iff there exists a constant ξ > 0 such that

∀x, y ∈ C, 〈Ax−Ay, x− y〉 ≥ ξ‖x− y‖2.

A is said to be ξ-inverse-strongly monotone iff there exists a constant ξ > 0 such that

∀x, y ∈ C, 〈Ax−Ay, x− y〉 ≥ ξ‖Ax−Ay‖2.

It is not hard to see that ξ-inverse-strongly monotone mappings are Lipschitz continuous. It is also
obvious that every operator is ξ-inverse-strongly monotone iff its inverse is ξ-strongly monotone.

Recall that the classical variational inequality, denoted by V I(C,A), is to find u ∈ C such that
〈Au, v − u〉 ≥ 0, ∀v ∈ C. It is known that the variational inequality is equivalent to a fixed point prob-
lem. This equivalence plays an important role in the studies of the variational inequalities and related
optimization problems.
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In this paper, we are concerned with the problem of finding a common element in the intersection:
F (S)∩(A+B)−1(0), where F (S) denotes the fixed point set of κ-strict pseudocontraction S and (A+B)−1(0)
denotes the zero point set of the sum of the operator A and the operator B. The results obtain in this paper
mainly improve the corresponding results in [3, 6, 7, 11, 16, 19],[21]-[26].

Lemma 1.1 ([20]). Suppose that H is a real Hilbert space and 0 < p ≤ tn ≤ q < 1 for all n ≥ 1. Suppose
further that {xn} and {yn} are sequences of H such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r

and
lim
n→∞

‖tnxn + (1− tn)yn‖ = r

hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.2 ([3]). Let C be a nonempty, closed, and convex subset of H, A : C → H a mapping, and
B : H ⇒ H a maximal monotone operator. Then F ((I + λB)−1(I − λA)) = (A+B)−1(0).

Lemma 1.3 ([12]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn =∞;

(ii) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.

Then limn→∞ αn = 0.

Lemma 1.4 ([5]). Let C be a nonempty, closed, and convex subset of H. Let S : C → C be a strictly
psedocontractive mapping. Then S is Lipschitz continuous and I − S is demiclosed at zero.

2. Main results

Theorem 2.1. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let
A : C → H be a ξ-inverse-strongly monotone mapping and let B be a maximal monotone operator on
H such that Dom(B) ⊂ C. Let f be a fixed α-contractive mapping on C and let S be κ-quasi-strict
pseudocontraction on C. Let {λn} be a positive real number sequence. Let {αn,1}, {αn,2}, {αn,3}, {βn} and
{γn} be real number sequences in (0, 1). Let {xn} be a sequence in C generated in the following iterative
process 

x1 ∈ C,
yn = αn,1zn + αn,2f(xn) + αn,3xn,

xn+1 = (1− βn)((1− γn)Syn + γnyn) + βnxn, ∀n ≥ 1,

where zn ≈ (I+λnB)−1(xn−λnAxn), the criterion for the approximate computation is ‖zn−(I+λnB)−1(xn−
λnAxn)‖ ≤ en. Assume that the sequences {αn,1}, {αn,2}, {αn,3}, {βn}, {γn} and {λn} satisfy the following
restrictions: αn,1 + αn,2 + αn,3 = 1, 0 < a ≤ βn ≤ b < 1; κ ≤ γn ≤ c < 1, limn→∞ |γn+1 − γn| = 0;
limn→∞ αn2 = limn→∞ αn3 = 0,

∑∞
n=1 αn,2 = ∞; 0 < d ≤ λn ≤ e < 2ξ, limn→∞ |λn+1 − λn| = 0,

limn→∞ ‖en‖ = 0, where a, b, c, d and e are some real numbers. If F = Fix(S) ∩ (A + B)−1(0) 6= ∅, then
sequence {xn} converges strongly to x̄, where x̄ solves the following variational inequality 〈f(x̄)−x̄, x̄−x〉 ≥ 0,
∀x ∈ F .
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Proof. First, we show that {xn} is bounded. Since A is inverse-strongly monotone, we have

‖(I − λnA)y − (I − λnA)x‖2

= λn
2‖Ax−Ay‖2 + ‖x− y‖2 − 2λn〈x− y,Ax−Ay〉

≤ λn(λn − 2ξ)‖Ax−Ay‖2 + ‖x− y‖2.

Using the restriction imposed on {λn}, one has ‖x− y‖ ≥ ‖(I − λnA)x− (I − λnA)y‖. That is, I − λnA
is nonexpansive. Fixing p ∈ F , we find from Lemma 1.2 that

p = (I + λnB)−1(p− λnAp).

Since both (I + λnB)−1 and I − λnA are nonexpansive, we have ‖zn− p‖ ≤ ‖en‖+ ‖xn− p‖. It follows that

‖yn − p‖ ≤ αn,1‖zn − p‖+ αn,2‖f(xn)− p‖+ αn,3‖xn − p‖
≤ αn,1‖en‖+ αn,1‖xn − p‖+ αn,2α‖xn − p‖+ αn,2‖f(p)− p‖+ αn,3‖xn − p‖
≤ (1− αn,2(1− α))‖xn − p‖+ αn,2‖f(p)− p‖+ ‖en‖.

(2.1)

Since S is κ-quasi-strictly pseudocontractive on C, one finds from (2.1) that

‖γnyn + (1− γn)Syn − p‖2

= (1− γn)‖Syn − Sp‖2 + γn‖yn − p‖2 − γn(1− γn)‖(yn − p)− (Syn − Sp)‖2

≤ γn‖yn − p‖2 + (1− γn)(‖yn − p‖2 + κ‖(yn − p)− (Syn − Sp)‖2)
− γn(1− γn)‖(yn − p)− (Syn − Sp)‖2

= ‖yn − p‖2 − (1− γn)(γn − κ)‖(yn − p)− (Syn − Sp)‖2

≤ ‖yn − p‖2.

(2.2)

Using (2.1) and (2.2), we find

‖γnyn + (1− γn)Syn − p‖ ≤ (1− αn,2(1− α))‖xn − p‖+ αn,2‖f(p)− p‖+ ‖en‖.

It follows that

‖xn+1 − p‖ ≤ (1− βn)‖γnyn + (1− γn)Syn − p‖+ βn‖xn − p‖
≤ αn,2(1− βn)‖f(p)− p‖+ (1− βn)

(
1− αn,2(1− α)

)
‖xn − p‖

+ (1− βn)en + βn‖xn − p‖
≤ αn,2(1− βn)‖f(p)− p‖+

(
1− αn,2(1− α)(1− βn)

)
‖xn − p‖+ en

≤ max{‖f(p)− p‖
1− α

, ‖xn − p‖}+ en

≤ · · ·

≤ max{‖f(p)− p‖
1− α

, ‖x1 − p‖}+

∞∑
i=1

ei <∞.

This proves that {xn} is bounded. Since f is an α-contractive, we find

‖yn+1 − yn‖ ≤ αn+1,1‖zn+1 − zn‖+ αn+1,2‖f(xn+1)− f(xn)‖+ αn+1,3‖xn+1 − xn‖
+ |αn+1,1 − αn,1|‖zn‖+ |αn+1,2 − αn,2|‖f(xn)‖+ |αn+1,3 − αn,3|‖xn‖
≤ αn+1,1‖zn+1 − zn‖+ αn+1,2α‖xn+1 − xn‖+ αn+1,3‖xn+1 − xn‖

+ |αn+1,1 − αn,1|‖zn‖+ |αn+1,2 − αn,2|‖f(xn)‖+ |αn+1,3 − αn,3|‖xn‖.

(2.3)
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Putting Jλn = (I + λnB)−1, one has

‖zn+1 − zn‖ ≤ ‖en+1‖+ ‖Jλn+1(xn+1 − λn+1Axn+1 − Jλn(xn − λnAxn‖+ ‖en‖
≤ ‖(xn − λnAxn)− (xn+1 − λn+1Axn+1)‖

+ ‖Jλn(xn − λnAxn)− Jλn+1(xn − λnAxn)‖+ ‖en+1‖+ ‖en‖
≤ |λn+1 − λn|‖Axn‖+ ‖xn+1 − xn‖

+ ‖Jλn(xn − λnAxn)− Jλn+1(xn − λnAxn)‖+ ‖en+1‖+ ‖en‖.

(2.4)

Substituting (2.4) into (2.3), we find

‖yn+1 − yn‖ ≤ |λn+1 − λn|‖Axn‖+
(
1− αn+1,2(1− α)

)
‖xn+1 − xn‖

+ αn+1,1‖Jλn(xn − λnAxn)− Jλn+1(xn − λnAxn)‖+ ‖en+1‖+ ‖en‖
+ |αn+1,1 − αn,1|‖zn‖+ |αn+1,2 − αn,2|‖f(xn)‖+ |αn+1,3 − αn,3|‖xn‖.

(2.5)

Putting un = xn − λnAxn, we see that

0 ≥ 〈Jλn+1un − Jλnun,
un − Jλnun

λn
−
un − Jλn+1un

λn+1
〉.

It follows that

‖Jλnun − Jλn+1un‖2 ≤ 〈(1−
λn+1

λn
)(Jλnun − un), Jλnun − Jλn+1un〉.

Hence, we have

‖Jλnun − Jλn+1un‖ ≤
|λn+1 − λn|

λn
‖Jλnun − un‖. (2.6)

From (2.5) and (2.6), one has

‖yn+1 − yn‖ ≤ |λn+1 − λn|‖Axn‖+
(
1− αn+1,2(1− α)

)
‖xn+1 − xn‖

+
|λn+1 − λn|

λn
‖Jλnun − un‖+ ‖en+1‖+ ‖en‖

+ |αn+1,1 − αn,1|‖zn‖+ |αn+1,2 − αn,2|‖f(xn)‖+ |αn+1,3 − αn,3|‖xn‖.

(2.7)

Putting Tn = (1− γn)S + γnI, one has

‖Tnx− Tny‖2 ≤ (1− γn)‖Sx− Sy‖2 + γn‖x− y‖2

− γn(1− γn)‖(Sx− Sy)− (x− y)‖2

≤ γn‖x− y‖2 + (1− γn)(‖x− y‖2

+ κ‖(x− y)− (Sx− Sy)‖2)
− γn(1− γn)‖(x− y)− (Sx− Sy)‖2

= ‖x− y‖2 − (1− γn)(γn − κ)‖(x− y)− (Sx− Sy)‖2

≤ ‖x− y‖2, ∀x, y ∈ C.

It follows that

‖Tnyn − Tn+1yn+1‖ ≤ ‖Tn+1yn+1 − Tn+1yn + Tn+1yn − Tnyn‖
≤ ‖yn+1 − yn‖+ ‖(γn+1yn + (1− γn+1)Syn)

− (γnyn + (1− γn)Syn)‖
≤ ‖yn+1 − yn‖+ ‖γn+1 − γn|(‖yn‖+ ‖Syn‖).

(2.8)



X. Xu, Y. Lu, S. Y. Cho, J. Nonlinear Sci. Appl. 9 (2016), 2604–2614 2609

From (2.7) and (2.8), one has

‖Tnyn − Tn+1yn+1‖ − ‖xn+1 − xn‖

≤ |λn+1 − λn|‖Axn‖+
|λn+1 − λn|

λn
‖Jλnun − un‖+ ‖en+1‖+ ‖en‖

+ |αn+1,1 − αn,1|‖zn‖+ |αn+1,2 − αn,2|‖f(xn)‖+ |αn+1,3 − αn,3|‖xn‖
+ ‖γn+1 − γn|(‖yn‖+ ‖Syn‖).

It follows that
lim sup
n→∞

(‖Tn+1yn+1 − Tnyn‖ − ‖xn+1 − xn‖) ≤ 0.

In view of Lemma 1.1, one has limn→∞ ‖xn − Tnyn‖ = 0. This finds

lim
n→∞

‖xn+1 − xn‖ = 0. (2.9)

Put µn = Jλn(xn − λnAxn). Since ‖ · ‖2 is convex, we see

‖xn+1 − p‖2 ≤ (1− βn)‖Tnyn − p‖2 + βn‖xn − p‖2

≤ βn‖xn − p‖2 + (1− βn)‖yn − p‖2

≤ βn‖xn − p‖2 + αn,2‖f(xn)− p‖2 + αn,1(1− βn)‖zn − p‖2 + αn,3(1− βn)‖xn − p‖2

≤ βn‖xn − p‖2 + αn,2‖f(xn)− p‖2 + ‖en‖2 + αn,1(1− βn)‖µn − p‖2 + 2‖µn − p‖‖en‖
+ αn,3(1− βn)‖xn − p‖2

≤ βn‖xn − p‖2 + αn,2‖f(xn)− p‖2 + ‖en‖2 + αn,1(1− βn)‖xn − p‖2

− αn,1(1− βn)λn(2ξ − λn)‖Axn −Ap‖2 + 2‖µn − p‖‖en‖+ αn,3(1− βn)‖xn − p‖2

≤
(
1− αn,2(1− βn)

)
‖xn − p‖2 + αn,2‖f(xn)− p‖2 + ‖en‖2

− αn,1(1− βn)λn(2ξ − λn)‖Axn −Ap‖2 + 2‖µn − p‖‖en‖.

It follows that

αn,1(1− βn)λn(2ξ − λn)‖Axn −Ap‖2 ≤ αn,2(1− βn)‖xn − p‖2 + αn,2‖f(xn)− p‖2 + ‖en‖2

‖xn − p‖2 − ‖xn+1 − p‖2 + 2‖µn − p‖‖en‖.

Using the restrictions imposed on the control sequences, we have

lim
n→∞

‖Axn −Ap‖ = 0. (2.10)

Since Jλn is firmly nonexpansive, we have

‖µn − p‖2 = ‖Jλn(p− λnAp)− Jλn(xn − λnAxn)‖2

≤ 〈µn − p, (xn − λnAxn)− (p− λnAp)〉

=
1

2

(
‖µn − p‖2 + ‖(xn − λnAxn)− (p− λnAp)‖2

− ‖(xn − λnAxn)− (p− λnAp)− (µn − p)‖2

≤ 1

2

(
‖xn − p‖2 + ‖µn − p‖2 − ‖xn − µn − λn(Axn −Ap)‖2

)
≤ 1

2

(
‖xn − p‖2 + ‖µn − p‖2 − ‖xn − µn‖2 + 2λn‖xn − µn‖‖Axn −Ap‖

)
.

It follows that

‖µn − p‖2 ≤ ‖xn − p‖2 − ‖xn − µn‖2 + 2λn‖xn − µn‖‖Axn −Ap‖.
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Hence, we have

‖zn − p‖2 ≤ ‖en‖2 + ‖µ− p‖2 + 2‖en‖‖µ− p‖
≤ ‖en‖2 + ‖xn − p‖2 − ‖xn − µn‖2 + 2λn‖xn − µn‖‖Axn −Ap‖+ 2‖en‖‖µn − p‖.

Since ‖ · ‖2 is convex, we see that

‖xn+1 − p‖2 ≤ (1− βn)‖Tnyn − p‖2 + βn‖xn − p‖2

≤ (1− βn)‖yn − p‖2 + βn‖xn − p‖2

≤ (1− βn)αn,1‖zn − p‖2 + (1− βn)αn,2‖f(xn)− p‖2

+ (1− βn)αn,3‖xn − p‖2 + βn‖xn − p‖2.

It follows that

‖xn+1 − p‖2 ≤ ‖en‖2 + (1− βn)αn,1‖xn − p‖2 − (1− βn)αn,1‖xn − µn‖2

+ (1− βn)αn,12λn‖xn − µn‖‖Axn −Ap‖+ 2‖en‖‖µn − p‖
+ (1− βn)αn,2‖f(xn)− p‖2 + (1− βn)αn,3‖xn − p‖2 + βn‖xn − p‖2

≤ ‖en‖2 − (1− βn)αn,1‖xn − µn‖2 + 2λn‖xn − µn‖‖Axn −Ap‖+ 2‖en‖‖µn − p‖
+ αn,2‖f(xn)− p‖2 +

(
1− αn,2(1− βn)

)
‖xn − p‖2,

which further implies

(1− βn)αn,1‖xn − µn‖2 ≤ ‖en‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2 + 2λn‖xn − µn‖‖Axn −Ap‖
+ 2‖en‖‖µn − p‖+ αn,2‖f(xn)− p‖2.

This gives from (2.9) and (2.10) that limn→∞ ‖xn − µn‖ = 0, which in turn implies that limn→∞ ‖xn −
zn‖ = 0. Since αn → 0, we have

lim
n→∞

‖xn − yn‖ = 0. (2.11)

Since ProjFf is α-contractive, we see that there exists a unique fixed point. Next, we use x̄ to denote
the unique fixed point. lim supn→∞〈f(x̄)− (x̄), yn − x〉 ≤ 0. To show it, we can choose a subsequence {yni}
of {zn} such that

lim sup
n→∞

〈f(x̄)− x̄, yn − x̄〉 = lim
i→∞
〈f(x̄)− x̄, yni − x̄〉.

Since yni is bounded, we can choose a subsequence {ynij
} of {yni} which converges weakly some point

ȳ. We may assume, without loss of generality, that yni converges weakly to ȳ, so is xni . First, we show
x̄ ∈ F (S). Note that

‖xn −
(
γnxn + (1− γn)Sxn

)
‖ ≤ ‖

(
γnxn + (1− γn)Sxn

)
−
(
γnyn + (1− γn)Syn

)
‖

+ ‖
(
γnyn + (1− γn)Syn

)
− xn‖

≤ ‖xn − yn‖+ ‖
(
γnyn + (1− γn)Syn

)
− xn‖

≤ ‖xn − yn‖+ ‖Tnyn − xn‖.

This implies from (2.11) that limn→∞ ‖xn − Sxn‖ = 0. Now, we are in a position to show x̄ ∈ F (S).
Assume that x̄ /∈ F (S). In view of Opial’s condition, we find from Lemma 1.4 that

lim inf
i→∞

‖xni − x̄‖ < lim inf
i→∞

‖xni − Sx̄‖

= lim inf
i→∞

‖xni − Sxni + Sxni − Sx̄‖

≤ lim inf
i→∞

‖xni − x̄‖.
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This is a contradiction. That is, x̄ = Sx̄. This shows that x̄ ∈ F (S).
Next, we show that x̄ ∈ (A+B)−1(0). Since µn = Jλn(xn − λnAxn), we find that

xn − λnAxn ∈ (I + λnB)µn.

That is,
xn − µn
λn

−Axn ∈ Bµn.

Since B is monotone, we get, for any (µ, ν) ∈ B, that

〈µn − µ,
xn − µn
λn

−Axn − ν〉 ≥ 0.

Replacing n by ni and letting i→∞, we obtain that

〈x̄− µ,−Ax̄− ν〉 ≥ 0.

This means −Ax̄ ∈ Bx̄, that is, 0 ∈ (A + B)(x̄). Hence we get x̄ ∈ (A + B)−1(0). This completes the
proof that x̄ ∈ F . It follows that

lim sup
n→∞

〈f(x̄)− x̄, yn − x̄〉 ≤ 0.

Notice that

‖yn − x̄‖2 = αn,1〈zn − x̄, yn − x̄〉+ αn,2〈f(xn)− x̄, yn − x̄〉+ αn,3〈xn − x̄, yn − x̄〉
≤ αn,1‖zn − x̄‖‖yn − x̄‖+ αn,2〈f(xn)− x̄, yn − x̄〉+ αn,3‖xn − x̄‖‖yn − x̄‖

≤ αn,1
2

(‖zn − x̄‖2 + ‖yn − x̄‖2) + αn,2〈f(xn)− x̄, yn − x̄〉+
αn,3

2
(‖xn − x̄‖2 + ‖yn − x̄‖2).

Hence, we have

‖yn − x̄‖2 ≤ αn,1‖zn − x̄‖2 + 2αn,2〈f(xn)− x̄, yn − x̄〉+ αn,3‖xn − x̄‖2

≤ αn,1(‖en‖+ ‖xn − x̄‖)2 + 2αn,2〈f(xn)− x̄, yn − x̄〉+ αn,3‖xn − x̄‖2

≤ (1− αn,2)‖xn − x̄‖2 + 2αn,2〈f(xn)− x̄, yn − x̄〉+ ‖en‖2 + 2‖xn − x̄‖‖en‖.

It follows that

‖xn+1 − x̄‖2 ≤ (1− βn)‖Tnyn − x̄‖2 + βn‖xn − x̄‖2

≤ (1− βn)‖yn − x̄‖2 + βn‖xn − x̄‖2

≤
(
1− αn,2(1− βn)

)
‖xn − x̄‖2 + 2αn,2(1− βn)〈f(xn)− x̄, yn − x̄〉+ ‖en‖2 + 2‖xn − x̄‖‖en‖.

Using Lemma 1.3, we have limn→∞ ‖xn− x̄‖ = 0. This completes the proof that {xn} converges strongly
to x̄.

From Theorem 2.1, we have the following results immediately.

Corollary 2.2. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let
A : C → H be a ξ-inverse-strongly monotone mapping and let B be a maximal monotone operator on
H such that Dom(B) ⊂ C. Let f be a fixed α-contractive mapping on C and let S be κ-quasi-strict
pseudocontraction on C. Let {λn} be a positive real number sequence. Let {αn}, {βn} and {γn} be real
number sequences in (0, 1). Let {xn} be a sequence in C generated in the following iterative process

x1 ∈ C,
yn = (1− αn)zn + αnf(xn),

xn+1 = (1− βn)((1− γn)Syn + γnyn) + βnxn, ∀n ≥ 1,
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where zn ≈ (I+λnB)−1(xn−λnAxn), the criterion for the approximate computation is ‖zn−(I+λnB)−1(xn−
λnAxn)‖ ≤ en. Assume that the sequences {αn}, {βn}, {γn} and {λn} satisfy the following restrictions:
0 < a ≤ βn ≤ b < 1; κ ≤ γn ≤ c < 1, limn→∞ |γn+1 − γn| = 0; limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

0 < d ≤ λn ≤ e < 2ξ, limn→∞ |λn+1 − λn| = 0, limn→∞ ‖en‖ = 0, where a, b, c, d and e are some real
numbers. If F = Fix(S) ∩ (A + B)−1(0) 6= ∅, then sequence {xn} converges strongly to x̄, where x̄ solves
the following variational inequality 〈f(x̄)− x̄, x̄− x〉 ≥ 0, ∀x ∈ F .

Corollary 2.3. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let
A : C → H be a ξ-inverse-strongly monotone mapping and let B be a maximal monotone operator on H
such that Dom(B) ⊂ C. Let f be a fixed α-contractive mapping on C. Let {λn} be a positive real number
sequence. Let {αn} and {βn} be real number sequences in (0, 1). Let {xn} be a sequence in C generated in
the following iterative process 

x1 ∈ C,
yn = (1− αn)zn + αnf(xn),

xn+1 = (1− βn)yn + βnxn, ∀n ≥ 1,

where zn ≈ (I+λnB)−1(xn−λnAxn), the criterion for the approximate computation is ‖zn−(I+λnB)−1(xn−
λnAxn)‖ ≤ en. Assume that the sequences {αn}, {βn} and {λn} satisfy the following restrictions: 0 < a ≤
βn ≤ b < 1; limn→∞ αn = 0,

∑∞
n=1 αn =∞; 0 < d ≤ λn ≤ e < 2ξ, limn→∞ |λn+1 − λn| = 0, limn→∞ ‖en‖ =

0, where a, b, d and e are some real numbers. If ∩(A+B)−1(0) 6= ∅, then sequence {xn} converges strongly
to x̄, where x̄ solves the following variational inequality 〈f(x̄)− x̄, x̄− x〉 ≥ 0, ∀x ∈ ∩(A+B)−1(0).

Finally, we give a result on a variational inequality problem.
Let H be a Hilbert space and f : H → (−∞,+∞] a proper convex lower semicontinuous function. Then

the subdifferential ∂f of f is defined as follows:

∂f(x) = {y ∈ H : f(z) ≥ f(x) + 〈z − x, y〉, z ∈ H}, ∀x ∈ H.

From Rockafellar [17], [18], we know that ∂f is maximal monotone. It is easy to verify that 0 ∈ ∂f(x)
if and only if f(x) = miny∈H f(y). Let IC be the indicator function of C, i.e.,

IC(x) =

{
0, x ∈ C,
+∞, x /∈ C.

(2.12)

Since IC is a proper lower semicontinuous convex function on H, we see that the subdifferential ∂IC of
IC is a maximal monotone operator.

Let C be a nonempty closed convex subset of a real Hilbert space H, ProjC the metric projection from
H onto C, ∂IC the subdifferential of IC , where IC is as defined in (2.12) and Jλ = (I +λ∂IC)−1. From [23],
we have

y = Jλx⇐⇒ y = ProjCx, x ∈ H, y ∈ C.

Theorem 2.4. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let
A : C → H be a ξ-inverse-strongly monotone mapping. Let f be a fixed α-contractive mapping on C and
let S be κ-quasi-strict pseudocontraction on C. Let {λn} be a positive real number sequence. Let {αn,1},
{αn,2}, {αn,3}, {βn} and {γn} be real number sequences in (0, 1). Let {xn} be a sequence in C generated in
the following iterative process

x1 ∈ C,
yn = αn,1zn + αn,2f(xn) + αn,3xn,

xn+1 = (1− βn)((1− γn)Syn + γnyn) + βnxn, ∀n ≥ 1,
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where zn ≈ PC(xn−λnAxn), the criterion for the approximate computation is ‖zn−PC(xn−λnAxn)‖ ≤ en.
Assume that the sequences {αn,1}, {αn,2}, {αn,3}, {βn}, {γn} and {λn} satisfy the following restrictions:
αn,1 + αn,2 + αn,3 = 1, 0 < a ≤ βn ≤ b < 1; κ ≤ γn ≤ c < 1, limn→∞ |γn+1 − γn| = 0; limn→∞ αn2 =
limn→∞ αn3 = 0,

∑∞
n=1 αn,2 =∞; 0 < d ≤ λn ≤ e < 2ξ, limn→∞ |λn+1 − λn| = 0, limn→∞ ‖en‖ = 0, where

a, b, c, d and e are some real numbers. If F = Fix(S)∩V I(C,A) 6= ∅, then sequence {xn} converges strongly
to x̄, where x̄ solves the following variational inequality 〈f(x̄)− x̄, x̄− x〉 ≥ 0, ∀x ∈ F .

Proof. Put Bx = ∂IC . Next, we show that V I(C,A) = (A+ ∂IC)−1(0). Notice that

x ∈ (A+ ∂IC)−1(0)⇐⇒ 0 ∈ Ax+ ∂ICx

⇐⇒ −Ax ∈ ∂ICx
⇐⇒ 〈Ax, y − x〉 ≥ 0

⇐⇒ x ∈ V I(C,A).

Hence, we conclude the desired conclusion immediately.
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