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Abstract

The purpose of this paper is to prove some new coupled common fixed point theorems for mappings
defined on a set equipped with two S-metrics. We also provide illustrative examples in support of our new
results. Meantime, we give an existence and uniqueness theorem of solution for a class of nonlinear integral
equations by using the obtained result. c©2016 All rights reserved.
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1. Introduction and Preliminaries

In 2006, Mustafa and Sims [14] introduced a new concept of metric spaces, which is a generalization
of metric spaces; briefly G-metric space. In 2007, Sedghi, Rao and Shobe [19] investigated the concept of
D-metric space proposed by Dhage[6], and introduced the concept of D∗-metric spaces, pointed out the
basic properties of D∗-metric space. Very recently, Sedghi, Shobe and Aliouche [20] extended the notions of
G-metric spaces and D∗-metric spaces, proposed the concept of S-metric spaces as follow:

Definition 1.1 ([20]). Let X be a nonempty set and S : X ×X ×X → R+ be a function, such that for all
x, y, z, a ∈ X, we have the following:
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(S1) S(x, y, z) = 0⇔ x = y = z;
(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

Then the function S is called a S-metric in X, the pair (X,S) is called a S-metric spaces.

Remark 1.2. For each S-metric, it definitely is a G-metric, and each G-metric definitely is a D∗-metric, vice
untrue, the counter-example can be found in [12].

In [20], the author introduced some basic properties in S-metric spaces, and showed a new common fixed
point theorem for contractive mapping in such spaces. Since then, many mathematicians such as Sedghi
and Dung[18], Afra [2, 3] and Hieu, Ly and Dung [11] proposed several fixed point theorems under different
contractive conditions in S-metric spaces, which is a generalization of the results in [20]. In 2013, Chouhan
and Malviya [5] studied the expansive mappings in S-metric space, proved some new fixed point theorems.
Recently, Kim, Sedghi and Shobkolaei [12] introduced the concepts of weak commutativity and R-weak
commutativity mappings in S-metric spaces, and proved some new common fixed point theorems. Rahman,
Sarwar and Rahman [15] established the common fixed point theorem of Altman integral contractive type
mappings by using the notion of ϕ-weak commutativity mappings.

Many scholars such as Dung [7], Raj and Hooda [16], Dung, Hieua and Radojević [8], Raj and Hooda
[17] and Afra [1] as well as Gupta and Deep [10] discussed the problems for common coupled coincidence
point and coupled common fixed point in S-metric spaces, obtained some new coupled common fixed points
theorems.

In 2013, Gu [9] discussed some coupled common fixed point problems in two G-metric spaces, and
prove some new coupled common fixed point theorems. Inspired by the above corresponding results, In
this paper, we study coupled common fixed point problems in two S-metric spaces and establish some new
coupled common fixed point theorems. Furthermore, we also provide illustrative examples in support of our
new results. As an application of our main result, we also prove the existence and uniqueness theorem of
solution for a class of nonlinear integral equations in S-metric spaces.

In this section, we first introduce some basic notions and known results.

Lemma 1.3 ([14]). Let (X,S) be a S-metric space, then we have S(x, x, y) = S(y, y, x) ∀x, y, z ∈ X.

Lemma 1.4 ([2, 16]). Let (X,S) be a S-metric space, then ∀x, y, z ∈ X, we have

S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z),

S(x, x, z) ≤ 2S(x, x, y) + S(z, z, y).

Lemma 1.5. Let (X,S) be a S-metric space. Then, for all x, y, z ∈ X it follows that:
(1) S(x, y, y) ≤ S(x, x, y);
(2) S(x, y, x) ≤ S(x, x, y);
(3) S(x, y, z) ≤ S(x, x, z) + S(y, y, z);
(4) S(x, y, z) ≤ S(x, x, y) + S(z, z, y);
(5) S(x, y, z) ≤ S(y, y, x) + S(x, x, z);
(6) S(x, x, z) ≤ 3

2 [S(y, y, z) + S(y, y, x)];
(7) S(x, y, z) ≤ 2

3 [S(x, x, y) + S(y, y, z) + S(z, z, x)].

Proof. First, it follows from (S2) and Lemma 1.3, we can easily obtain (1)-(5). Now we prove (6) and (7)
also hold.

By virtue of Lemma 1.3 and Lemma 1.4, we have

2S(x, x, z) = S(x, x, z) + S(z, z, x)

≤ [2S(x, x, y) + S(y, y, z)] + [2S(z, z, y) + S(x, x, y)]

= 3[S(y, y, z) + S(y, y, x)].

Consequently, S(x, x, z) ≤ 3
2 [S(y, y, z) + S(y, y, x)]. Then we have (6).
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By virtue of (3)-(5) and Lemma 1.3, then we have

3S(x, y, z) ≤ [S(x, x, z) + S(y, y, z)] + [S(x, x, y) + S(z, z, y)] + [S(y, y, x) + S(z, z, x)]

= 2[S(x, x, y) + S(y, y, z) + S(z, z, x)].

Which implies S(x, y, z) ≤ 2
3 [S(x, x, y) + S(y, y, z) + S(z, z, x)]. Thus (7) is obtained.

Definition 1.6 ([2]). Suppose that {xn} is the sequence in S-metric space (X,S). {xn} is called to be a
S-Cauchy sequence in X, if

lim
n,m→∞

S(xn, xn, xm) = 0 ∀a ∈ X.

Definition 1.7 ([2]). A sequence {xn} is said to be S-convergent sequence in S-metric space (X, d), if
∃x ∈ X satisfying the following condition

lim
n→∞

S(xn, xn, x) = 0.

Then the sequence {xn} is said to be S-convergent to x, noting limn→∞ xn = x, that is xn → x(n→∞).

Lemma 1.8 ([2]). Let (X,S) be a S-metric space and {xn} and {yn} be two convergent subsequence in X
such that lim

n→∞
xn = x, lim

n→∞
yn = y, thus we have

lim
n→∞

S(xn, xn, yn) = S(x, x, y).

In particular, by taking yn ≡ y, then we have

lim
n→∞

S(xn, xn, y) = S(x, x, y).

Definition 1.9 ([14]). The S-metric space (X, d) is called to be S-complete, if each S-Cauchy sequence in
X is S-convergent to some point in X.

Definition 1.10 ([4]). An element (x, y) ∈ X × X is called a coupled fixed point of the mapping
F : X ×X → X, if F (x, y) = x, F (y, x) = y.

Definition 1.11 ([13]). An element (x, y) ∈ X × X is called a coupled coincidence point of mappings
F : X ×X → X and g : X → X, if F (x, y) = gx, F (y, x) = gy, and in this case, (gx, gy) is called a coupled
point of coincidence.

Definition 1.12 ([13]). An element (x, y) ∈ X × X is called a common coupled fixed point of mappings
F : X ×X → X and g : X → X, if F (x, y) = gx = x, F (y, x) = gy = y.

Definition 1.13 ([13]). Let X is a nonempty set. A pair of mappings F : X ×X → X and g : X → X is
said to be w-compatible, if F (x, y) = gx and F (y, x) = gy, then we have gF (x, y) = F (gx, gy).

2. Main Results

Theorem 2.1. Let X be a nonempty set and S1, S2 are two S-metrics on X such that S2(x, y, z) ≤ S1(x, y, z)
∀x, y, z ∈ X. Suppose that the mappings F : X ×X → X and g : X → X satisfy the following contractive
condition

S1(F (x, y), F (u, v), F (s, t))

≤k1S2(gx, gu, gs) + k2S2(gy, gv, gt)

+ k3S2(gx, gu, F (s, t)) + k4S2(gy, gv, F (t, s))

+ k5S2(gx, F (u, v), gs) + k6S2(gy, F (v, u), gt)

+ k7S2(F (x, y), gu, gs) + k8S2(F (y, x), gv, gt)

+ k9S2(gx, F (u, v), F (s, t)) + k10S2(gy, F (v, u), F (t, s))

+ k11S2(F (x, y), gu, F (s, t)) + k12S2(F (y, x), gv, F (t, s))

+ k13S2(F (x, y), F (u, v), gs) + k14S2(F (y, x), F (v, u), gt)

(2.1)
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for all (x, y), (u, v), (s, t) ∈ X ×X, where ki ≥ 0 for i = 1, 2, · · · , 14 with

0 ≤ k1 + k2 + 3(k3 + k4) + k5 + k6 + k7 + k8 + 2(k9 + k10 + k11 + k12) + k13 + k14 < 1. (2.2)

If F (X ×X) ⊆ gX and gX is a S1-complete subspace of (X,S1) then F and g have a unique coupled point
of coincidence (gx, gy) ∈ X ×X, which satisfy gx = F (x, y) = gy = F (y, x).

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the
form (u, u) ∈ X ×X, satisfying u = gu = F (u, u).

Proof. Suppose that (x0, y0) ∈ X×X. Since F (X×X) ⊆ g(X), ∃(x1, y1) ∈ X×X such that gx1 = F (x0, y0),
gy1 = F (y0, x0). Similarly, ∃(x2, y2) ∈ X ×X, such that gx2 = T (x1, y1), gy2 = T (y1, x1). Continuing this
process, then we can construct two sequences {xn} and {yn} in X, defined by

gxn+1 = F (xn, yn), gyn+1 = F (yn, xn) ∀n ≥ 0. (2.3)

In (2.1), by taking (x, y) = (u, v) = (xn, yn) and (s, t) = (xn+1, yn+1), also by (2.3), we have

S1(gxn+1, gxn+1, gxn+2) =S1(F (xn, yn), F (xn, yn), F (xn+1, yn+1))

≤k1S2(gxn, gxn, gxn+1) + k2S2(gyn, gyn, gyn+1)

+ k3S2(gxn, gxn, F (xn+1, yn+1)) + k4S2(gyn, gyn, F (yn+1, xn+1))

+ k5S2(gxn, F (xn, yn), gxn+1) + k6S2(gyn, F (yn, xn), gyn+1)

+ k7S2(F (xn, yn), gxn, gxn+1) + k8S2(F (yn, xn), gyn, gyn+1)

+ k9S2(gxn, F (xn, yn), F (xn+1, yn+1))

+ k10S2(gyn, F (yn, xn), F (yn+1, xn+1))

+ k11S2(F (xn, yn), gxn, F (xn+1, yn+1))

+ k12S2(F (yn, xn), gyn, F (yn+1, xn+1))

≤k1S2(gxn, gxn, gxn+1) + k2S2(gyn, gyn, gyn+1)

+ k3S2(gxn, gxn, gxn+2) + k4S2(gyn, gyn, gyn+2)

+ k5S2(gxn, gxn+1, gxn+1) + k6S2(gyn, gyn+1, gyn+1)

+ k7S2(gyn+1, gxn, gxn+1) + k8S2(gyn+1, gyn, gyn+1)

+ k9S2(gxn, gxn+1, gxn+2) + k10S2(gyn, gyn+1, gyn+2)

+ k11S2(gxn+1, gxn, gxn+2) + k12S2(gyn+1, gyn, gyn+2)

+ k13S2(gxn+1, gxn+1, gxn+1) + k14S2(gyn+1, gyn+1, gyn+1).

(2.4)

By using Lemma 1.3, Lemma 1.5 (1), (2), (4), (5) and (6), it follows from (2.4) that

S1(gxn+1, gxn+1, gxn+2) ≤k1S2(gxn, gxn, gxn+1) + k2S2(gyn, gyn, gyn+1)

+ k3 ·
3

2
[S2(gxn, gxn, gxn+1) + S2(gxn+1, gxn+1, gxn+2)]

+ k4 ·
3

2
[S2(gyn, gyn, gyn+1) + S2(gyn+1, gyn+1, gyn+2)]

+ k5S2(gxn, gxn, gxn+1) + k6S2(gyn, gyn, gyn+1)

+ k7S2(gyn, gxn, gxn+1) + k8S2(gyn, gyn, gyn+1)

+ k9[S2(gxn, gxn, gxn+1) + S2(gxn+1, gxn+1, gxn+2)]

+ k10[S2(gyn, gyn, gyn+1) + S2(gyn+1, gyn+1, gyn+2)]

+ k11[S2(gxn, gxn, gxn+1) + S2(gxn+1, gxn+1, gxn+2)]

+ k12[S2(gyn, gyn, gyn+1) + S2(gyn+1, gyn+1, gyn+2)]
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=

(
k1 +

3

2
k3 + k5 + k7 + k9 + k11

)
S2(gxn, gxn, gxn+1)

+

(
k2 +

3

2
k4 + k6 + k8 + k10 + k12

)
S2(gyn, gyn, gyn+1)

+

(
3

2
k3 + k9 + k11

)
S2(gxn+1, gxn+1, gxn+2)

+

(
3

2
k4 + k10 + k12

)
S2(gyn+1, gyn+1, gyn+2) (2.5)

≤
(
k1 +

3

2
k3 + k5 + k7 + k9 + k11

)
S1(gxn, gxn, gxn+1)

+

(
k2 +

3

2
k4 + k6 + k8 + k10 + k12

)
S1(gyn, gyn, gyn+1)

+

(
3

2
k3 + k9 + k11

)
S1(gxn+1, gxn+1, gxn+2)

+

(
3

2
k4 + k10 + k12

)
S1(gyn+1, gyn+1, gyn+2).

We can similarly prove the following result

S1(gyn+1, gyn+1, gyn+2) ≤
(
k1 +

3

2
k3 + k5 + k7 + k9 + k11

)
S1(gyn, gyn, gyn+1)

+

(
k2 +

3

2
k4 + k6 + k8 + k10 + k12

)
S1(gxn, gxn, gxn+1)

+

(
3

2
k3 + k9 + k11

)
S1(gyn+1, gyn+1, gyn+2)

+

(
3

2
k4 + k10 + k12

)
S1(gxn+1, gxn+1, gxn+2).

(2.6)

It follows from (2.5) and (2.6) that

S1(gxn+1, gxn+1, gxn+2) + S1(gyn+1, gyn+1, gyn+2)

≤
(
k1+

3

2
k3+k5+k7+k9+k11+k2+

3

2
k4+k6+k8+k10+k12

)
[S1(gxn, gxn, gxn+1)

+S1(gyn, gyn, gyn+1)]

+

(
3

2
k3+k9+k11+

3

2
k4+k10+k12

)
[S1(gxn+1, gxn+1, gxn+2)+S1(gyn+1, gyn+1, gyn+2)]

=

(
12∑
i=1

ki +
k3
2

+
k4
2

)
[S1(gxn, gxn, gxn+1) + S1(gyn, gyn, gyn+1)]

+

(
3

2
k3+

3

2
k4+k9+k10+k11+k12

)
[S1(gxn+1, gxn+1, gxn+2)+S1(gyn+1, gyn+1, gyn+2)].

(2.7)

The above inequality (2.7) implies that

S1(gxn+1,gxn+1, gxn+2) + S1(gyn+1, gyn+1, gyn+2)

≤

(∑12
i=1 ki + k3

2 + k4
2

)
[S1(gxn, gxn, gxn+1) + S1(gyn, gyn, gyn+1)]

1−
(
3
2k3+ 3

2k4+k9+k10+k11+k12
) .

(2.8)
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Now by taking

k =

(∑12
i=1 ki + k3

2 + k4
2

)
1−

(
3
2k3 + 3

2k4 + k9 + k10 + k11 + k12
) ,

combining this with (2.2), we get 0 ≤ k < 1. Then (2.8) becomes

S1(gxn+1,gxn+1, gxn+2) + S1(gyn+1, gyn+1, gyn+2)

≤ k[S1(gxn, gxn, gxn+1) + S1(gyn, gyn, gyn+1)].
(2.9)

Applying the above inequality (2.9) n times, we obtain

S1(gxn,gxn, gxn+1) + S1(gyn, gyn, gyn+1

≤ k[S1(gxn−1, gxn−1, gxn) + S1(gyn−1, gyn−1, gyn)]

≤ k2[S1(gxn−2, gxn−2, gxn−1) + S1(gyn−2, gyn−2, gyn−1)]

≤ · · · ≤ kn[S1(gx0, gx0, gx1) + S1(gy0, gy0, gy1)].

(2.10)

Next we shall show {gxn}, {gyn} are S-Cauchy sequences in gX. Indeed, for any m,n ∈ N, m > n, from
Lemma 1.4 and (2.10), we have

S1(gxn, gxn, gxm) + S1(gyn, gyn, gym)

≤[2S1(gxn, gxn, gxn+1) + S1(gxn+1, gxn+1, gxm)]

+ [2S1(gyn, gyn, gyn+1) + S1(gyn+1, gyn+1, gym)]

≤[2S1(gxn, gxn, gxn+1) + 2S1(gxn+1, gxn+1, gxn+2) + S1(gxn+2, gxn+2, gxm)]

+ [2S1(gyn, gyn, gyn+1) + 2S1(gyn+1, gyn+1, gyn+2) + S1(gyn+2, gyn+2, gym)]

≤[2S1(gxn, gxn, gxn+1) + 2S1(gxn+1, gxn+1, gxn+2) + · · ·+ 2S1(gxm−1, gxm−1, gxm)

+ S1(gxm, gxm, gxm)] + [2S1(gyn, gyn, gyn+1) + 2S1(gyn+1, gyn+1, gyn+2)

+ · · ·+ 2S1(gym−1, gym−1, gym) + S1(gym, gym, gym)]

=[2S1(gxn, gxn, gxn+1) + 2S1(gxn+1, gxn+1, gxn+2) + · · ·+ 2S1(gxm−1, gxm−1, gxm)]

+ [2S1(gyn, gyn, gyn+1) + 2S1(gyn+1, gyn+1, gyn+2) + · · ·+ 2S1(gym−1, gym−1, gym)]

=2 {[S1(gxn, gxn, gxn+1) + S1(gyn, gyn, gyn+1)] + [S1(gxn+1, gxn+1, gxn+2)

+S1(gyn+1, gyn+1, gyn+2)] + · · ·+ [S1(gxm−1, gxm−1, gxm) + S1(gym−1, gym−1, gym)]}
≤2(kn + kn+1 + · · ·+ km−1)[S1(gx0, gx0, gx1) + S1(gy0, gy0, gy1)]

=2kn
1− km−n

1− k
[S1(gx0, gx0, gx1) + S1(gy0, gy0, gy1)]

≤ 2kn

1− k
[S1(gx0, gx0, gx1) + S1(gy0, gy0, gy1)].

It follows from the above inequality that

lim
n,m→∞

[S1(gxn, gxn, gxm) + S1(gyn, gyn, gym)] = 0.

Which implies that

lim
n,m→∞

S1(gxn, gxn, gxm) = 0,

lim
n,m→∞

S1(gyn, gyn, gym) = 0.

Hence we obtain that {gxn}, {gyn} are S-Cauchy subsequences in gX. Since g(X) is S1-complete in X,
therefore ∃gx, gy ∈ gX, which satisfy that {gxn} and {gyn} are S1-convergent to gx and gy, respectively.
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Next, we show that F and g have a coupled point of coincidence. By using (S2), (2.3), Lemma 1.3,
Lemma 1.5 (3),(5), Definition 1.6, Definition 1.7, Lemma 1.8 and Lemma 2.1, we can deduce

S1(gxn+1, gxn+1, F (x, y))

=S1(F (xn, yn), F (xn, yn), F (x, y))

≤k1S2(gxn, gxn, gx) + k2S2(gyn, gyn, gy) + k3S2(gxn, gxn, F (x, y))

+ k4S2(gyn, gyn, F (y, x)) + k5S2(gxn, F (xn, yn), gx) + k6S2(gyn, F (yn, xn), gy)

+ k7S2(F (xn, yn), gxn, gx) + k8S2(F (yn, xn), gyn, gy) + k9S2(gxn, F (xn, yn), F (x, y))

+k10S2(gyn, F (yn, xn), F (y, x))+k11S2(F (xn, yn), gxn, F (x, y))+k12S2(F (yn, xn), gyn, F (y, x))

+ k13S2(F (xn, yn), F (xn, yn), gx) + k14S2(F (yn, xn), F (yn, xn), gy)

=k1S2(gxn, gxn, gx) + k2S2(gyn, gyn, gy) + k3S2(gxn, gxn, F (x, y))

+ k4S2(gyn, gyn, F (y, x)) + k5S2(gxn, gxn+1, gx) + k6S2(gyn, gyn+1, gy)

+ k7S2(gxn+1, gxn, gx) + k8S2(gyn+1, gyn, gy) + k9S2(gxn, gxn+1, F (x, y))

+ k10S2(gyn, gyn+1, F (y, x)) + k11S2(gxn+1, gxn, F (x, y)) + k12S2(gyn+1, gyn, F (y, x))

+ k13S2(gxn+1, gxn+1, gx) + k8S2(gyn+1, gyn+1, gy)

≤k1S2(gxn, gxn, gx) + k2S2(gyn, gyn, gy) + k3S2(gxn, gxn, F (x, y))

+ k4S2(gyn, gyn, F (y, x)) + k5 [S2(gxn, gxn, gx) + S2(gxn+1, gxn+1, gx)]

+ k6 [S2(gyn, gyn, gy) + S2(gyn+1, gyn+1, gy)]

+ k7 [S2(gxn, gxn, gx) + S2(gxn+1, gxn+1, gx)] + k8 [S2(gyn, gyn, gy) + S2(gyn+1, gyn+1, gy)]

+ k9 [S2(gxn+1, gxn+1, gxn) + S2(gxn, gxn, F (x, y))]

+ k10 [S2(gyn+1, gyn+1, gyn) + S2(gyn, gyn, F (y, x))]

+ k11 [S2(gxn, gxn, gxn+1) + S2(gxn+1, gxn+1, F (x, y))]

+ k12 [S2(gyn, gyn, gyn+1) + S2(gyn+1, gyn+1, F (y, x))]

+ k13S2(gxn+1, gxn+1, gx) + k14S2(gyn+1, gyn+1, gy)

= (k1 + k5 + k7)S2(gxn, gxn, gx) + (k2 + k6 + k8)S2(gyn, gyn, gy)

+ (k3 + k9)S2(gxn, gxn, F (x, y)) + (k4 + k10)S2(gyn, gyn, F (y, x))

+ (k5 + k7 + k13)S2(gxn+1, gxn+1, gx) + (k6 + k8 + k14)S2(gyn+1, gyn+1, gy)

+ k11S2(gxn+1, gxn+1, F (x, y)) + k12S2(gyn+1, gyn+1, F (y, x))

+ (k9 + k11)S2(gxn, gxn, gxn+1) + (k10 + k12)S2(gyn, gyn, gyn+1).

(2.11)

Taking limit as n→∞ in (2.11), combining this with Lemma 1.8, we get

S1(gx,gx, F (x, y))

= lim
n→∞

S1(gxn+1, gxn+1, F (x, y))

≤ (k1 + k5 + k7) lim
n→∞

S2(gxn, gxn, gx) + (k2 + k6 + k8) lim
n→∞

S2(gyn, gyn, gy)

+ (k3 + k9) lim
n→∞

S2(gxn, gxn, F (x, y)) + (k4 + k10) lim
n→∞

S2(gyn, gyn, F (y, x))

+ (k5 + k7 + k13) lim
n→∞

S2(gxn+1, gxn+1, gx) + (k6! +k8 + k14) lim
n→∞

S2(gyn+1, gyn+1, gy)

+ k11 lim
n→∞

S2(gxn+1, gxn+1, F (x, y)) + k12 lim
n→∞

S2(gyn+1, gyn+1, F (y, x))

+ (k9 + k11) lim
n→∞

S2(gxn, gxn, gxn+1) + (k10 + k12) lim
n→∞

S2(gyn, gyn, gyn+1)

= (k1 + k5 + k7) · 0 + (k2 + k6 + k8) · 0 + (k3 + k9) · S2(gx, gx, F (x, y))

+ (k4 + k10) · S2(gy, gy, F (y, x)) + (k5 + k7 + k13) · 0 + (k6 + k8 + k14) · 0
+ k11S2(gx, gx, F (x, y)) + k12S2(gy, gy, F (y, x)) + (k9 + k11) · 0 + (k10 + k12) · 0
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= (k3 + k9 + k11) · S2(gx, gx, F (x, y)) + (k4 + k10 + k12) · S2(gy, gy, F (y, x))

≤ (k3 + k9 + k11)S1(gx, gx, F (x, y)) + (k4 + k10 + k12)S1(gy, gy, F (y, x)).

This implies that

S1(gx, gx, F (x, y)) ≤ (k3 + k9 + k11)S1(gx, gx, F (x, y)) + (k4 + k10 + k12)S1(gy, gy, F (y, x)). (2.12)

Similarly,

S1(gy, gy, F (y, x)) ≤ (k3 + k9 + k11)S1(gy, gy, F (y, x)) + (k4 + k10 + k12)S1(gx, gx, F (x, y)). (2.13)

Combining (2.12) with (2.13) yields

S1(gx, gx, F (x, y)) + S1(gy, gy, F (y, x))

≤ (k3 + k4 + k9 + k10 + k11 + k12) [S1(gx, gx, F (x, y)) + S1(gy, gy, F (y, x))] .
(2.14)

Then by (2.2), we have 0 ≤ k3 + k4 + k9 + k10 + k11 + k12 < 1, thus it is easy to verify that

S1(gx, gx, F (x, y)) + S1(gy, gy, F (y, x)) = 0.

So that
S1(gx, gx, F (x, y)) = 0, S1(gy, gy, F (y, x)) = 0.

That is gx = F (x, y) and gy = F (y, x), we prove that (gx, gy) is a the coupled point of coincidence of the
mappings g and F .

Now we prove the mappings g and F have a unique coupled point of coincidence. Assuming that
∃(x∗, y∗) ∈ (X ×X) is also a coupled point of coincidence of the mappings g and F , thus gx∗ = F (x∗, y∗)
and gy∗ = F (y∗, x∗).

It follows from (2.1) that

S1(gx, gx, gx
∗) =S1(F (x, y), F (x, y), F (x∗, y∗))

≤k1S2(gx, gx, gx∗) + k2S2(gy, gy, gy
∗) + k3S2(gx, gx, F (x∗, y∗)) + k4S2(gy, gy, F (y∗, x∗))

+ k5S2(gx, F (x, y), gx∗) + k6S2(gy, F (y, x), gy∗) + k7S2(F (x, y), gx, gx∗)

+ k8S2(F (y, x), gy, gy∗) + k9S2(gx, F (x, y), F (x∗, y∗)) + k10S2(gy, F (y, x), F (y∗, x∗))

+ k11S2(F (x, y), gx, F (x∗, y∗)) + k12S2(F (y, x), gy, F (y∗, x∗))

+ k13S2(F (x, y), F (x, y), gx∗) + k14S2(F (y, x), F (y, x), gy∗)

=k1S2(gx, gx, gx
∗) + k2S2(gy, gy, gy

∗) + k3S2(gx, gx, gx
∗) + k4S2(gy, gy, gy

∗)

+ k5S2(gx, gx, gx
∗) + k6S2(gy, gy, gy

∗) + k7S2(gx, gx, gx
∗) + k8S2(gy, gy, gy

∗)

+ k9S2(gx, gx, gx
∗) + k10S2(gy, gy, gy

∗) + k11S2(gx, gx, gx
∗) + k12S2(gy, gy, gy

∗)

+ k13S2(gx, gx, gx
∗) + k14S2(gy, gy, gy

∗)

= (k1 + k3 + k5 + k7 + k9 + k11 + k13)S2(gx, gx, gx
∗)

+ (k2 + k4 + k6 + k8 + k10 + k12 + k14)S2(gy, gy, gy
∗)

≤ (k1 + k3 + k5 + k7 + k9 + k11 + k13)S1(gx, gx, gx
∗)

+ (k2 + k4 + k6 + k8 + k10 + k12 + k14)S1(gy, gy, gy
∗).

That is

S1(gx, gx, gx
∗) ≤ (k1 + k3 + k5 + k7 + k9 + k11 + k13)S2(gx, gx, gx

∗)

+ (k2 + k4 + k6 + k8 + k10 + k12 + k14)S1(gy, gy, gy
∗),

(2.15)

we can similarly prove the following result

S1(gy, gy, gy
∗) ≤ (k1 + k3 + k5 + k7 + k9 + k11 + k13)S1(gy, gy, gy

∗)

+ (k2 + k4 + k6 + k8 + k10 + k12 + k14)S1(gx, gx, gx
∗).

(2.16)
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Combining (2.15) with (2.16), we have

S1(gx, gx, gx
∗) + S1(gy, gy, gy

∗) ≤
14∑
i=1

ki[(gx, gx, gx
∗) + S1(gy, gy, gy

∗)].

By (2.2), we have 0 ≤
∑14

i=1 ki < 1, then S1(gx, gx, gx
∗) + S1(gy, gy, gy

∗) = 0, that is S1(gx, gx, gx
∗) =

S1(gy, gy, gy
∗) = 0, thus, gx = gx∗ and gy = gy∗, this implies the mappings g and F have a unique coupled

point of coincidence.
Next, we prove that gx = gy holds. Again, from (2.1) and Lemma 1.3, we have

S1(gx,gx, gy)

=S1(F (x, y), F (x, y), F (y, x))

≤k1S2(gx, gx, gy) + k2S2(gy, gy, gx) + k3S2(gx, gx, F (y, x)) + k4S2(gy, gy, F (x, y))

+ k5S2(gx, F (x, y), gy) + k6S2(gy, F (y, x), gx) + k7S2(F (x, y), gx, gy) + k8S2(F (y, x), gy, gx)

+ k9S2(gx, F (x, y), F (y, x)) + k10S2(gy, F (y, x), F (x, y)) + k11S2(F (x, y), gx, F (y, x))

+ k12S2(F (y, x), gy, F (x, y)) + k13S2(F (x, y), F (x, y), gy) + k14S2(F (y, x), F (y, x), gx)

=k1S2(gx, gx, gy) + k2S2(gy, gy, gx) + k3S2(gx, gx, gy) + k4S2(gy, gy, gx)

+ k5S2(gx, gx, gy) + k6S2(gy, gy, gx) + k7S2(gx, gx, gy) + k8S2(gy, gy, gx)

+ k9S2(gx, gx, gy) + k10S2(gy, gy, gx) + k11S2(gx, gx, gy) + k12S2(gy, gy, gx)

+ k13S2(gx, gx, gy) + k14S2(gy, gy, gx)

=
14∑
i=1

kiS2(gx, gx, gy) ≤
14∑
i=1

kiS1(gx, gx, gy).

By (2.2), we get 0 ≤
∑14

i=1 ki < 1, that is S1(gx, gx, gy) = 0, thus gx = gy.
Finally, if the pair of mappings (g, F ) is w-compatible, by taking u = gx, we get gu = ggx = gF (x, y) =

F (gx, gy) = F (u, u). Consequently, (gu, gu) is the a coupled point of coincidence of the mappings g and F .
By virtue of the unique of coupled point of coincidence, we can easily obtain that gu = gx = u. Furthermore,
we have u = gu = F (u, u), that is (u, u) is a common coupled fixed point of mappings g and F .

Example 2.2. Let X = [0,∞), define S1, S2 : X ×X ×X → R+ respectively by

S1(x, y, z) =| x− z | + | y − z |,

S2(x, y, z) =
1

2
| x− z | +1

2
| y − z | .

Therefore, we conclude that S1, S2 are two S-metrics in X, furthermore S2(x, y, z) ≤ S1(x, y, z) ∀x, y, z ∈ X.
Define two functions F : X ×X → X, g : X → X respectively by

F (x, y) =
1

8
ln(1+ | x− y |), gx = 2x ∀x, y ∈ X.

By the definition, we can easily obtain that F (X × X) ⊆ gX. Next we show that the pair (F, g) is ω-
compatible. In fact {

F (x, y) = gx;
F (y, x) = gy.

⇔
{

1
8 ln(1+ | x− y |) = 2x;
1
8 ln(1+ | y − x |) = 2y.

⇔ x = y = 0.

This shows that (g0, g0) is the unique of coupled point of coincidence point of mappings F and g. Apparently,
we get F (g0, g0) = g(F (0, 0)) = 0, therefore the pair (F, g) is ω− compatible.

In next step, we will prove that the condition (2.1) holds in Theorem 2.1. In fact, ∀(x, y), (u, v), (z, w) ∈
X ×X, we have
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S1(F (x, y), F (u, v), F (z, w))

=

∣∣∣∣18 ln(1+ | x− y |)− 1

8
ln(1+ | z − w |)

∣∣∣∣+

∣∣∣∣18 ln(1+ | u− v |)− 1

8
ln(1+ | z − w |)

∣∣∣∣
=

∣∣∣∣18 ln

(
1+ | x− y |
1+ | z − w |

)∣∣∣∣+

∣∣∣∣18 ln

(
1+ | u− v |
1+ | z − w |

)∣∣∣∣
=

∣∣∣∣18 ln

(
1+ | x− y | − | z − w | + | z − w |

1+ | z − w |

)∣∣∣∣+

∣∣∣∣18 ln

(
1+ | u− v | − | z − w | + | z − w |

1+ | z − w |

)∣∣∣∣
=

∣∣∣∣18 ln

(
1 +
| x− y | − | z − w |

1+ | z − w |

)∣∣∣∣+

∣∣∣∣18 ln

(
1 +
| u− v | − | z − w |

1+ | z − w |

)∣∣∣∣
≤
∣∣∣∣18 ln

(
1 +
| (x− y)− (z − w) |

1+ | z − w |

)∣∣∣∣+

∣∣∣∣18 ln

(
1 +
| (u− v)− (z − w) |

1+ | z − w |

)∣∣∣∣
=

∣∣∣∣18 ln

(
1 +
| (x− z)− (y − w) |

1+ | z − w |

)∣∣∣∣+

∣∣∣∣18 ln

(
1 +
| (u− z)− (v − w) |

1+ | z − w |

)∣∣∣∣
≤1

8
ln

(
1 +
| x− z | + | y − w |

1+ | z − w |

)
+

1

8
ln

(
1 +
| u− z | + | v − w |

1+ | z − w |

)
≤1

8
ln[1 + (| x− z | + | y − w |)] +

1

8
ln[1 + (| u− z | + | v − w |)]

≤1

8
(| x− z | + | y − w |) +

1

8
(| u− z | + | v − w |)

=
1

16
(| 2x− 2z | + | 2u− 2z |) +

1

16
(| 2y − 2w | + | 2v − 2w |)

=
1

16
(| gx− gz | + | gu− gz |) +

1

16
(| gy − gw | + | gv − gw |)

=
1

8

(
1

2
| gx− gz | +1

2
| gu− gz |

)
+

1

8

(
1

2
| gy − gw | +1

2
| gv − gw |

)
=

1

8
S2(gx, gu, gz) +

1

8
S2(gy, gv, gw)

≤1

8
S2(gx, gu, gz) +

1

8
S2(gy, gv, gw) +

1

48
S2(gx, gu, F (s, t))

+
1

48
S2(gy, gv, F (t, s)) +

1

16
S2(gx, F (u, v), gs) +

1

16
S2(gy, F (v, u), gt)

+
1

16
S2(F (x, y), gu, gs) +

1

16
S2(F (y, x), gv, gt) +

1

32
S2(gx, F (u, v), F (s, t))

+
1

32
S2(gy, F (v, u), F (t, s)) +

1

32
S2(F (x, y), gu, F (s, t)) +

1

32
S2(F (y, x), gv, F (t, s))

+
1

32
S2(F (x, y), F (u, v), gs) +

1

32
S2(F (y, x), F (v, u), gt).

By virtue of 0 ≤ 1
8 + 1

8 + 3
(

1
48 + 1

48

)
+ 1

16 + 1
16 + 1

16 + 1
16 + 2

(
1
32 + 1

32 + 1
32 + 1

32

)
+ 1

32 + 1
32 = 15

16 < 1, then
the mappings F and g satisfy all the conditions appearing in Theorem 2.1, by the result of Theorem 2.1, we
get F and g have a coupled common fixed point. In fact, (0, 0) is a unique coupled common fixed point of
F and g, that is F (0, 0) = g0 = 0.

Corollary 2.3. Let X be a nonempty set, S1, S2 are two S-metrics on X such that S2(x, y, z) ≤ S1(x, y, z)
∀x, y, z ∈ X. Suppose that the mappings F : X ×X → X and g : X → X satisfy the following contractive
condition

S1(F (x, y), F (u, v), F (s, t)) ≤ k1S2(gx, gu, gs) + k2S2(gy, gv, gt), (2.17)

∀(x, y), (u, v), (s, t) ∈ X × X, where k1, k2 ≥ 0 and 0 ≤ k1 + k2 < 1. If F (X × X) ⊆ gX and gX is a
S1-complete subspace of (X,S1), then F and g have a unique coupled point of coincidence (gx, gy) ∈ X×X,
which satisfy gx = F (x, y) = gy = F (y, x).
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Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the
form (u, u) ∈ X ×X, satisfying u = gu = F (u, u).

Proof. By taking ki = 0, i = 3, 4, · · · , 14 in Theorem 2.1, then Corollary 2.3 holds.

Corollary 2.4. Let X be a nonempty set, S1, S2 are two S-metrics on X such that S2(x, y, z) ≤ S1(x, y, z)
∀x, y, z ∈ X. Suppose that the mappings F : X ×X → X and g : X → X satisfy the following contractive
condition

S1(F (x, y), F (u, v), F (s, t)) ≤a1S2(gx, gu, F (s, t)) + a2S2(gy, gv, F (t, s))

+ a3S2(gx, F (u, v), gs) + a4S2(gy, F (v, u), gt)

+ a5S2(F (x, y), gu, gs) + a6S2(F (y, x), gv, gt),

(2.18)

∀(x, y), (u, v), (s, t) ∈ X ×X, where ai ≥ 0 ∀i = 1, 2, · · · , 6 and 0 ≤ 3(a1 + a2) + a3 + a4 + a5 + a6 < 1. If
F (X ×X) ⊆ gX and gX is a S1-complete subspace of (X,S1), then F and g have a unique coupled point of
coincidence (gx, gy) ∈ X ×X, which satisfy gx = F (x, y) = gy = F (y, x).

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the
form (u, u) ∈ X ×X, satisfying u = gu = F (u, u).

Proof. By taking ki = 0, i = 1, 2, 9, 10, 11, 12, 13, 14 in Theorem 2.1, then Corollary 2.4 holds.

Corollary 2.5. Let X be a nonempty set, S1, S2 are two S-metrics on X such that S2(x, y, z) ≤ S1(x, y, z)
∀x, y, z ∈ X. Suppose that the mappings F : X ×X → X and g : X → X satisfy the following contractive
condition

S1(F (x, y), F (u, v), F (s, t)) ≤c1S2(gx, F (u, v), F (s, t)) + c2S2(gy, F (v, u), F (t, s))

+ c3S2(F (x, y), gu, F (s, t)) + c4S2(F (y, x), gv, F (t, s))

+ c5S2(F (x, y), F (u, v), gs) + c6S2(F (y, x), F (v, u), gt),

(2.19)

∀(x, y), (u, v), (s, t) ∈ X × X, where ci ≥ 0 ∀i = 1, 2, · · · , 6 and 0 ≤ 2(c1 + c2 + c3 + c4) + c5 + c6 < 1. If
F (X ×X) ⊆ gX and gX is a S1-complete subspace of (X,S1), then F and g have a unique coupled point of
coincidence (gx, gy) ∈ X ×X, which satisfy gx = F (x, y) = gy = F (y, x).

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the
form (u, u) ∈ X ×X, satisfying u = gu = F (u, u).

By taking g = I in Corollary 2.3–2.5, we obtain the following result:

Corollary 2.6. Let X be a nonempty set and S1, S2 are two S-metrics on X such that S2(x, y, z) ≤
S1(x, y, z) ∀x, y, z ∈ X. Suppose that the mapping F : X × X → X satisfies the following contractive
condition

S1(F (x, y), F (u, v), F (s, t)) ≤ k1S2(x, u, s) + k2S2(y, v, t), (2.20)

∀(x, y), (u, v), (s, t) ∈ X × X. Where k1, k2 ≥ 0 and 0 ≤ k1 + k2 < 1. If (X,S1) is a complete S1-metric
space, then F has a unique coupled fixed point of the form (u, u) ∈ X ×X, satisfying u = F (u, u).

Corollary 2.7. Let X be a nonempty set and S1, S2 are two S-metrics on X such that S2(x, y, z) ≤
S1(x, y, z) ∀x, y, z ∈ X. Suppose that the mapping F : X × X → X satisfies the following contractive
condition

S1(F (x, y), F (u, v), F (s, t)) ≤a1S2(x, u, F (s, t)) + a2S2(y, v, F (t, s))

+ a3S2(x, F (u, v), s)+a4S2(y, F (v, u), t)

+ a5S2(F (x, y), u, s)+a6S2(F (y, x), v, t),

(2.21)

∀(x, y), (u, v), (s, t) ∈ X ×X, where ai ≥ 0 ∀i = 1, 2, · · · , 6 and 0 ≤ 3(a1 + a2) + a3 + a4 + a5 + a6 < 1. If
(X,S1) is a complete S1-metric space, then F has a unique coupled fixed point of the form (u, u) ∈ X ×X,
satisfying u = F (u, u).
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Corollary 2.8. Let X be a nonempty set and S1, S2 are two S-metrics on X such that S2(x, y, z) ≤
S1(x, y, z) ∀x, y, z ∈ X. Suppose that the mapping F : X × X → X satisfies the following contractive
condition

S1(F (x, y), F (u, v), F (s, t)) ≤c1S2(x, F (u, v), F (s, t)) + c2S2(y, F (v, u), F (t, s))

+ c3S2(F (x, y), u, F (s, t)) + c4S2(F (y, x), v, F (t, s))

+ c5S2(F (x, y), F (u, v), s) + c6S2(F (y, x), F (v, u), t),

(2.22)

∀(x, y), (u, v), (s, t) ∈ X × X, where ci ≥ 0 ∀i = 1, 2, · · · , 6 and 0 ≤ 2(c1 + c2 + c3 + c4) + c5 + c6 < 1. If
(X,S1) is a complete S1-metric space, then F has a unique coupled fixed point of the form (u, u) ∈ X ×X,
satisfying u = F (u, u).

If by taking S2(x, y, z) = S1(x, y, z) ∀x, y, z ∈ X in Theorem 2.1 and Corollary 2.3-2.8, we can obtain
some new results.

Example 2.9. Taking X = R, we assume that two S-metrics S1, S2 : X3 → R+ defined on X, defined
respectively by S1(x, y, z) = |x − z| + |y − z|, S2(x, y, z) = 1

2(|x − z| + |y − z|) ∀x, y, z ∈ X, and define the
function F : X ×X → X by F (x, y) = x

8 + y
4 ∀x ∈ X.

By the definition, we get that (X,S1) is S1-complete, furthermore, ∀x, y, u, v, s, t ∈ X, we obtain

S1(F (x, y), F (u, v), F (s, t))

=S1

(
x

8
+
y

4
,
u

8
+
v

4
,
s

8
+
t

2

)
=

∣∣∣∣(x8 +
y

4

)
−
(
s

8
+
t

4

)∣∣∣∣+

∣∣∣∣(u8 +
v

4

)
−
(
s

8
+
t

4

)∣∣∣∣
=

∣∣∣∣(x8 − s

8

)
+

(
y

4
− t

4

)∣∣∣∣+

∣∣∣∣(u8 − s

8

)
+

(
v

4
− t

4

)∣∣∣∣
≤
∣∣∣x
8
− s

8

∣∣∣+

∣∣∣∣y4 − t

4

∣∣∣∣+
∣∣∣u
8
− s

8

∣∣∣+

∣∣∣∣v4 − t

4

∣∣∣∣
=

1

8
(|x− s|+ |u− s|) +

1

4
(|y − t|+ |v − t|)

=
1

4
S2(x, u, s) +

1

2
S2(y, v, t).

It is easily seen that the condition (2.20) of Corollary 2.4 holds, where k1 = 1
4 , k2 = 1

2 , k1 + k2 = 3
4 ∈ [0, 1).

Then the following condition appearing in Corollary 2.4 are satisfied, so F has a unique coupled fixed point.
In fact, (0, 0) is a unique coupled fixed point of F .

Theorem 2.10. Let X be a nonempty set and S1, S2 are two S-metrics on X such that S2(x, y, z) ≤
S1(x, y, z) ∀x, y, z ∈ X. Suppose that the mappings F : X ×X → X and g : X → X satisfy the following
contractive condition

S1(F (x, y), F (u, v), F (s, t))

≤ kmax


S2(gx, gu, gs), S2(gy, gv, gt),

1
3S2(gx, gu, F (s, t)), 13S2(gy, gv, F (t, s))

S2(gx,F (u,v),gs),S2(gy,F (v,u),gt),S2(F (x,y),gu,gs),S2(F (y,x),gv,gt)
1
2S2(gx,F (u,v),F (s,t)),12S2(gy,F (v,u),F (t,s)),12S2(F (x,y),gu,F (s,t))
1
2S2(F (y, x),gv,F (t, s)),S2(F (x, y),F (v, u),gs),S2(F (y, x),F (v, u),gt)

 , (2.23)

∀(x, y), (u, v), (s, t) ∈ X×X, where 0 ≤ k < 1. If F (X×X) ⊆ gX and gX is a complete subspace of (X,S1),
then F and g have a unique coupled point of coincidence (gx, gy) ∈ X ×X, satisfying gx = F (x, y) = gy =
F (y, x).

Moreover, if F and g are w-compatible, then the mappings F and g have a unique common coupled fixed
point (u, u) ∈ X ×X, satisfying u = gu = F (u, u).

Proof. By similar arguments as Theorem 2.1, we get the Theorem 2.10.
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Corollary 2.11. Let (X,S) be a S-metric space and the mappings F : X ×X → X and g : X → X satisfy
the following contractive condition

S(F (x, y), F (u, v), F (s, t))

≤ kmax


S(gx, gu, gs), S(gy, gv, gt), 13S(gx, gu, F (s, t)), 13S(gy, gv, F (t, s))
S(gx,F (u,v),gs),S(gy,F (v,u),gt),S(F (x,y),gu,gs),S(F (y,x),gv,gt)
1
2S(gx,F (u, v),F (s, t)),12S(gy,F (v, u),F (t, s)),12S(F (x, y),gu,F (s, t))
1
2S(F (y, x),gv, F (t, s)),S(F (x, y),F (v, u),gs),S(F (y, x),F (v, u), gt)

 , (2.24)

∀(x, y), (u, v), (s, t) ∈ X×X, where 0 ≤ k < 1. If F (X×X) ⊆ gX and gX is a complete subspace of (X,S),
then F and g have a unique coupled point of coincidence (gx, gy) ∈ X ×X, satisfying gx = F (x, y) = gy =
F (y, x).

Moreover, if F and g are w-compatible, then the mappings F and g have a unique common coupled fixed
point (u, u) ∈ X ×X, satisfying u = gu = F (u, u).

Proof. By taking S2(x, y, z) = S1(x, y, z) in Theorem 2.10, we can obtain the Corollary 2.11.

By taking g = I in Theorem 2.10 and Corollary 2.11, we can obtain the following corollary:

Corollary 2.12. Let X be a nonempty set and S1, S2 are two S-metrics on X such that S2(x, y, z) ≤
S1(x, y, z) ∀x, y, z ∈ X. Suppose that the mapping F : X × X → X satisfies the following contractive
condition

S1(F (x, y), F (u, v), F (s, t))

≤ kmax


S2(x, u, s), S2(y, v, t),

1
3S2(x, u, F (s, t)), 13S2(y, v, F (t, s))

S2(x, F (u, v), s), S2(y, F (v, u), t), S2(F (x, y), u, s), S2(F (y, x), v, t)
1
2S2(x, F (u, v), F (s, t)), 12S2(y, F (v, u), F (t, s)), 12S2(F (x, y), u, F (s, t))
1
2S2(F (y, x), v, F (t, s)), S2(F (x, y), F (v, u), s), S2(F (y, x), F (v, u), t)

 , (2.25)

∀(x, y), (u, v), (s, t) ∈ X × X, where 0 ≤ k < 1. If (X,S1) is S-complete S-metric space, then F have a
unique coupled fixed point of the form (u, u) ∈ X ×X, which satisfy u = F (u, u).

Corollary 2.13. Let (X,S) be a S-complete S-metric space and the mapping F : X ×X → X satisfies the
following contractive condition

S(F (x, y), F (u, v), F (s, t))

≤ kmax


S(x, u, s), S(y, v, t), 13S(x, u, F (s, t)), 13S(y, v, F (t, s))

S(x, F (u, v), s), S(y, F (v, u), t), S(F (x, y), u, s), S(F (y, x), v, t)
1
2S(x, F (u, v), F (s, t)), 12S(y, F (v, u), F (t, s)), 12S(F (x, y), u, F (s, t))
1
2S(F (y, x), v, F (t, s)), S(F (x, y), F (v, u), s), S(F (y, x), F (v, u), t)

 , (2.26)

∀(x, y), (u, v), (s, t) ∈ X × X, where 0 ≤ k < 1. Then F have a unique coupled fixed point of the form
(u, u) ∈ X ×X, which satisfies u = F (u, u).

3. Application to integral equations

In this section, we wish to study the existence and uniqueness problem of solution for a class of nonlinear
integral equations by using the obtained result.

Throughout this section, we assume that X = C[0, 1] is the set of all continuous functions defined on
[0, 1]. Define S1, S2 : X3 → R+ respectively by

S1(x, y, z) = sup
p∈[0,1]

| x(p)− z(p) | + sup
p∈[0,1]

| y(p)− z(p) | ∀x, y, z ∈ X
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and

S2(x, y, z) =
1

4
sup
p∈[0,1]

| x(p)− z(p) | +1

4
sup
p∈[0,1]

| y(p)− z(p) | ∀x, y, z ∈ X.

Then we get (X,S1) and (X,S2) are S-metric spaces.
Consider the following nonlinear quadratic integral equation set

x(p) = h(p) +
∫ 1
0 k(p, q)(f1(q, x(q)) + f2(q, y(q)))dq, p ∈ [0, 1],

y(p) = h(p) +
∫ 1
0 k(p, q)(f1(q, y(q)) + f2(q, x(q)))dq, p ∈ [0, 1] ∀x, y ∈ X,

(3.1)

where h : [0, 1]→ R, k : [0, 1]× [0, 1]→ R+ and f1, f2 : [0, 1]× R→ R.
Next, we will analyze (3.1) under the following conditions:

(i) h, k, f1 and f2 are continuous functions.

(ii) There exist constants µ, ν > 0 such that{
| f1(p, x)− f1(p, y) |≤ µ | x− y |,
| f2(p, x)− f2(p, y) |≤ ν | x− y |,

∀p ∈ [0, 1], x, y ∈ R.

(iii) 4 max {µ, ν} ‖ k ‖∞≤ 1
16 . Where ‖ k ‖∞= sup{k(p, q) : p, q ∈ [0, 1]}.

Theorem 3.1. Under the conditions (i)-(iii), then integral equation (3.1) has a unique common solution
in C[0, 1].

Proof. First the operators F : X2 → X and g : X → X are defined respectively by

F (x, y)(p) = h(p) +

∫ 1

0
k(p, q)(f1(q, x(q)) + f2(q, y(q)))dq, p ∈ [0, 1] ∀x, y, z ∈ X

and
gx(p) = x(p) ∀x ∈ X.

Then we induced F (X × X) ⊆ gX, F and g are ω-compatible and gX is a complete subspace of (X,S1).
From the definition of S1, we can get

S1(F (x, y), F (u, v), F (s, t))

= sup
p∈[0,1]

|F (x, y)(p)− F (s, t)(p)|+ sup
p∈[0,1]

|F (u, v)(p)− F (s, t)(p)|

= sup
p∈[0,1]

∣∣∣∣[h(p) +

∫ 1

0
k(p, q)(f1(q, x(q)) + f2(q, y(q)))dq]

−[h(p) +

∫ 1

0
k(p, q)(f1(q, s(q)) + f2(q, t(q)))dq]

∣∣∣∣
+ sup
p∈[0,1]

∣∣∣∣[h(p) +

∫ 1

0
k(p, q)(f1(q, u(q)) + f2(q, v(q)))dq]

−[h(p) +

∫ 1

0
k(p, q)(f1(q, s(q)) + f2(q, t(q)))dq]

∣∣∣∣
= sup
p∈[0,1]

∣∣∣∣∫ 1

0
k(p, q)(f1(q, x(q)) + f2(q, y(q)))dq −

∫ 1

0
k(p, q)(f1(q, s(q)) + f2(q, t(q)))dq

∣∣∣∣
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+ sup
p∈[0,1]

∣∣∣∣∫ 1

0
k(p, q)(f1(q, u(q)) + f2(q, v(q)))dq −

∫ 1

0
k(p, q)(f1(q, s(q)) + f2(q, t(q)))dq

∣∣∣∣
= sup
p∈[0,1]

∣∣∣∣∫ 1

0
k(p, q)[(f1(q, x(q))− f1(q, s(q))) + (f2(q, y(q))− f2(q, t(q)))]

∣∣∣∣ dq
+ sup
p∈[0,1]

∣∣∣∣∫ 1

0
k(p, q)[(f1(q, u(q))− f1(q, s(q))) + (f2(q, v(q))− f2(q, t(q)))]

∣∣∣∣ dq (3.2)

≤ sup
p∈[0,1]

∫ 1

0
k(p, q) [| f1(q, x(q))− f1(q, s(q)) | + | f2(q, y(q))− f2(q, t(q)) |] dq

+ sup
p∈[0,1]

∫ 1

0
k(p, q) [| f1(q, u(q))− f1(q, s(q)) | + | f2(q, v(q))− f2(q, t(q)) |] dq.

By the condition (ii), we get {
| f1(p, x(q))− f1(p, y(q)) |≤ µ | x(q)− y(q) |,
| f2(p, x(q))− f2(p, y(q)) |≤ ν | x(q)− y(q) | .

Then Inequality (3.2) becomes

S1(F (x, y), F (u, v), F (s, t)) ≤ sup
p∈[0,1]

∫ 1

0
k(p, q)(µ | x(q)− s(q) | +ν | y(q)− t(q) |)dq

+ sup
p∈[0,1]

∫ 1

0
k(p, q)(µ | u(q)− s(q) | +ν | v(q)− t(q) |)dq

≤max{µ, ν} sup
p∈[0,1]

∫ 1

0
k(p, q)(| x(q)− s(q) | + | y(q)− t(q) |)dq

+ max{µ, ν} sup
p∈[0,1]

∫ 1

0
k(p, q)(| u(q)− s(q) | + | v(q)− t(q) |)dq.

(3.3)

By using Cauchy − Schwartz inequality, we have∫ 1

0
k(p, q)(| x(q)− s(q) |+ | y(q)− t(q) |)dq

≤
(∫ 1

0
k2(p, q)dq

) 1
2
(∫ 1

0
(| x(q)− s(q) | + | y(q)− t(q) |)2dq

) 1
2

≤ ‖ k ‖∞

(
sup
p∈[0,1]

| x(q)− s(q) | + sup
p∈[0,1]

| y(q)− t(q) |

)
.

(3.4)

Similarly, we can prove that∫ 1

0
k(p, q)(| u(q)− s(q) |+ | v(q)− t(q) |)dq

≤
(∫ 1

0
k2(p, q)dq

) 1
2
(∫ 1

0
(| u(q)− s(q) | + | v(q)− t(q) |)2dq

) 1
2

≤ ‖ k ‖∞

(
sup
p∈[0,1]

| u(q)− s(q) | + sup
p∈[0,1]

| v(q)− t(q) |

)
.

(3.5)

Substituting (3.4) and (3.5) into (3.3), we obtain



L. Liu, F. Gu, J. Nonlinear Sci. Appl. 9 (2016), 3527–3544 3542

S1(F (x, y), F (u, v), F (s, t))

≤max{µ, ν} ‖ k ‖∞

(
sup
p∈[0,1]

| x(q)− s(q) | + sup
p∈[0,1]

| y(q)− t(q) |

)

+ max{µ, ν} ‖ k ‖∞

(
sup
p∈[0,1]

| u(q)− s(q) | + sup
p∈[0,1]

| v(q)− t(q) |

)

= max{µ, ν} ‖ k ‖∞

(
sup
p∈[0,1]

| x(q)− s(q) | + sup
p∈[0,1]

| u(q)− s(q) |

)

+ max{µ, ν} ‖ k ‖∞

(
sup
p∈[0,1]

| y(q)− t(q) | + sup
p∈[0,1]

| v(q)− t(q) |

)

=4 max{µ, ν} ‖ k ‖∞

(
1

4
sup
p∈[0,1]

| x(q)− s(q) | +1

4
sup
p∈[0,1]

| u(q)− s(q) |

)

+ 4 max{µ, ν} ‖ k ‖∞

(
1

4
sup
p∈[0,1]

| y(q)− t(q) | +1

4
sup
p∈[0,1]

| v(q)− t(q) |

)

=4 max{µ, ν} ‖ k ‖∞

(
1

4
sup
p∈[0,1]

| gx(q)− gs(q) | +1

4
sup
p∈[0,1]

| gu(q)− gs(q) |

)

+ 4 max{µ, ν} ‖ k ‖∞

(
1

4
sup
p∈[0,1]

| gy(q)− gt(q) | +1

4
sup
p∈[0,1]

| gv(q)− gt(q) |

)
=4 max{µ, ν} ‖ k ‖∞ S2(gx, gu, gs) + 4 max{µ, ν} ‖ k ‖∞ S2(gy, gv, gt)

≤ 1

16
S2(gx, gu, gs) +

1

16
S2(gy, gv, gt)

≤ 1

16
S2(gx, gu, gs) +

1

16
S2(gy, gv, gt) +

1

42
S2(gx, gu, F (s, t))

+
1

42
S2(gy, gv, F (t, s)) +

1

14
S2(gx, F (u, v), gs) +

1

14
S2(gy, F (v, u), gt)

+
1

14
S2(F (x, y), gu, gs) +

1

14
S2(F (y, x), gv, gt) +

1

42
S2(gx, F (u, v), F (s, t))

+
1

42
S2(gy, F (v, u), F (t, s)) +

1

14
S2(F (x, y), gu, F (s, t)) +

1

14
S2(F (y, x), gv, F (t, s))

+
1

14
S2(F (x, y), F (v, u), gs) +

1

14
S2(F (y, x), F (v, u), gt).

Then it is obvious that F and g satisfy all the conditions appearing in Theorem 2.1. Consequently, it follows
from the result of Theorem 2.1 that F and g have a unique common coupled fixed point (u, u), satisfying
F (u, u) = gu = u. So (u, u) is the unique solution of integral equation (3.1).

Example 3.2. Consider the following functional integral equation set:
x(p) = p

1+
√
p +

∫ 1
0

sin(q·π)
8+p · [

e−px(q)

9 + sin p
10 ·

|y|
1+|y(q)| ]dq;

y(p) = p
1+
√
p +

∫ 1
0

sin(q·π)
8+p · [

e−py(q)

9 + sin p
10 ·

|x|
1+|x(q)| ]dq,

(3.6)

where the operators h : [0, 1]→ R, k : [0, 1]× [0, 1]→ R+ and f1, f2 : [0, 1]×R→ R, defined respectively by

h(p) =
p

1 +
√
p
, k(p, q) =

sin(q · π)

8 + p
, f1(p, x) =

e−px

9
, f2(p, x) =

sin p

10
· | x |

1+ | x |
.
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It can be easily seen that h(p), k(p, q), f1(p, x), f2(p, x) are continuous functions. Next, since

| f1(p, x)− f1(p, y) |=
∣∣∣∣e−px9

− e−py

9

∣∣∣∣ =

∣∣∣∣−p · e−pξ9
(x− y)

∣∣∣∣ ≤ 1

9
|x− y| ,

|f2(p, x)− f2(p, y)| =
∣∣∣∣sin p10

· | x |
1+ | x |

− sin p

10
· | y |

1+ | y |

∣∣∣∣
≤ 1

10

∣∣∣∣ | x |1+ | x |
− | y |

1+ | y |

∣∣∣∣
=

1

10

∣∣∣∣(1− 1

1+ | x |

)
−
(

1− 1

1+ | y |

)∣∣∣∣
=

1

10
| 1

1+ | y |
− 1

1+ | x |
|

=
1

10
| − 1

(1 + ε)2
(|x| − |y|) |

≤ 1

10
||x| − |y|| ≤ 1

10
|x− y|,

where p ∈ [0, 1], ξ exist between x and y and ε exist between |x| and |y|.
Then we have µ = 1

9 , ν = 1
10 , ‖ k ‖∞= sup{k(p, q) : p, q ∈ [0, 1]} = 1

8 , thus

4 max{µ, ν} ‖ k ‖∞=
1

18
<

1

16
.

Consequently, all the conditions of Theorem 3.1 are satisfied, Hence the integral equation set (3.6) has a
unique solution in C[0, 1].
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[8] N. V. Dung, N. T. Hieu, S. Radojević, Fixed point theorems for g-monotone maps on partially ordered S-metric

spaces, Filomat, 28 (2014), 1885–1898. 1
[9] F. Gu, Z. Yang, Some new common fixed point results for three pairs of mappings in generalized metric spaces,

Fixed point Theory Appl., 2013 (2013), 21 pages. 1
[10] V. Gupta, R. Deep, Some coupled fixed point theorems in partially ordered S-metric spaces, Miskolc Math. Notes,

16 (2015), 181–194. 1
[11] N. T. Hieu, N. T. Thanh Ly, N. V. Dung, A generalization of Ćirić quasi-contractions for maps on S-metric
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