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1. Introduction

A very interesting problem in diverse areas of physics and mathematics consists of trying to find a
special solution. This problem is referred to as the convex feasibility problem. It can be described as follows:
Dq,Ds,---, Dy, where N denotes some positive integer, are finitely many closed convex nonempty subsets of
a Hilbert space with D := N}, D; # (). Convex feasibility problem is to find a solution in D. Closely related
subjects of the problem are variational inequality problems, zero point problems, fixed point problems and
equilibrium problem; see [1} 3, 14} [7, 18, (9, 10}, [11], 12} (13} (14} 5, 17, 18, 19, 20, 23| 24} 26, 27, 28] 29, 30] and
the references therein.

Many problems of convex programming can be reduced to that of finding a zero point = of a maximal
monotone operator B on a Hilbert space H; see [21], 22], 26]. A fundamental technique for solving a zero
point equation involving a monotone operator is the proximal point algorithm. The resolvent Js = (I +
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sB)~!, where I stands for the identity mapping and s is some positive real number has many important
properties that make it a central tool in monotone operator theory and its applications. Especially, it is firmly
nonexpansive. In the context of monotone operator theory, what is known as the Douglas-Rachford algorithm
is a splitting scheme initially proposed in [12] for finding a zero of the sum of two monotone operators.
Splitting algorithms for problems involving the sum of two monotone operators give some applications
to the obstacle problems and minimization problems. In this paper, we investigate a convex feasibility
problem based on a splitting method. Strong convergence theorems are established without the aid of
metric projections in the framework of real Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with the inner product (-,-) and the norm || - || and let C' be a nonempty
closed convex subset of H.

Let S : C — C be a mapping. F(S) stands for the fixed point set of S. Recall that S is said to be
contractive iff there exits a constant « € (0,1) such that

1Sz =Syl < alle —yll, Ve,yel.

S is said to be nonexpansive iff
|52 — Syl < o —yll, Va,yeC.

S is said to be firmly nonexpansive iff || Sz—Sy||?> < (Sz— Sy, z—1y); S is said to be strictly pseudocontractive
iff there exists a constant x € [0,1) such that

ISz = Sy||? < |l —ylI* + &ll(z — Sz) — (y = Sy, Va,y € C.

The class of strictly pseudocontractive mappings was introduced by Browder and Petryshyn [6]. It is clear
that nonexpansive mappings are strictly pseudocontractive mappings with « = 0.

Let F': C x C — R be a bifunction, where R denotes the set of real numbers. Consider the following
equilibrium problem in the terminology of Blum and Oettli [5]

Find z € C such that F(z,y) >0, VYyeC. (2.1)

In this paper, the solution set of problem (2.1) is denoted by EP(F).
To study equilibrium problem (2.1), we may assume that F satisfies the following conditions:

Al) F(z,z) =0 for all z € C,

(A1)

(A2) F is monotone, i.e., F(x,y) + F(y,z) <0 for all z,y € C;
(A3) for each z,y,2z € C, limsup, o F(tz + (1 —t)z,y) < F(z,y);
(A4)

A4) for each z € C, y — F(z,y) is convex and lower semi-continuous.

Let A: C — H be a mapping. Recall that A is said to be monotone iff
(Az — Ay,x —y) >0, Vz,yecC.
A is said to be strongly monotone iff there exists a constant « > 0 such that
(Az — Ay,z —y) > oz —y|]*, Vz,yeC.
A is said to be inverse-strongly monotone iff there exists a constant « > 0 such that

<A.’E—Ay,$—y> ZO(HAZ’—AyHQ, V%’ayec-
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It is clear that A is inverse-strongly monotone if and only if the inverse of A is strongly monotone.

A set-valued mapping B : H — 2 is said to be monotone if for all z,y € H, f € Bx and g € By
imply (x —y, f —¢g) > 0. A monotone mapping B : H — 29 is maximal if the graph G(B) of B is not
properly contained in the graph of any other monotone mapping. It is known that a monotone mapping B
is maximal if and only if, for any (z, f) € H x H, (x —y, f — g) > 0 for all (y,g) € G(B) implies f € Bz.
Next, we use D(B) to denote the domain of B. If B is maximal monotone, we may define a single-valued
operator J,. = (I +rB)~': H — H, where r is some positive constant. The single-valued operator is called
the resolvent of B for the constant r.

In order to prove our main results, we also need the following lemmas.

Lemma 2.1 ([2]). Let C be a closed convex subset of a real Hilbert space H and let A be a mazimal monotone
operator on H. For any A > 0 and p > 0, we have Jyx = Ju<§x + (1 - %)ka), where Jy = (I + \A)~!
and J, = (I +pA)~L.

Lemma 2.2 ([0]). Let C be a closed convez subset of a real Hilbert space H and let S : C — C be a strictly
pseudocontractive mapping. Then I — S is demiclosed at zero.

Lemma 2.3 ([5]). Let C be a closed convex subset of a real Hilbert space H and let F: C x C' — R be a
bifunction satisfying (Al)-(A4). Then, for any r > 0 and x € H, there exists z € C' such that

rF(z,y)+{y—z,z—z) >0, VyeC.

Further, define
Tix={z€C:rF(z,y)+(y—z,2—x) >0, VyeC}
for all r > 0 and x € H. Then, the following hold:
(a) T, is single-valued;
(b) | Trx — Toyl? < Tz — Try,x — y);
(c) F(T,) = EP(F);
(d) EP(F) is closed and convex.

Lemma 2.4 ([0]). Let C be a closed convex subset of a real Hilbert space H and let S : C — H be a strictly
pseudocontractive mapping with the constant . Define a mapping T by T = 01 + (1 — 6)S, where § is a
constant in [0,1]. If 6 € [k, 1) then T is nonexpansive with F(T') = F(S).

Lemma 2.5 ([25]). Let {x,,} and {y,} be bounded sequences in a Hilbert space H and let {,} be a sequence
in (0,1) with 0 < liminf, o B, < limsup,,_, Bn < 1. Suppose x,+1 = (1 — Bn)yn + Bnxn for all integers
n >0 and

lim sup(||yn+1 — Ynll = [|Zn+1 — zn||) < 0.
n—oo
Then limy, o0 [|yn, — x| = 0.

Lemma 2.6 ([16]). Assume that {a,} is a sequence of nonnegative real numbers such that o,y < (1 —
Vn)On + On + €n, where {v,} is a sequence in (0,1), {e,} and {0,} are sequences such that

(1) 20021 v = 00, 2205 en < 005
(i) Hmsup,, o0 0n/m <0 or Y 02 |6,] < oo
Then lim,, s o, = 0.

Lemma 2.7 ([3]). Let C be a closed convex subset of a real Hilbert space H. Let A : C — H be a
mapping and let B be a mazimal monotone operator on H. Then F(Js(I — sA)) = (A+ B)~(0), where
Js= (I +sB)™L.
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3. Main results

Theorem 3.1. Let C' be a closed convex subset of a real Hilbert space H. Let A : C' — H be an inverse-
strongly monotone mapping with the positive constant o and let B be a maximal monotone operator such
that D(B) C C. Let F be a bifunction from C x C' to R which satisfies (A1)-(A4). Let S : C — H be a
strictly pseudocontractive mapping with the constant k € [0,1) and let f be a contractive mapping on H with
the constant 3 € (0,1). Assume that Q = F(S)N(A+ B)~1(0)N EP(F) is nonempty. Let {r,} and {s,} be
positive real number sequences. Let {caun}, {Bn}, {1} and {0,} be real number sequences in (0,1) such that
Qn+Bn+vm = 1. Let {x,} be a sequence generated in the process: x1 € H, y, = (I+5,B) ' (2p—snAzn+en),
Tnt1 = Anf(xn) + Bnn + nonYn + (1 — 0n) ¥ Syn, where {e,} is a sequence in H and {z,} is a sequence
in C such that F(zp,z) + %(z — Zn,Zn — Tpn) > 0,Vz € C. Assume that the control sequences satisfy
the following conditions: limy, o ay, = 0 and 220:1 an = 00; 0 < liminf,, o By, < limsup,,_,o Bn < 1;
Yoo lenll < 00, limy o [Op41—0n| = 0 and k < 6, <6 < 1; limy—y00 |Tn+1 — 70| = 0 and liminf,, oo 7, > 0;
limy, o0 [Snt1 — Sn] = 0, and 0 < s < s, < &' < 2«, where §,s,s" are real constants. Then {x,} converges
strongly to ¢ = Paf(q).

Proof. By using the conditions imposed on {s,}, we find that
I(Z = snA)z — (I = 52 A)y|* < 2 = y||* = su(2a — sn)[| Az — Ay|]*.

This implies that I — s, A is nonexpansive. Put J;, = (I +5,B)" ! and S,, = §,I + (1 —6,)S. It follows from
Lemma that S, is nonexpansive with F'(S,) = F(S) and Js, is firmly nonexpansive. Letting p € Q be
fixed arbitrarily, we have
lyn — pll < |(2n — snAzn + €n) — (p — 50 Ap)||
< |, zn — pll + llen|
< llzn — pll + llenll-
It follows that

Zn1 — pll < anllf(zn) = pll + Ballzn — pll + ¥ullSnyn — pl|
< anfllzn = pll + anll f(p) = pll + Bullzn — 2l + Yullyn — ||
< apBllzn —pll + anllf(p) — pll + Bullzn — pll + nlllzn — pll + llenl)
< (1= an(l = B)|lzn —pll + anll f(p) — 2l + llen]l
If(p) —pll
- =} =+ [len].

< max{|z, - p.

It follows that
Hf pH
zn —pll <max{|lz; —pll, ———%—1}+ Z llenl-

This shows that {z,} is bounded. Since the mapping Pq f is contractive, there exists an unique fixed point.
Next, we denote the unique fixed point by ¢. Now, we are in a position to show lim sup,,_,..(f(¢)—q, xn—q) <
0. To show it, we can choose a subsequence {z,} of {z,} such that

limsup(f(q) — ¢, xn —q) = lim (f(q) — q,2n, — @)-

n—00 1—00

Since {xy,} is bounded, we can choose a subsequence {azmj} of {xy, } which converges weakly some point .

We may assume, without loss of generality, that {z,,} converges weakly to x.
In view of 2z, = T}, 2, one has F(z,,2) + 2 (2 — zp, 20 — ) > 0,Vz € C and F(2,41,2) +

Tn

1 <Z o
Tn+1
Zntls Zntl — Tnt1) > 0,Vz € C. Hence, one has F'(zp, zn41) + %<Zn+1 — Zn, 2n — Xp) > 0 and F(zp41, 2n) +
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ﬁ(zn — Znt1sZntl — Tnt+1) > 0,Vz € C. From the monotonicity of F', one has (z,+1 — zn,% —
IntlTntl) > (). It follows that

Tn+1

T 1—T
Jowts = 2ol < oms = ol + PN T s, .
n

Putting p, = z, — spAzn + en, we find that

pn+1 = pnll < llznt1 — zull + | Aznll|Sn+1 — sul + |lent1 — exl]

r -
< zng1 — xall + WHTMHQL'?@ — Tna1l| + [[Aznll|sna1 — snl + llent1 — enl|-
n+

On the other hand, we find from Lemma 2.7 that

s S
[yn+1 — ynll = ‘ Jsn (iPnJrl + (1 - i)‘]sn-klanrl) — JsnPn
Sn+1 Sn+1

n—+

S S
< ‘ = (Pns1 — pn) + (1 - = )(an+1pn+1 — Pn)
Sn41 Sn+1

‘Sn-l—l - Sn‘

< lpns1 = pall + —————1Ts 11 P01 — o1l (3.1)
T 1—T

< Namsr = wall + LTy el Azl s — s

Tn+1

|$n+1 — 8nl
+ len+1 —enll + HH‘]Sn-&-lpTH‘l — pa+1-

Putting A\, = %, we have
Al < U1 [ f(@ns1) = Sng1¥nt1ll  anllf(@n) — Snynll
= 1- BnJrl 1- ﬁn
+ HSn—i-lyn—i—l - SnynH
< anJrle(anrl) - Sn+1yn+1|| an”f(xn) - SnynH
_|._
1- ﬁnJrl 1- ﬁn
=+ ”yn+1 - yn” -+ ’5n+1 — 5nH\yn - SynH-

Combining (3.1)) with (3.2)) finds that

H)‘n-‘rl -

i1 ]| f (@n+1) = Sntrynsill | anllf(@n) = Snyall
1-— Bn+1 1- 571,
T -
+ ’ n+1 n‘ ||

||)\n+1 - )\nH - Hxn+1 - Qj‘nH S

TTn+133n — Tng1l| + [[Aznl|Sna1 — snl
T'n+1

Spn+1 — S
T llensr — en] + Errr =5l

+ [Ony1 — 5n’”yn — Syn|-

Jspi1Pnt1 — Prsl]

By using conditions imposed on the control sequences, one has
limsup([[An+1 — Anll = [[Zn41 — z4l]) < 0.
n—oo
It follows from Lemma that lim, o0 ||An — || = 0, which in turn implies that

lim [|zp41 — 25| = 0. (3.3)
n—o0
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Since 7)., is firmly nonexpansive, we find that
120 = plI* = | Ty 20 — Tl
< 5 (ln = pIP + 120 = I  ln — 2.
That is, ||z, — plI* < [lzn — plI> = [[2n — 2n|/?. Tt follows that

= pl* + Bullzn — plI* + 7all Syn — pII?

|[Znr1 = pl* < nllf(2n)
< anllf(@n) = pII* + Ballzn — plI* + vnllyn — pII?
< apl| f(zn) _pH2 + Bnllzn _PH2 +'Yn(HZn _PH2 + llenll(llenll + 2[|2n _pH))
< anllf(@n) = pII* + llzn = plI* = wmllzn = 2al® + lleall(lenll + 20120 — 1)),

which implies that

Ynllzn = zall* < anllf(@n) = pl* + (lon = pll + 201 = pD)llzn = 2o ]
+ llenll(lenll +2[120 = pl)-

By using conditions imposed on the control sequences, we find from (3.3) that

7}1_)11010 |z — zn|| = 0. (3.4)

Hence, {zy,} converges weakly to x € C.
Next, we show x € EP(F). Notice that

1
F(zn,2)+ — (2 — 2n,2n —xn) >0, VzeCl.
Tn

By using the monotonicity of F, we see that %(z — ZnyZn — Tn) > F(z,2,), Yz € C. Replacing n by n;,
we arrive at (z — zp,, %) > F(z,2n,), Vz € C. It follows from that 0 > F(z,z). For each t with
0<t<1,let zx =tz+(1 - t)z, where z € C. It follows that z; € C. Hence, we have hence F'(z;,z) < 0. It
follows that

0= Fl(zt,2t) <tF(2t,2) + (1 —t)F (2, 2) < tF (2, 2),

which yields that F'(z,2) > 0, Vz € C. Letting ¢ | 0, we obtain that F'(z,z) > 0, Vz € C. This implies that
z € EP(F).
Since A is inverse-strongly monotone, we have

21 =21 < anllf(@n) = pII* + Bullzn — DI + 0l Snyn — oI,
< apl|f(xn) — p||2 + Ballzn — p”2 + ’Yn(H(Zn — spAzn) — (p— SnAp)H2
+ llenll(llenll + 2]z — pl)))
< anllf(zn) = pII* + Ballen = plI* + v (llzn = plI* = sn(20 = 0)[| Azo, — Ap]|?
+ llenll(leall + 2ll2n = pl)))
< apl|f(xn) — p”2 + lzn _pH2 — $n (200 — sp) || A2 — Ap||2
+ llenll(lenll + 2[lzn — plI).-

This yields that

sn (200 = )l Az — Ap||? < anllf(@n) = Pl + (2n = pI? + 2041 = Pl |zn41 — @nll
+ lleallUlenll + 2{[2n — plI)-
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In view of conditions imposed on the control sequences that
HILIEO |Az, — Apl|| = 0. (3.5)
Since Js, is firmly nonexpansive, one has
ly = 2l < (I — snA)20 + en — (I = 50 A)p, yn — P)
= S0 = snd)zn + en — (I = 50 A)pl + I
—I(I = snA)zn + en — (I = s, A)p — (yn — p)II*}

1
5{”'% _pH2 + Ly + ||y _pH2 —llzn — yn — (Sn(AZn — Ap) — en)||2}

IN

IN

1
5 Ulzn = plP? + Lo+ llyn = 2l* = llz0 = wal®
+2[|20 = ynllllsn(Azn — Ap) = enll = [lsn(A2n — Ap) — enll*},
where L, = ||en||(|len]| + 2||zn — p||). This yields that
g = pII* < lzn = Pl + Lo — [120 — ynll> + 250120 — yall| Azn — Ap|
+2[2n — ynllllenl|-
Therefore, we have
s — 22 < call ) I+ Bl DI + 20l St —
< anllf(@n) = pII* + Ballzn = plI* + nllyn — pII?

< o f(zn) — p”2 + [|zn _pH2 + Ly — ullzn — yn||2
+ 28nYnll2n — Ynlll[Azn — Apl| + 2[[2n — ynllllenl|-

It follows that
Yallzn = ynll® < onll f(@n) =PI + (I#n — Pl + @01 — PI) |20 — Tnaa ]l + Ln
+ 28n7nll2n — ynllllAzn — Apll + 2[|2n — yullllenl]-

By using (3.3) and (3.5]), we find that
lim [z, — yn[| = 0. (3.6)

Hence, {yn, } converges weakly to z € C.
Now, we show that x € (A+B)~1(0). In view of y,, = J;,, (2n—8n Az, +ey), one has %—Azn € Byp,.
Since B is maximal monotone, we get, for any (u,v) € B,

Zn —Yn +€n

Sn

(Yn — 11, — Az, —v) > 0.

Replacing n by n; and letting i — oo, we get from (3.6 that
(x — p,—Azx —v) > 0.

This gives —Ax € Bux, that is, 0 € (A + B)(x). This show that = € (A + B)~1(0).
Next, we show x € F(S). Notice that

|20 — Suynll < |20 — Tpt1ll + anll f(2n) = Saynll + BullTn — Snynll-

By using (3.3)) one has
lim ||z, — Spyn| = 0. (3.7)
n—oo
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It follows that
15020 — nll < |20 — 2oll + |20 — Yull + [[Snyn — znl|-

By using (3.4)), (3.6) and (3.7)), one has

lim ||z, — Spz,| = 0. (3.8)

n—oo
Notice that

[Szn — zn || < || Szp — (5nxn +(1- 5n)5$n) |+ [[Snn — nl|
< On||Sxn — xn|| + || Snzn — Tnl|-

This implies from (3.8)), one has

lim ||z, — Sz,| =0.

n—oo

By using Lemma we find x € F(S). This completes the proof that = € Q. It follows that

limsup(f(q) — ¢, zn — ) < 0.

n—oo

This implies from (3.3)) that
limsup(f(q) — ¢, 2nt1 — q) < 0.

n—oo

Notice that

|#ns1 = all* < anlf(@n) = @, 2n41 — @) + Bullen — allllents — all + 7l Sy — allll2ntr — al
< an(f(zn) = f(@), 2nt1 — @) + an(f (@) — ¢ Tnt1 — @) + Ballzn — qlll|znt1 — 4|
+ Yl (20 — $nAzn + €n) — (p — 80 Ap)||Tn41 — 4l
< ol f(zn) = f(@lzntr — all + an(f (@) = ¢ Tns1 — @) + Bullzn — alll[n+1 — 4l
+ Wllzn = pllllentr — qll + llenll[|zn+1 — gl
< (1 =al =) lzn = alllznts — all + anlf(a) = g, 21 — @) + llenllllzns1 — all.

It follows that

|zn41 = all* < (1= an(l = B)llzn — all* + 200 (f(q) = @ Tnr1 — @) + 2]lenlll|zns1 — |-
By using Lemma we find that lim,,_,« ||zn — ¢|| = 0. This completes the proof. O

Remark 3.2. Let C be a nonempty closed and convex subset of H and A : C — H be a mapping. Recall
that the classical variational inequality is to find an x € C such that

(Az,y —xz) >0, VYyedl. (3.9)

Projection methods have been recently investigated for solving variational inequality . It is known that
x is a solution to (3.9)) iff = is a fixed point of the mapping Projo(I — rA), where I denotes the identity
on H. If A is strongly monotone and Lipschitz, then problem (3.9) has a unique solution. If A is inverse-
strongly monotone, then Projc(I—rA) is nonexpansive. Moreover, if C' is bounded, closed and convex, then
the existence of solutions of the variational inequality is guaranteed by the nonexpansivity of the mapping
Projc(I —rA). Let ic be a function defined by ic(z) =0, z € C, ic(x) = 0o, x ¢ C. It is easy to see that
ic is a proper lower and semicontinuous convex function on H, and the subdifferential di¢- of i is maximal
monotone. Define the resolvent J, := (I + sdic) ! of the subdifferential operator di¢. Letting z = Jyy, we
find that
Yy Ex+ sdicx <=y €x+ sNox
= (y—z,v—2x)<0,Yoel
<= x = Projcv,

where Nox :={e € H : (e,v — x),Yv € C}.
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Putting B = Ji¢ in Theorems we find the following result.

Corollary 3.3. Let C be a closed convexr subset of a real Hilbert space H. Let A : C' — H be an inverse-
strongly monotone mapping with the positive constant o and let F' be a bifunction from C x C to R which
satisfies (A1)-(A4). Let S : C — H be a strictly pseudocontractive mapping with the constant k € [0,1) and
let f be a contractive mapping on H with the constant 5 € (0,1). Assume that Q@ = F(S)NVI(C,A)NEP(F)
is nonempty. Let {r,} and {sn} be positive real number sequences. Let {an}, {Bn}, {1} and {0n} be real
number sequences in (0,1) such that oy, + Bn + v = 1. Let {x,} be a sequence generated in the process:
x1 € H, yp, = Po(zn — sndzp + €), Tny1 = anf(n) + BnTn + Ynon¥n + (1 — 5,)¥Syn, where {e,}
is a sequence in H and {z,} is a sequence in C such that F(zp,z) + %(z — Zn,2Zn — Tpn) > 0,Vz € C.
Assume that the control sequences satisfy the following conditions: lim, ooty = 0 and Y 07 | oy = 00;
0 < liminf, o Bn < limsup,,_,o Bn < 13 D07y llen] < 00, limy oo [Op41 — 0p| = 0 and k < 0, < § < 1;
limy, o0 [Pnt1 — o] = 0 and liminf, o 7, > 0; limy, 00 [Snp1 — S| =0, 0 < s < s, < 8’ < 2ar, where d, s,
are real constants. Then {x,} converges strongly to q € Q, which is also a unique solution to the variational
inequality (f(x) —z,x —y) >0, Yy € C.

Putting §,, = 0 and S = I, we have the following results.

Corollary 3.4. Let C be a closed convex subset of a real Hilbert space H. Let A : C' — H be an inverse-
strongly monotone mapping with the positive constant a and let B be a maximal monotone operator on H.
Let F be a bifunction from C x C to R which satisfies (A1)-(A4). Let f be a contractive mapping on H
with the constant B € (0,1). Assume that Q = (A + B)~Y(0) N EP(F) is nonempty. Let {r,} and {s,}
be positive real number sequences. Let {an}, {Bn} and {y.} be real number sequences in (0,1) such that
Qn + Bu + 90 = 1. Let {z,} be a sequence generated in the process: x1 € H, y, = (I + $,B) (2, —
SnAzn + €n), Tnt1 = anf(xn) + By + YnYn, where {e,} is a sequence in H and {z,} is a sequence in C
such that F(zy, z) + %(z — Zny Zn — XTn) > 0,Vz € C. Assume that the control sequences satisfy the following
conditions: limy,_yo0 aty, = 0 and > 07 | oy, = 00; 0 < liminf, o0 By < limsup,,_,o0 Bn < 1; Do |len]] < oo;
limy, o0 [Pnt1 — rn| = 0 and liminf, o 7, > 0; limy, o0 [Spp1 — S| =0, 0 < s < 55, < 8’ < 2ar, where d, 5,8
are real constants. Then {x,} converges strongly to ¢ = Paf(q).

Corollary 3.5. Let C be a closed convexr subset of a real Hilbert space H. Let F be a bifunction from
C x C to R which satisfies (A1)-(A4). Let S : C — H be a strictly pseudocontractive mapping with the
constant k € [0,1) and let f be a contractive mapping on H with the constant 5 € (0,1). Assume that
Q= F(S)NEP(F) is nonempty. Let {r,} be a positive real number sequence. Let {an}, {Bn}, {1} and
{0n} be real number sequences in (0,1) such that oy, + By +n = 1. Let {x,} be a sequence generated in the
process: x1 € H, xp11 = anf(xn) + Bntn + nnzn + (1 — 0n) Sz, where {z,} is a sequence in C' such that
F(zp,2)+ %(z—zn, Zn—Tn) > 0,Vz € C. Assume that the control sequences satisfy the following conditions:
limy oo atp, = 0 and Y 07 ay = 00; 0 < liminf, oo B, < lmsup, o Bn < 1; limy o0 [Ont1 — 0n]| = 0 and
k<, << 1;limp oo |[Tnt1 — ™| = 0 and liminf, o 7, > 0;, where 0 is a real constant. Then {x,}
converges strongly to ¢ = Pqof(q).

Put r,, =1 and F(z,y) = 0 for any z,y € C. By taking the initial in C, we find the following result.

Corollary 3.6. Let C be a closed convexr subset of a real Hilbert space H. Let A : C — H be an inverse-
strongly monotone mapping with the positive constant o and let B be a maximal monotone operator such
that D(B) C C. Let S be a strictly pseudocontractive mapping on C with the constant k € [0,1) and let
f be a contractive mapping on C with the constant B € (0,1). Assume that Q = F(S)N (A + B)71(0) is
nonempty. Let {s,} be a positive real number sequence. Let {cn}, {fn}, {1} and {0,} be real number
sequences in (0,1) such that o, + Bn + v = 1. Let {x,} be a sequence generated in the process: x1 € C,
Yn = (I + 5,B) N — spAxp + €n), Tns1 = anf(Tn) + BnZn + Yun¥n + (1 — ) SYn, where {e,} is
a sequence in H. Assume that the control sequences satisfy the following conditions: limy, oo, = 0 and
Yol an = 00; 0 < liminf,, o0 By < Hmsup, oo Bn < 1; D02 llen|| < 00, limp—yo0 [0nt1 — 0| = 0 and
K <0p <6<1;limy o0 |Snt1 —sn] =0,0<s<s, <s <2a, where §,s,s" are real constants. Then {x,}
converges strongly to ¢ = Paf(q).
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Remark 3.7. Minimize the following /;-least square problem: min,cgs ||zll1 + 3|lz||3 + (1,2,3)z — 5, where
z = (z1,20,23)7. Let f(z) = 3||lz[|3 + (1,2,3)z — 5 and Bz = |z||;. Then Vf is l-inverse-strongly
monotone and V = (z1 + 1,22+ 2,23+ 3)7. Suppose that @ € R6**54 is a positive semidefinite matrix that
the maximum eigenvalue kmay of @ is positive and that b € R%*. Define a quadratic function f : R* — R
by f(z) = 3(z,Qz)+ (b, z), Vo € R%. Then V f(-) = Q(-) +b i Kmax-Lipschitz continuous and ——-inverse-

Kmax

strongly monotone. For firmly nonexpansive mappings (I+ mB )~ R%* — R% applying the algorithm,
we find the following method: x; € R® and 21 € R%, and y,, = (I + WB)_I(ZH — e Az + W),
Tnt1 = O f(Zn) + Bn®n + YnOnyn + (1 — 0p) ¥ SYn, where k > 0, a € [1,00) and {z,} is a sequence in C such

that F(z,,2) + (2 — 2, 2n — ) > 0,Vz € C.
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