
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 2727–2739

Research Article

Stochastic Hopf Bifurcation of a novel finance
chaotic system

Jiangang Zhanga,∗, Juan Nana, Yandong Chua, Wenju Dub, Xinlei Ana

aDepartment of Mathematics, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China.
bSchool of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China.

Communicated by X. Liu

Abstract

The paper investigated the existence and stability of the Stochastic Hopf Bifurcation for a novel finance
chaotic system with noise by the orthogonal polynomial approximation method, which reduces the stochastic
nonlinear dynamical system into its equal deterministic nonlinear dynamical system. And according to the
Gegenbauer polynomial approximation in Hilbert space, the financial system with random parameter can
be reduced into the deterministic equivalent system. The parameter condition to ensure the appearance of
Hopf bifurcation in this novel finance chaotic system is obtained by the Hopf bifurcation theorem. We show
that a supercritical Hopf bifurcation occurs at systems’ unique equilibriums s0. In addition, the stability
and direction of the Hopf bifurcation is investigated by the calculation of the first Lyapunov coefficient.
And the critical value of stochastic Hopf bifurcation is determined by deterministic parameters and the
intensity of random parameter in stochastic system. Finally, the simulation results are presented to support
the analysis. c©2016 All rights reserved.
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1. Introduction

The applications of dynamical systems and chaos involve mathematical biology, financial systems, chaos
control, synchronization, electronic circuits, secure communications, image encryption, cryptography and
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neuroscience research [5, 6, 7, 9, 12, 13, 14, 17, 28, 32, 33]. And the stochastic bifurcation and chaos are
a hot topic in the area of nonlinear dynamics in the past few decades. The study of dynamical systems is
a useful tool to help achieving model, analyze, and understand these phenomena. The chaotic behavior in
economic system was first studied in 1985 [11]. The occurrence of this behavior in economics means that the
economic system has an inherent indefiniteness. So the study of the finance chaotic system has important
value for the stable economic growth. Alexander pointed out that some complicated processes in financial
markets needed more in-depth analysis [2]. Liao studied Hopf bifurcation of a chaotic macroeconomic model
[20]. In literature [4], the dynamical behavior and slow manifold of a nonlinear finance chaotic system
were investigated. In real life, the inevitable indefinitely changes in the installation, measure, material and
production as well as with the work environment (such as temperature, humidity, vibration, pressure, time
etc.), and these uncertainties can be usually described with a particular statistical characteristics of random
variables, leading to the random system widely exists in the nature.

The stochastic systems are widespread in nature, and the demand to the veracity and accuracy of the
actual model is become higher and higher. So, more and more random systems are used to depict the
dynamic relationship among things, especially stochastic system of with random parameter. There are
several methods to analysis the stochastic dynamical systems with random parameters. The first one is
the Monte Carlo method [27], which is simple and popular but takes longer time. The second method is
the stochastic finite element method [10, 16], which consumes a little time but the random variables are
required to be a small amount. Gassert [1]has provided a complete description of these graphs, and then
uses these graphs to determine the decomposition of primes in the Chebyshev radical extensions. The third
method is the orthogonal polynomial approximation that is based on the theory of orthogonal polynomial
expansion [15, 18, 26, 30]. This method is out the limitation of the mentioned above two methods, it has
been widely applied in studying the evolutionary random responses of stochastic structure system [8, 29]
and the stochastic bifurcation and chaos in some typical dynamical models were successfully analyzed by the
Chebyshev polynomial approximation [19, 23, 24, 31]. Ma [21] discussed the stochastic Hopf bifurcation in
Brusselator system with random parameter and discovered that different from the deterministic system, the
critical value of stochastic Hopf bifurcation is determined not only by deterministic parameters in stochastic
system, but also by the intensity of random parameter. For the financial model, the most important is not
the absolute value of parameters in the model, but the relationship between the parameters and how relative
changes of them affect the system behavior. By choosing the appropriate coordinate system and setting an
appropriate dimension to every state variable [25], the further simplified financial model is written as the
following system [22]: 

Ẋ = Z + (Y − a)X,

Ẏ = 1− bY −X2,

Ż = −X − cZ,
(1.1)

where a is the saving; b is the per-investment cost; c is the elasticity of demands of commercials. a, b, c are
positive real constants. X is the interest rate, Y is the investment demand, Z is the price exponent.

They investigated the existence of both Hopf bifurcation and topological horseshoe for a novel finance
chaotic system. And through rigorous mathematical analysis a Hopf bifurcation occurs at systems’ three
equilibriums S0,1,2 and Hopf bifurcation at equilibrium S0 is non-degenerate and supercritical. However,
they haven’t analyzed the stochastic Hopf bifurcation of the system. The deterministic models assume
that parameters in the systems are all deterministic irrespective environmental fluctuations. Hence they
have some limitations in mathematical modeling of ecological systems, besides they are quite difficult to
fitting data perfectly and to predict the future dynamics of the system accurately [3]. In this paper,
the Gegenbauer polynomial approximations used to study the stability and Hopf bifurcation of stochastic
financial system with random parameters. The rest of this paper is organized as follows. We first transform
the original stochastic finance chaotic system into its equivalent deterministic one by orthogonal polynomial
approximation in Section 2. Section 3 is devoted to studying existence, direction and stability of Hopf
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bifurcation of stochastic finance chaotic system. The numerical simulations about the stochastic finance
chaotic system are given in Section 4. Section 5 concludes the paper.

2. Gegenbauer polynomial approximations for financial system

The premise of Gegenbauer polynomial approximation is to use the random variables following λ−PDF
or their derivative PDFs to approximate original random variables. When λ = 0, λ− PDF is the concave
probability density function

p0ξ(x) =
1

π
√

1− x2
, x ∈ [−1, 1].

When λ = 1
2 , λ− PDF is the uniform distribution probability density function

p
1
2
ξ (x) =

1

π
√

1− x2
, x ∈ [−1, 1].

When λ = 1, λ− PDF is the uniform distribution probability density function

p1ξ(x) =
2

π
√

1− x2
, x ∈ [−1, 1].

The λ − PDF is a family of bounded PDFs symmetrically distributed in the interval [−1, 1] with a
mono-peak or mono-valley, which can be defined with the random variable ξ in the following form:

p0ξ(x) =

{
ρλ(1− x2)λ−

1
2 , |ξ| ≤ 1,

0, |ξ| > 1.
(2.1)

In which λ ≥ 0 is a parameter and the normalizing coefficient ρλ can be expressed as:

ρλ =
Γ(λ+ 1)

Γ(12)Γ(λ+ 1
2)
.

We selected the orthogonal polynomial basis according to λ − PDF of the random variable in the
equation. As the orthogonal polynomial basis for the λ− PDF , choose the Gegenbauer polynomials which
could be put as follows:

Gn(ξ) =
n∑
i=1

1

k!(n− k)!

(2λ)n + (2λ+ n)k

(λ+ 1
2)k

(
ξ − 1

2
)k, n = 0, 1, 2. (2.2)

While the recurrent formulas for the Gegenbauer Polynomials is

ξGλn(ξ) =
2λ+ n− 1

2(λ+ n)
Gλn−1 +

n+ 1

2(λ+ n)
Gλn+1. (2.3)

The orthogonal relationships for the Gegenbauer Polynomials can be derived as∫ 1

−1
ρλξG

λ
i (ξ)Gλj (ξ)dξ =

{
bλn, i = j,

0, i 6= j.
(2.4)

It’s easy to know that the Eq. (1.1) has a unique equilibrium (0, 1/b, 0). Applying the translation
x = X,

y = Y − 1

b
,

z = Z.

(2.5)



J. G. Zhang, et al., J. Nonlinear Sci. Appl. 9 (2016), 2727–2739 2730

Then we can obtain the following equation with the unique equilibrium (0, 0, 0)
ẋ = (

1

b
− a)x+ z + xy,

ẏ = −by − x2,
ż = −x− c̄z.

(2.6)

If a, b is a deterministic parameter, c is a random parameter, and then Eq. (2.6) is a stochastic financial
model. Suppose that c̄ can be expressed as

c̄ = c+ δξ. (2.7)

Respectively, which are all positive constants satisfying inequalities: a > 1 . Where c is the mean value
of c̄, ξ is a bounded random variable defined on [−1, 1] with a given arch-like PDF, and δ is the intensity of
ξ. Thus, the responses of (2.4) should be a function of time t and the random variable ξ, namely

x = x(t, ξ),

y = y(t, ξ),

z = z(t, ξ).

(2.8)

It follows from the orthogonal polynomial approximation that the responses of system (2.6) can be expressed
approximately by the following series under condition of the convergence in mean square

x(t, ξ) =
N∑
i=0

xi(t)G
λ
i (ξ),

y(t, ξ) =
N∑
i=0

yi(t)G
λ
i (ξ),

z(t, ξ) =

N∑
i=0

zi(t)G
λ
i (ξ),

(2.9)

where

xi(t) =

∫ 1

−1
ρλξx(t, ξ)Gλi (ξ)dξ, yi(t) =

∫ 1

−1
ρλξ y(t, ξ)Gλi (ξ)dξ, zi(t) =

∫ 1

−1
ρλξ z(t, ξ)G

λ
i (ξ)dξ,

and Gλi (ξ) represents the i-th orthogonal and N represents the largest order of the polynomials we have
taken.

In this paper, we take N = 1, then 

x(t, ξ) =

1∑
i=0

xi(t)G
λ
i (ξ),

y(t, ξ) =

1∑
i=0

yi(t)G
λ
i (ξ),

z(t, ξ) =
1∑
i=0

zi(t)G
λ
i (ξ),

(2.10)

which are approximate solutions with a minimal mean square residual error.
Substituting (2.7) and (2.10) into (2.6), we have
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

1∑
i=0

ẋi(t)G
λ
i (ξ) = (

1

b
− a)

1∑
i=0

xi(t)G
λ
i (ξ) +

1∑
i=0

zi(t)G
λ
i (ξ) +

1∑
i=0

xi(t)G
λ
i (ξ)

1∑
i=0

yi(t)G
λ
i (ξ),

1∑
i=0

ẏi(t)G
λ
i (ξ) = −b

1∑
i=0

yi(t)G
λ
i (ξ)− (

1∑
i=0

xi(t)G
λ
i (ξ))2,

1∑
i=0

ẏi(t)G
λ
i (ξ) = −

1∑
i=0

xi(t)G
λ
i (ξ)− c

1∑
i=0

zi(t)G
λ
i (ξ)− δξ

1∑
i=0

zi(t)G
λ
i (ξ).

(2.11)

Since any product of two Gegenbauer polynomials can be reduced into a linear combination of individual
Gegenbauer polynomials, the nonlinear terms

1∑
i=0

yi(t)G
λ
i (ξ)

1∑
i=0

yi(t)G
λ
i (ξ),

1∑
i=0

xi(t)G
λ
i (ξ)

1∑
i=0

xi(t)G
λ
i (ξ),

on the right side of Eq. (2.11) can be expanded into

1∑
i=0

xi(t)G
λ
i (ξ)

1∑
i=0

yi(t)G
λ
i (ξ) =

2∑
i=0

Mi(t)G
λ
i (ξ), (

1∑
i=0

xi(t)G
λ
i (ξ))2 =

2∑
i=0

Ki(t)G
λ
i (ξ). (2.12)

By the recurrent formulas (2.2) of Chebyshev polynomials, the term of the third equation of (2.10) can
be reduced to

δξ
1∑
i=0

zi(t)G
λ
i (ξ) = δ

1∑
i=0

(zi−1(t) + zi+1(t))α
λ
i G

λ
i (ξ), (2.13)

where x−1 and x2 are supposed to be zero. Substituting (2.12) and (2.13) into (2.11), we have



1∑
i=0

ẋi(t)G
λ
i (ξ) = (

1

b
− a)

1∑
i=0

xi(t)G
λ
i (ξ) +

1∑
i=0

zi(t)G
λ
i (ξ) +

2∑
i=0

Mi(t)G
λ
i (ξ),

1∑
i=0

ẏi(t)G
λ
i (ξ) = −b

1∑
i=0

yi(t)G
λ
i (ξ)−

2∑
i=0

Ki(t)G
λ
i (ξ),

1∑
i=0

ẏi(t)G
λ
i (ξ) = −

1∑
i=0

xi(t)G
λ
i (ξ)− c

1∑
i=0

zi(t)G
λ
i (ξ)− δ

2

1∑
i=0

(zi−1(t) + zi+1(t))α
λ
i G

λ
i (ξ).

(2.14)

Multiplying Gλi (ξ), (i = 1, 2, 3, 4) to both sides of (2.14) in sequence and then taking expectation with respect
to ξ, owing to the orthogonal relationship of Gegenbauer polynomials, we finally have

ẋ0 = (
1

b
− a)x0 + z0 +M0,

ẏ0 = −by0 −K0,

ż0 = −x0 − cz0 −
δ

2
z1,

ẋ1 = (
1

b
− a)x1 + z1 +M1,

ẏ1 = −by1 −K1,

ż1 = −x1 − cz1 −
δ

2
z1.

(2.15)
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3. The stochastic Hopf bifurcation analysis

3.1. Existence of Hopf bifurcation

The Jacobian matrix J of the system (2.15) at the equilibrium S = (0, 0, 0, 0, 0, 0) is

J =



1
b − a 0 1 0 0 0

0 −b 0 0 0 0

−1 0 −c 0 0 − δ
2

0 0 0 1
b − a 0 1

0 0 0 0 −b 0

0 0 − δ
2 −1 0 −c

 . (3.1)

With aid of Maple, we obtained the characteristic equation as follows:

f(λ) = a0λ
6 + a1λ

5 + a2λ
4 + a3λ

3 + a4λ
2 + a5λ+ a6, (3.2)

where

a0 = 1, a1 =
2(cb+ b2 + ab− 1)

b
,

a2 =
−8b2 − δ2b2 + 16cb3 − 16cb+ 16ab2c+ 4c2b2 + 16ab3 + 4b4 − 8ab+ 4a2b2 + 4

4b2
,

a3 =
1

2b2
(4c+ 4b3 − δ2b3 + bδ2 + 4c2b3 − 4c2b+ 4ab4 + 4cb4 − 4ab2 − 12cb2 + 4a2b3

− δ2ab2 + 4ac2b2 + 16cab3 + 4a2b2c− 8abc),

a4 =
1

4b2
(4c2b4 + 4a2b4 + 8b4 − δ2 − b4δ2 + 4c2 + 8cb+ 8ab3 − 8b2 + 2abδ2 − a2b2δ2 + 16acb4

− 8ac2b+ 4a2b2c2 + 4δ2b2 − 16c2b2 − 4aδ2b3 + 16ca2b3 + 16ac2b3 − 24acb2),

a5 =
1

2b
(−4c2b2 + 4ab3 + 4cb3 + δ2b2 − 4cb− aδ2b3 + 4ac2b3 + 4a2c2b2 + 4a2cb3

− δ2 + 4c2 + 2aδ2b− 8ac2b− a2δ2b2),

a6 = c2 − 2cb+ b2 − 1

4
δ2 − 1

4
δ2a2b2 + a2b2c2 +

1

2
δ2 − 2abc2 + 2cab2.

Lemma 3.1. By the definition of Hopf bifurcation, we know that if (3.2) has a pair of conjugate complex
roots λ1,2 = α(c)± iω(c) and other real root λ3,4,5,6, Hopf bifurcation occurs when the bifurcation parameter
c = c0, meet the conditions
(i) α(c0) = 0,
(ii) ω(c0) > 0,
(iii) α̇(c0) 6= 0,
then Hopf bifurcation will occur in the system, where the Hopf bifurcation value, that is c = (2a+ δ)/2, (3.2)

has a pair of conjugate pure virtual roots λ1,2 = ±1
2c
√

(2a−2
c − 6)(2a−2

c − 2)i and λ3,4,5,6 are less than zero.

Lemma 3.2. The stochastic system (2.6) undergoes the Hopf bifurcation at the equilibrium (0, 0, 0) when c
passes through the critical value c0 = (2a+ δ)/2.

Proof. According to Lemma 3.1, we let 2−2bc−2ab−bδ
4b = 0 and get the Hopf bifurcation critical value

c0 = (2a+ δ)/2, then substitute it into the eigenvalues:

λ1 = −2a+ δ

4

√
(
4a− 4

2a+ δ
− 6)(

4a− 4

2a+ δ
− 2)i, λ2 =

2a+ δ

4

√
(
4a− 4

2a+ δ
− 6)(

4a− 4

2a+ δ
− 2)i,

λ3 = −δ − a
4

+
1

2
< 0, λ4 = −δ − a

4
− 1

2
< 0, λ5 = − 1

2a+ δ
, λ6 = − 1

2a+ δ
, ,
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dλ

dc
=
df(λ)/dc

df(λ)/dλ
=

2λ5 + 2(2b− 2/b+ 3a+ δ/2)λ4 +Qλ3 +Rλ2 + Y λ+X

6λ5 + 10(cb+b2+ab−1)
b λ4 +Mλ3 +Nλ2 +Oλ+ P

,

M =
1

b2
(−8b2 − δ2b2 + 16cb3 − 16cb+ 16ab2c+ 4c2b2 + 16ab3 + 4b4 − 8ab+ 4a2b2 + 4),

N =
3

2b2
(4c+ 4b3 − δ2b3 + bδ2 + 4c2b3 − 4c2b+ 4ab4 + 4cb4 − 4ab2 − 12cb2

+ 4a2b3 − δ2ab2 + 4ac2b2 + 16cab3 + 4a2b2c− 8cab),

O =
1

2b2
(4c2b4 + 4a2b4 + 8b4 − δ2 − b4δ2 + 4c2 + 8cb+ 8ab3 − 8b2 + 2abδ2 − δ2a2b2

+ 16acb4 − 8ac2b+ 4a2c2b2 + 4b2δ2 − 16c2b2 − 4ab3δ2 + 16ca2b3 + 16ac2b3 − 24acb2),

P =
1

2b
(−4c2b2 + 4ab3 + 4cb3 + b2δ2 − 4bc− aδ2b3 + 4ac2b3 + 4a2c2b2

+ 4a2cb3 − δ2 + 4c2 + 2abδ2 − 8ac2b− a2b2δ2),

Q =
1

b2
(2 + 4b3c+ 4bc+ 2b4 − 6b2 + 4ab2c+ 2a2b2 − 4ab),

R =
1

b2
(2b4c+ 2c+ 2b+ 4ab4 − 4abc+ 2a2b2c− 8b2c+ 4a2b3 + 8ab3c− 6ab2),

Y =
1

b
(−4b2c+ 2b3 − 2b+ 4ab3c+ 4a2b2c+ 2a2b3 + 4c− 8abc),

X = 2c− 2b+ 2a2b2c− 4abc+ 2ab2,

dReλ

dc
|c=c0 =

S − U(2a+δ4 )2(4a−4
2a+δ − 6)(4a−4

2a+δ − 2) + V

ZW (2a+δ4 )2(4a−4
2a+δ − 6)(4a−4

2a+δ − 2)
6= 0,

U =
1

b2
(2b4a+ b4δ + 2a+ δ + 2b+ 4ab4 − 4a2b− 2abδ + 2a3b2

+ a2b2δ − 8ab2 − 4b2δ + 12a2b3 + 4ab3δ − 6ab2),

V = 2a+ δ − 2b+ 2a3b2 + a2b2δ − 2a2b+ 2abδ + 2ab2,

W = 4a+ 2δ + 4b3 − b3δ2 + bδ2 + (2a+ δ)2b3 − (2a+ δ)2b+ 4ab4

+ 2(2a+ δ)b4 − 4ab2 − 6(2a+ δ)b2 + 4a2b3 − ab2δ2 + a(2a+ δ)2b2

+ 8a(2a+ δ)2b3 + 2a2(2a+ δ)b2 − 4(2a+ δ)ab,

S = 2(2b− 2/b+ 3a+ δ2)(
2a+ δ

4
)4(

4a− 4

2a+ δ
− 6)2(

4a− 4

2a+ δ
− 2)2,

Z = (11ab+ 5bδ + b2 − 1)(
2a+ δ

4
)4(

4a− 4

2a+ δ
− 6)2(

4a− 4

2a+ δ
− 2)2

3

2b2
.

According to the Hopf bifurcation theory, c0 is the system Hopf bifurcation critical value. When the
parameter c pass through the critical value, the system (2.15) occurs the Hopf bifurcation in the equilibrium
S = (0, 0, 0, 0, 0, 0) if δ > 2 + a.

3.2. Direction and stability of the Hopf bifurcation

In this section, we further investigate the Hopf bifurcation of the system (2.15) by the calculation of the
fist Lyapunov coefficient [29]. Let Cn

(1) < x, y >= < x, y >,< x, y >= xT y =
∑n

i=0 xiyi;

(2) α, β ∈ C,< x, αy + βz >= α < x, y > +β < x, y >, x, y, z ∈ Cn;

(3) < x, y >≥ 0, if and only if x = 0, < x, x >= 0.

Consider the continuous-time nonlinear dynamical system
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ẋ = f(x, v), (x ∈ Rn), (3.3)

where v ∈ Rn is considered as the bifurcation parameter. As v = vc, the Eq. (2.9) has the equilibrium
x = x0, and the right of the Eq. (2.9) can be expressed as

F (x) = Jx+N(x),

N(x) =
1

2
B(x, x) +

1

6
C(x, x, x) + o(||x||)4,

(3.4)

where J is the Jacobian matrix of the Eq. (2.9), B(x, x) and C(x, x, x) are bilinear and trilinear functions
respectively which can be written as

Bi(x, y) =
n∑

j,k=1

∂2Fi(ξ)

∂ξj∂ξk
|ξ=0xjyk, i = 1, ..., n,

Ci(x, y, z) =
n∑

j,k,l=1

∂3Fi(ξ)

∂ξj∂ξk∂ξl
|ξ=0xjykzl, i = 1, ..., n.

(3.5)

Suppose that the Jacobian matrix J has a pair of complex eigenvalues on the imaginary axis λ1,2 =
±iω(ω > 0), and these eigenvalues are the only eigenvalues with Reλ = 0. Let p ∈ Cn be a complex
eigenvector corresponding to λ1 and q ∈ Cn be an adjoint eigenvector which satisfy the following properties

Jq = iωq, Jq = −iωq, JT p = −iωp, JT p = −iωp,< p, q >=
∑n

i=1 piqi = 1. (3.6)

We also define the following coefficients

G20 =< p,B(q, q) >,G11 =< p,B(q, q) >,G02 =< p,B(q, q) >,

G21 =< p,C(q, q, q) > −2 < p,B(q, J−1B(q, q)) > + < p,B(q, (2iωE − J)−1B(q, q)) >

+
1

iω
< p,B(q, q) >< p,B(q, q) > − 2

iω
| < p,B(q, q) > |2 − 1

3iω
| < p,B(q, q) > |2,

then the first Lyapunov coefficient at the origin is defined by

L1(0) = 1
2ω2Re(iG20G11 + ωG21). (3.7)

The N(x) in Eq. (2.9) can be expressed as

N(x) =



N1(x) = x0y0 + y1x1,

N2(x) = x20 + x21,

N3(x) = 0,

N4(x) = x0y1 + y0x1,

N5(x) = 2x0x1,

N6(x) = 0,

(3.8)

where x = (x0, y0, z0, x1, y2, z3)
T . Then for Eq. (2.9) can be obtained

Bi(ξ, η) =
∑n

j,k=1(
∂2Ni(x)
∂xj∂yk

)|x=0ξjηk, i = 0, ..., n, Ci(ξ, η, γ) = 0.

The linear combination of B is
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x = (x0, y0, z0, x1, y2, z3)
TB(ξ, η) = (B1, B2, B3, B4, B5, B6),

B1(ξ, η) = ξ1η2 + ξ4η5, B2(ξ, η) = 0, B3(ξ, η) = 0,
B4(ξ, η) = ξ1η5 + ξ4η2, B5(ξ, η) = 0, B6(ξ, η) = 0.

As λ1 = −2a+δ
2

√
(4a−4
2a+δ − 6)(4a−4

2a+δ − 2)i, with the aid of Maple, the p, q ∈ Cn can be computed

q = (1, 1, 0, 0, 1, 1), (3.9)

p = (−4(a+ δ)− 4

√
(a+ δ)2 − 1

4
, 4(a+ δ)− 4

√
(a+ δ)2 − 1

4
,

4(2a+ δ) + 2
√

2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 + 2
,
4(2a+ δ) + 2

√
2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 + 2
, 0, 0).

(3.10)

Using the Maple, the following results are obtained

J−1 =



(a−2)(2a+δ)(δ2−a)
E 0 2(2a+δ)(δ+a−2)

E
−2δ
E 0 −2δ(δ+a)

E
0 −1 0 0 0 0
1

a−1 0 δ−2
2(δ−1)(1−a) 0 0 −δ

2(δ−1)(1−a)
0 0 −aδ

2(δ−1)(1−a)
1

a−1 0 a(2−δ)
2(δ−1)(1−a)

0 0 0 0 −1 0

0 0 −δ
2(δ−1)(1−a)

1
a−1 0 δ−2

2(δ−1)(1−a)


(3.11)

E = 12a2δ2 + 12a3δ + 4aδ3 + 4a4 − 8a2 − 12aδ − 4δ2 + 4,

J−1B(q, q) = (
(a− 2)(2a+ δ)(δ2 − a)− 4δ

E
, 0,
−2(a+ δ − 2)(δ + 2a) + 4δ(δ + a)

E
,

−2δ + 2(2a+ δ)2(δ + a) + 2δ2(a− 1)− 4

E
, 0,

2δ(δ + a)− 4(a+ δ − 2)(2a+ δ)

E
)T ,

(2iωE − J)−1B(q, q) = (Hi− 1

b
+ a, 0, 0, 2Hi− 1

b
, 0,−2)T ,

H =
2a+ δ

2

√√√√ 4a(4a−4
2a+δ − 2)− 4

2a(4a−4
2a+δ − 2) + δ(4a−4

2a+δ − 2)
, (3.12)

B(q, (2iωE − J)−1B(q, q)) = (3Hi+ 2a, 0, 0, 2Hi− 1

b
, 0, 0)T ,

< p,B(q, (2iωE − J)−1B(q, q)) >= (3Hi+ 2a)(−4(a+ δ)− 4

√
(a+ δ)2 − 1

4
) (3.13)

+
4(2a+ δ)− 2

√
2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 − 2
,

B(q, J−1B(q, q)) = (
4δ(a+ δ)− 2(2a+ δ)(δ − 2 + a)−

E
, 0, 0,

2δ2(a− 1)− 2δ + 2(a+ δ)(δ + 2a)2

E
, 0, 0),
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< p,B(q, J−1B(q, q)) >= (−4(a+ δ)− 4

√
(a+ δ)2 − 1

4
)(

4δ(a+ δ)− 2(a+ δ − 2)(2a+ δ)

E
) (3.14)

+(
4(2a+ δ)− 2

√
2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 − 2
)(

2δ2(a− 1)− 2δ + 2(a+ δ)(δ + 2a)2

E
),

< p,C(q, q, q) >= 0,
1

iω
G20G11 = A+B,

A =
64
√

(4a+ 3δ + 2)(2 + δ)(a+ δ +
√

(a+ δ)2 − 1
4)(4a+ 2δ −

√
2(2a+ 3δ)(2a− δ)− 4)

(4a+ 3δ + 2)(2 + δ)(4a2 − δ2 − 2)
,

B =

√
(4a+ 3δ + 2)(2 + δ)

4a+ 3δ + 2
[32(a+ 4a+ 3δ + 2)2 + 32(a+ 4a+ 3δ + 2)

√
(a+ 4a+ 3δ + 2)2 − 1

4
− 4

− 384a2 + 384a4a2 − δ2 − 2− 324a2 − δ2 − 22 − 64

(4a2 − δ2 − 2)2

−
64(a+ 4a2 − δ2 − 2)

√
2(2a+ 34a2 − δ2 − 2)(2a− 4a2 − δ2 − 2)− 4

(4a2 − δ2 − 2)2
],

< p,B(q, q) >= (−4(a+ δ)− 4

√
(a+ δ)2 − 1

4
) +

8(2a+ δ)− 2
√

2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 − 2
i,

2

iω
| < p,B(q, q) > |2 =

2

iω
K,

1

3iω
| < p,B(q, q) > |2 =

1

3iω
K,

K = 32(a+ δ)2 +
64(2a+ δ)2 + 32(2a+ 3δ)(2a− δ)− 64

(4a2 − δ2 − 2)2
+ 32(a+ δ)

√
(a+ 4a+ 3δ + 2)2 − 1

4

−
−64(2a+ δ)

√
2(2a+ 34a2 − δ2 − 2)(2a− 4a2 − δ2 − 2)− 4

(4a2 − δ2 − 2)2
− 4,

G20 =< p,B(q, q) >= −4(a+ δ)− 4

√
(a+ δ)2 − 1

4
+

8(2a+ δ)− 2
√

2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 − 2
i, (3.15)

G11 =< p,B(q, q) >= −4(a+ δ)− 4

√
(a+ δ)2 − 1

4
+

8(2a+ δ)− 2
√

2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 − 2
i, (3.16)

G02 =< p,B(q, q) >= −4(a+ δ)− 4

√
(a+ δ)2 − 1

4
+

8(2a+ δ)− 2
√

2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 − 2
i, (3.17)

G21 = < p,C(q, q, q) > −2 < p,B(q, J−1B(q, q)) > + < p,B(q, (2iωE − J)−1B(q, q)) >

+
1

iω
< p,B(q, q) >< p,B(q, q) > − 2

iω
| < p,B(q, q) > |2 − 1

3iω
| < p,B(q, q) > |2

=(8a+ 8δ + 8

√
(a+ δ)2 − 1

4
)(
−2(a+ δ − 2)(2a+ δ) + 4δ(a+ δ)

E
)

+
8(2a+ δ) + 4

√
2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 − 2

−2δ + 2(a+ δ)(2a+ δ)2 + 2δ2(a− 1)− 4

E
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− (
1

b
− a)

4(2a+ δ)− 2
√

2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 − 2
+A

+ [−12H

√
(a+ δ)2 − 1

4
+ 2H

4(2a+ δ)− 2
√

2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 − 2

+B +
14
√

(4a+ 3δ + 2)(δ + 2)

3(4a+ 3δ + 2)(δ + 2)
K]i.

Substitute the Eqs. (3.13-3.15) into (3.4), we can get the first Lyapunov coefficient as follows:

L1(0) =
1

2ω2
Re(iG20G11 + ωG21)

=
(64a+ 64δ + 64

√
(a+ δ)2 − 1/4)(4a+ 2δ −

√
2(2a+ 3δ)(2a− δ)− 4)

(4a+ 3δ + 2)(δ + 2)(4a2 − δ2 − 2)

−
√

(4a+ 3δ + 2)(δ + 2)

(4a+ 3δ + 2)(δ + 2)
[(8a+ 8δ + 8

√
(a+ δ)2 − 1

4
)(

4δ(a+ δ)

E
)

+
4(2a+ δ)− 2

√
2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 − 2

−2δ + 2(a+ δ)(2a+ δ)2 + 2δ2(a− 1)− 4

E

− (
1

b
− a)

4(2a+ δ)− 2
√

2(2a+ 3δ)(2a− δ)− 4

4a2 − δ2 − 2
+A] 6= 0.

(3.18)

As we choose the parameters 0.5 < δ < 2, a > 1, the first Lyapunov coefficient L1(0) < 0 corresponding
to different random intensity. It is to say that as there is a supercritical Hopf bifurcation at the point
(x, y, z) = (0, 0, 0) for stochastic financial system in Eq. (2.7). Otherwise, the Hopf bifurcation is subcritical.
In next section, we will verify the theoretical analysis by numerical simulation.

4. The numerical simulation example

We fixed a = 2.949, and chose the initial condition X0 = (2.321, 0.821, 0.75851, 0.652, 0.516, 0.634). The
Eq. (2.7) is a deterministic Financial system when the random intensity δ = 0, c = c. We know that when
c = c0, the deterministic financial system undergo the supercritical Hopf bifurcation at the equilibrium.
When the parameter a = 2.949, we can get the critical value 2a+δ

2 , and the deterministic chaotic system
undergo the supercritical Hopf bifurcation at the equilibrium.

When c = 10, δ is chosen as 0.0, 0.025, 0.05, 0.1 respectively, the phase trajectories of DRM and EMR all
converge at zero, as shown in Fig. 1(a). When the parameter c = 2.9875, the phase trajectories of DRM
and EMR all converged at their limit cycles respectively, as shown in Fig. 1(b). The Fig. 1(c) is local
amplification figure of Fig. 1(b).

From the Fig.1 we know that the bifurcation parameter is far from the critical value, the phase tra-
jectories of the deterministic system accord with the phase trajectories of stochastic financial system. The
supercritical Hopf bifurcation occurs in both two systems.

5. Conclusions

In the paper, we studied the stability and Hopf bifurcation of stochastic financial system with noise.
We have considered the case with the noise and the Hopf bifurcation which can occur when the value of c
increases. The significance of the result in the realistic problem can be explained as follows. As the stochastic
disturbance is inevitable, it is reasonable to study the Hopf bifurcation of the stochastic dynamical system
at the equilibrium point more than the stability of the deterministic system at the equilibrium point, and
the most possibility with which the trajectory will stay (occur) in the neighborhood of the limit ring. The
position where stochastic Hopf bifurcation occurs will become bigger as c = c0 increases, and when it reaches
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Figure 1: Phase portraits for Hop bifurcation (a) c = 10; (b) c = 2.9875; (c) Local amplification figure of (b).

the threshold value of financial system, it can cause financial system in the meaning of probability in which
the Hopf bifurcation happened. According to the expression of c = c0, it is obvious that as the intensities
of the random effect increase becomes bigger. For instance, the stochastic Hopf bifurcation can result from
the variation of intensity of the random parameter alone. We also find that the direction and stability
of bifurcation in stochastic financial system are not changed, as well as the random intensity is small. In
conclusion, the theoretical results are verified by numerical simulations.
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