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1. Introduction

Let X be a real Banach space. We consider the inclusion problem:
Find £ € X such that
0 € (A+ B)z, (1.1)

where A : X — X is an operator and B : X — 2% is a set-valued operator. This problem includes, as special
cases, convex programming, variational inequalities, split feasibility problem and minimization problem. To
be more precise, some concrete problems in machine learning, image processing and linear inverse problem
can be modeled mathematically as this form.

A classical method for solving the problem is the forward-backward splitting method [7, 13} [17] [24]
which is defined by the following manner: for any fixed z; € X,

Tpy1 = (I +7rB) Yz, — rAz,)
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for each n > 1, where r > 0. We see that each step of the iteration involves only with A as the forward step
and B as the backward step, but not the sum of B. In fact, this method includes, in particular, the proximal
point algorithm [2, 4, [10, [16, 20] and the gradient method [I, 9]. In 1979, Lions-Mercier [13] introduced the
following splitting iterative methods in a real Hilbert space:

Tny1 = (274 = 1)(2J8 — Dz,

and
Tni1 = JA2JP = Dy + (I — T8z,

for each n > 1, where JI' = (I + rT)~!. The first one is often called the Peaceman-Rachford algorithm
[18] and the second one is called the Douglas-Rachford algorithm [8]. We note that both algorithms can be
weakly convergent in general [17].

In 2012, Takashashi et al. [23] proved some strong convergence theorems of the Halpern type iteration
in a Hilbert space H, which is defined by the following manner: for any 2, € H,

Tpi1 = Bnzn + (1 — Bn)(anu + (1 — O‘n)JfL (T — rnAxy)) (1.2)

for each n > 1, where u € H is a fixed and A is an a-inverse strongly monotone mapping on H and B is
an maximal monotone operator on H. They proved that, if {r,} C (0,00),{8,} C (0,1) and {e,} € (0,1)
satisfy the following conditions:

(a) 0 <a<r, <2aqa;

(b) limy, o0 (1 — Tnt1) = 0;

(c) 0<e< B, <d<1;

(d) limy oo oy =0 and > 07 a = 00,

then the sequence {z,} generated by converges strongly to a solution of A + B.
Recently, Lépez et al. [14] introduced the following Halpern-type forward-backward method: for any
r € X,
Tnt1 = anu+ (1 — o) (JE (2 — m0(Azy + az)) + by) (1.3)

for each n > 1, where © € X, A is an a-inverse strongly accretive mapping on X and B is an m-accretive
operator on X, {r,} C (0,00), {an} C (0,1] and {ay}, {b,} are the error sequences in X. They proved that
the sequence {z,} generated by strongly converges to a zero point of the sum of A and B under some
appropriate conditions. There have been many works concerning the problem of finding zero points of the
sum of two monotone operators (in Hilbert spaces) and accretive operators (in Banach spaces). For more
details, see [0} 211 22| 23], 24] 25].

In this paper, we study the modified forward-backward splitting methods for solving the problem
for accretive operators and inverse strongly accretive operators in Banach spaces and prove its strong
convergence for the proposed methods under some mild conditions. Finally, we provide some applications
and numerical examples to support our main results.

Remark 1.1. We note that our obtained results can be viewed as the improvement of the results of Takahashi
et al. [23]. In fact, we remove the conditions that lim, o (7, — 7+1) = 0 and liminf_, 5, > 0 in our
results. Moreover, we extend their results in Hilbert spaces to certain Banach spaces.

2. Preliminaries

In this section, we provide some basic concepts, definitions and lemmas which will be used in the sequel.
The modulus of convezity of a Banach space X is the function dx(e) : (0,2] — [0, 1] defined by



N. Pholasa, P. Cholamjiak, Y. J. Cho, J. Nonlinear Sci. Appl. 9 (2016), 2766-2778 2768

() = inf {1~ XV oy — g = 1y 2 ).
Then X is said to be uniformly convex if dx(€) > 0 for any € € (0, 2].

The modulus of smoothness of X is the function px(t) : RT — RT defined by

{HwHyH + [lz — ty
sup —

1: |zl =1, |[y] = 1}.
5 ||l [yl

px(t) =

t
pXt() = 0. For any g € (1,2], a Banach space X is

Then X is said to be uniformly smooth if p'y(0) = }iné
e

said to be g-uniformly smooth if there exists a constant ¢, > 0 such that px(t) > ¢,t? for any ¢t > 0.
The subdifferential of a proper convex function f : X — (—o0,+o0] is the set-valued operator 9f : X —
2X defined as

Of(x) ={z" € X*: (z%,y —z) + f(x) < f(y)}-

If f is proper convex and lower semicontinuous, then the subdifferential df (x) # 0 for any x € intD(f), the
interior of the domain of f.
The generalized duality mapping J, : X — 2X" is defined by

Jo(x) = {i(2) € X*(jg(x),x) = 2]1?, [ljg()]l =[]}

If ¢ = 2, then the corresponding duality mapping is called the normalized duality mapping and denoted
by J. We know that the following subdifferential inequality holds: for any x,y € X,

Iz +yll* < [z + ¢y, jo(z + ), Jo(x +y) € Jo(z +y). (2.1)
In particular, it follows that, for all =,y € X,
lz +ylI? < llz[* +2{y. j(z + ), j(z +y) € J(z +y). (22)
Proposition 2.1 ([5]). Let 1 < g < co. Then we have the following:
(1) The Banach space X is smooth if and only if the duality mapping Jq is single valued.

(2) The Banach space X is uniformly smooth if and only if the duality mapping J, is single valued and
norm-to-norm uniformly continuous on bounded sets of X.

A set-valued operator A : X — 2% with the domain D(A) and the range R(A) is said to be accretive if,
for all t > 0 and z,y € D(A),
lz =yl < llz =y +tu—v) (2.3)

for all u € Az and v € Ay. Recall that A is accretive if and only if, for each z,y € D(A), there exists
j(x —y) € J(x —y) such that
(u=v,j(x—y) =0 (2.4)

for all u € Az and v € Ay. An accretive operator A is said to be m-accretive if the range
R(I+M)=X

for some A > 0. It can be shown that an accretive operator A is m-accretive if and only if
RI+ M) =X

for all A > 0.
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For any a > 0 and g € (1, 00), we say that an accretive operator A is a-inverse strongly accretive (shortly,
a-isa) of order ¢ if, for each z,y € D(A), there exists j,(x — y) € Jy(z — y) such that

(u—wv,jq(x —y)) = allu— v (2.5)

for all u € Az and v € Ay.

Let C be a nonempty closed and convex subset of a real Banach space X and K be a nonempty subset
of C. A mapping T : C — K is called a retraction of C onto K if Tx = x for all z € K. We say that T is
sunny if, for each x € C and t > 0,

T(tx+ (1—t)Tz) =Tz, (2.6)

whenever tx + (1 — t)Tx € C. A sunny nonexpansive retraction is a sunny retraction which is also nonex-
pansive.

Theorem 2.2 ([19]). Let X be a uniformly smooth Banach space and T : C — C' be a nonexpansive mapping
with a fixed point. For each fized u € C and t € (0,1), the unique fized point xy € C of the contraction
C 3z tu+ (1 —t)Tx converges strongly ast — 0 to a fixed point of T. Define a mapping @ : C — D by
Qu = s —limy_,ox;. Then Q is the unique sunny nonexpansive retract from C onto D.

Lemma 2.3 ([15], Lemma 3.1). Let {an},{c,} C R, {a,} C (0,1) and {b,} C R be the sequences such
that

ant1 < (1 —an)an + by +cp
for alln > 1. Assume that Y ;" ¢, < co. Then the following results hold:
(1) If by, < anM where M >0, then {a,} is a bounded sequence.
(2) If >0 | oy = 00 and limsup,,_, g—’; <0, then lim,_ s a, = 0.

Lemma 2.4 ([12]). Let {sn} be a sequence of nonnegative real numbers such that

Sn+1 < (1 - 'Yn)sn + YnTn

and
Sl < Sp — M+ Pn

for all n > 1, where {v,} is a sequence in (0,1), {n,} is a sequence of nonnegative real numbers and {1}
and {pn} are real sequences such that

(@) 2nir Yn = 005

(b) limy, o0 pr, = 0;

(¢) img_yo0 N, = 0 implies lim supy,_, o T, < 0 for any subsequence {ny} C {n}.
Then lim,,_yoo S, = 0.
Lemma 2.5 ([I4], Lemma 3.1). For any r > 0, if

T, :=JB(I —rA) = (I+rB)" (I - rAz),

then Fixz(T,) = (A+ B)~1(0).
Lemma 2.6 ([14], Lemma 3.2). For any s € (0,7] and x € X, we have

o = Tsx|| < 2|z — Tr].
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Lemma 2.7 ([I4], Lemma 3.3). Let X be a uniformly conver and g-uniformly smooth Banach space for
some q € (1,2]. Assume that A is a single-valued a-isa of order q in X. Then, for any s > 0, there exists a
continuous, strictly increasing and convex function ¢4 : RT™ — R with ¢4(0) = 0 such that, for all x,y € B,

ITra = Ty || <[lz = yl|? — r(ag — r™"kg) | Az — Ay|?

= a0 = I — v A — (I — 3)(I — Ay, (27)

where Ky is the q-uniform smoothness coefficient of X.

Remark 2.8. For any p € [2,00), LP is 2-uniformly smooth with k9 = p — 1 and, for any p € (1,2], L? is
p-uniformly smooth with x, = (1 + 1+ t,)17P, where t, is the unique solution to the equation

(p—2)P L (p—1P2-1=0

for any ¢ € (0,1).

3. Main results
In this section, we prove our strong convergence theorem.

Theorem 3.1. Let X be a uniformly convex and g-uniformly smooth Banach space. Let A: X — X be an
a-isa of order ¢ and B : X — 2% be an m-accretive operator. Assume that S = (A + B)71(0) # 0. We
define a sequence {x,} by the iterative scheme: for any x1 € X,

Tpt1 = Bn®pn + (1 = Bn)(anu + (1 — O‘n)Jrﬁ (Tn — rnAzn)) (3.1)

for each n > 1, where u € X, J,],i =T +r,B)7 Y {a,} C(0,1), {B.} C[0,1) and {r,} C (0,+00). Assume
that the following conditions are satisfied:

(a) limy, o0ty = 0,7 1 @y = 00;
(b) limsup,,_, . Bn < 1;
(c) 0 < liminf, o 1 < limsup,,_ 7 < (5L)a-T.

Then the sequence {x,} converges strongly to a point z = Q(u), where Q is the sunny nonexpansive retraction
of X onto S.

Proof. Let z = Q(u), T,, = Jf; (I —rp,A) and z, = apu+ (1 — ozn)Jfl (xy, — rnAxy,) for each n > 1. Then we
obtain, by Lemma

lzn — 2|| =|lanu + (1 — an)JfL(J:n —rpAzy) — 2|
=|lan(u—z) + (1 — ap) (Thxy — 2)|| (3.2)

<onllu = z[| + (1 — an)|lzn — 2]|.
It follows from (3.2)) that

[2nt1 = 2l =[|Bn(zn — 2) + (1 = Bn)(2n — 2)|
<Bullzn — 2| + (1 = Bn)llzn — 2|
<Bullzn — 2| + (1 = Bu)(anllu — z[| + (1 — an)||zn — 2]])
=Bnllan — 2| + (1 = Bn)anllu — 2] + (1 = Bp) (1 — an)||zn — 2||
=(1 = an(l = Bn))llan — 2l + (1 = Bn)anlu — 2.
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Hence we can apply Lemma to claim that {z,} is bounded. Using the inequality and Lemma
we derive that
l2n = 2117 =l (u = 2) + (1 = an) (J7 (20 — rnAzn) — 7 (2 = raAz)) |
<(1- an)qHJ,i (xn — rnAxy) — Jg(z —rnAz)||7 4+ qon (u — 2, Jy(2n — 2))
=(1 — o) Thzn — Tnz||? + qan(u — 2, Jy(2n — 2))
<(1—ap)? [Hxn — 2| = rn(aq — ri " Rg) | Az, — Az
— (I = T2 = rnA)an — (I = T )T — ?”nA)ZH)]
+ qon(u — 2, Jy(2n — 2))
=(1 = an)?|zn — 2[|7 = (1 — an)?rn(ag — T;Izilﬁq)HAxn — Az||?
— (1 —an)oq(||[(xn — Az, — Thay) — (2 — Az — Tp,2)||)
+ qa (u — 2, Jy(2n — 2))
=(1 — an)lan — 2[|? = (1 = an)trn(agq — i~ kg) || Az, — Az
— (1 — o) ?¢q(||zn — rnAzy — Tha, + rnAzl)
+ qan(u — 2, Jy(2n — 2)).

It follows from that
[#n1 = 2|7 =[[Bn(zn — 2) + (1 = Bn) (20 — 2)|*
<Ballen = z[|7 + (1 = Bn)llzn — 2||*
=Ballan — 2 + (1= B)[(1 = an) 2 — 2|
— (1= ap)¥ra(ag — 1 trg) | Azy — A2||
— (1 —on)?¢q(||lzn — rnAzy, — Tha, + rpAz||)

+ qo (u — 2, Jg(zn — z)>}
=Billzn — 2[|7 + (1 = Bn)*(1 — an)?||an — 2[|7
— (1= B)1(1 — ) — v )| Ay — Az
— (1 =81 — ap)ig(||xn — rnAx, — Tha, + rpAz||) (3.4)
+ (1 = Bn)lgan(u — 2z, Jg(2n — 2))
<(Bn + (1 = Bn)(1 — an))l|an — 2[*
= (1= Bn)(1 = an)rn(aq — r%_lf‘ﬂq)HAfUn — Az|1
— (1 =511 — an)@q(|lxn — rnAzy — Thxn + rpAz|))
+ (1 = Bn)lqan(u — z, Jy(zn — 2))
=1 — (1= Bn)an)||lzn — 2|
— (1= Ba)(1 = an) 7y (aq — ri ' ig) | Az — Az
= (1= Bn)(1 — an)i¢q(lzn — rnAzy — Toxy + 1o Az|)
+ (1 = Bn) qan(u — 2, Jy(2n — 2)).

We know that (1 —3,)ay, isin (0,1) and (1 — 3,)?(1 — ay,)? are positive since {a,, }, {Bn} C (0,1). Moreover,
by the condition (c) and 1 < ¢ < 2, we can show that (1 — 8,)%(1 — ay,)%r,(ag — T%_llfq) is positive. Then,
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from (3.4)), it follows that
[znt1 — 2T < (1= (1 = Bp)an)lzn — [T+ (1 = Bn)gan(u — 2, Jy(2n — 2)) (3.5)
and also
lZn1 = 27 <z — 2|7 = (1= Ba) (1 — an)r(aq — 787 kg )| Az — Az
— (1= 3p)%1 — an)¢q(||lxn — rnAzy — Thxy + rpAz||) (3.6)
+ (1 — Bn)lqon(u — 2, Jy(zn — 2)).
For each n > 1, set

sn =|lzn — 2[%,

Y =(1 = Bn)am,

(1- /Bn)q_lq<u — 2, Jq(2n — 2)),

(1= B)(1 — an)irn(aq — ri ky) || Az, — Az||?

+ (1= Bn)? (1 — an)9q(||n — rnAzn — Than + raAzl]),
pn =1 = Bn)lqon(u — z, Jy(zn — 2)).

Then it follows from (3.5)) and (3.6 that

Tn

Tin

Sn+1 < (1 - 'Yn)sn + YnTn

and
Sl < Sp — M+ pPn

for each n > 1. Since Y 2, a, = o0, it follows that  >° v, = oo. By the boundedness of {z,} and
limy,, o o, = 0, we see that lim, o pn, = 0.

In order to complete the proof, using Lemma it remains to show that limg_,oo 7n, = 0 implies
limsupy_,oo 7, < 0 for any subsequence {ni} C {n}. Let {ng} be a subsequence of {n} such that
limy_yo0 7, = 0. So, by our assumptions and the property of ¢,, we can deduce that

lim ||[Az,, — Az|| = lim ||z,, — 1, Azn, — Th,@n, + 70, Az|| =0,
k—o0 k—o0
which gives, by the triangle inequality, that
klglolo ||Tnkxnk- — Ty | =0. (3.7)
By the condition (c), there exists € > 0 such that r, > € for all n > 0. Then, by Lemma we have

| Texn, — Tog || < 20Ty Tny — Ty |-

It follows from (3.7]) and (3.8) that

limsup ||Texn, — Tn, || < 2limsup ||T5, 2n, — Tn, || =0 (3.8)
k—o0 k—o0
and so
limsup || Texr, — 2n, || = 0. (3.9)
k—o0

Let z; = tu+ (1 — t)Tez; for any ¢ € (0,1). Employing Theorem we have z; — Qu = z ast — 0. So we
obtain
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120 = 2 17 =[t(u = 20,) + (1 = O)(Tr,, 20 = 20|
<L =0T, 20 = zni " + qt{u = 20y, Jo (2t — 20,))
=1 = )T, 2t = 20y |* + qt{u = 2t, J(20 — 2ny.))

+aqt(z =z Jo(2 = 2ny))
=1 =T, 26 = Try, 2oy + Ty 20 = 2

+ qt(“ — 2t Jq(zt - an)> + thZt - an”q
q q

<= )T, 21 = Ty 2l 4+ 1 Tr 2 = 20

o at{u = 20, Jy(z1 = 20,)) + gtz = 2,1

q

<=7zt = 2o | + 1T, 20, = 2]

+ gt{u — z, Jq(zt - an)> + gtz — Zny 9.

This shows that

(1— 1)
qt

From (3.9) and (3.10)), it follows that

(gt —1)

<Zt - u, Jq(zt - an» < ”

q
(126 = 2l 4+ [T 2 = 2]+ ot = zn . (3.10)

(1-

t)q q
(126 = 2l + 1T, 2 = 2]

t—1
+ lim sup (qqt)uzt — |l

e (3.11)
A=), @D,
qt qt
:((1 — )7+ qt — 1)Mq
qt ’

lim sup(z; — u, Jy(2t — 2p,,)) <limsup
k—ro0 k—o00

where M = limsupy,_, ||zt — zn, ||, t € (0,1). We see that (l_t)[;ith_l — 0 as t = 0. From Proposition
(2), we know that .J; is norm-to-norm uniformly continuous on bounded subset of X. Since z; — z ast — 0,
we have ||Jq(z¢ — zp, ) — Jg(2 — 2p, )|| = 0 as t — 0. We see that

(=, Ty = 2n)) = (2 =, Tyl = 20,))|
=[((zt = 2) + (2 = w), Tyl = 2m)) = (2 = 0, Ty(z = z))|
<[(z1 = 2 gz = 2|+ [(2 = T = 20)) = (2 = 0, Jylz = 20,))]
<llze = 2lllze = 2, |70 + NIz = wllll Tzt = 2n,) = Jg(z = 20l

So, as t — 0, we get
(2t —u, Jg(2e — 2y, )) = (2 —u, Jg(2 — 2n,.))- (3.12)

From (3.11) and (3.12)), as t — 0, we see that

limsup(z — u, Jy(z — 2,,,)) < 0.

k—o0

This shows that limsupy_,. 7, < 0. We conclude that lim,_, s, = 0 by Lemma (iii). Hence z,, — =
as n — oo. This completes the proof. O
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We now give an example in l3 space which is a uniformly convex and 2-uniformly smooth Banach space,
but not a Hilbert space.

Example 3.2. Let A : I3 — I3 be defined by Az = 3x + (1,1,1,0,0,0,---) and B : l3 — I3 be defined by
Bx = 9z, where © = (21,29, 23, -+ ) € 3.

We see that A is %—isa of order 2 and B is an m-accretive operator. Indeed, for any x,y € I3, we have

(Az — Ay, ja(z — y)) =3z — 3y, ja(z — y))

=3z — ylI7,
1
=14z — Ay,
On the other hand, it follows that
(Bx — By, ja2(z — y)) = 9l|lz — yl7, > 0 (3.13)

and R(I +rB) = I3 for all » > 0. By a direct calculation, it follows that, for any r > 0,

JB(x —rAz) =(I + rB) "' (z — rAx)

1—3r T (3.14)
- _ 1.1.1
1 9T$ 1 97"( y Ly >070507 )7

where x = (x1,x9,x3,---) € l3. Since, in l3, ¢ =2, o = % and ko = 2, we set r, = 0.1 for all n € N. Let

an, = Wlnﬂ, Brn = ﬁ, u=(-1,-3,-2,0,0,0,---) and z; = (2,4,5.2,0,0,0,---). Then we obtain the
following numerical results:

n Tn [Zn+1 — @nllis

1 (2.0000000, 4.0000000, 5.2000000, 0.0000000, 0.0000000, 0.0000000,- - -) 3.8024254E4-00

50
100
150
200
250
300

0.0833433, -0.0833651, -0.0833542, 0.0000000, 0.0000000, 0.0000000,- - -
0.0833382, -0.0833490, -0.0833436, 0.0000000, 0.0000000, 0.0000000,- - -
0.0833366, -0.0833437, -0.0833401, 0.0000000, 0.0000000, 0.0000000,- - -
0.0833358, -0.0833411, -0.0833384, 0.0000000, 0.0000000, 0.0000000,- - -
0.0833353, -0.0833395, -0.0833374, 0.0000000, 0.0000000, 0.0000000,- - -
0.0833350, -0.0833385, -0.0833367, 0.0000000, 0.0000000, 0.0000000,- - -
350 0.0833347, -0.0833378, -0.0833362, 0.0000000, 0.0000000, 0.0000000,- - -
400 0.0833345, -0.0833372, -0.0833359, 0.0000000, 0.0000000, 0.0000000,- - -

(- 7.0571229E-07
(_
(_
(_
(_
(_
(_
(_
450 | (-0.0833344, -0.0833368, -0.0833356, 0.0000000, 0.0000000, 0.0000000,- - -
(_
(_
(_
(_
(_
(_
(_

1.7240770E-07
7.6055693E-08
4.2623559E-08
2.7219001E-08
1.8874414E-08
1.3852448E-08
1.0597493E-08
8.3682454E-09
6.7749903E-09
5.5969446E-09
4.7014347E-09
4.0048370E-09
3.4523238E-09
3.0067340E-09
2.6421581E-09

500 0.0833343, -0.0833364, -0.0833354, 0.0000000, 0.0000000, 0.0000000,- - -
550 0.0833342, -0.0833361, -0.0833352, 0.0000000, 0.0000000, 0.0000000,- - -
600 0.0833341, -0.0833359, -0.0833350, 0.0000000, 0.0000000, 0.0000000,- - -
650 0.0833341, -0.0833357, -0.0833349, 0.0000000, 0.0000000, 0.0000000,- - -
700 0.0833340, -0.0833355, -0.0833348, 0.0000000, 0.0000000, 0.0000000,- - -
750 0.0833340, -0.0833354, -0.0833347, 0.0000000, 0.0000000, 0.0000000,- - -
800 0.0833339, -0.0833353, -0.0833346, 0.0000000, 0.0000000, 0.0000000,- - -

N N N N N N N N NI N NN

Table 1

From Table 1, a solution is (-0.083333,-0.083333,-0.083333,0.000000,0.000000,0.000000,- - - ).
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4. Applications and numerical examples

In this section, we discuss some concrete examples as well as the numerical results for supporting the
main theorem.

Theorem 4.1. Let H be real Hilbert space. Let ' : H — R be a bounded linear operator with K -Lipschitz
continuous gradient VF and G : H — R be a convex and lower semi-continuous function which F + G
attains a minimizer. Let JO¢ = (I +r,0G)~! and {z,} be a sequence generated by u,z1 € H and

Tpy1 = Bntn + (1 — Bn)(anu + (1 — an)JranG(xn — 1, VE(2,))) (4.1)

for eachn > 1, where {a,} C (0,1), {Bn} C [0,1) and {r,} C (0,+00). Assume that the following conditions
are satisfied:

(a) Ny, o0 iy = 0, 07 4 @y = 005
(b) limsup,,_,o Bn < 1;
(¢) 0 < liminf, o0 ry < Hmsup, .7 < =.
Then the sequence {xy} converges strongly to a minimizer of F + G.

Example 4.2. Solve the following minimization:

1 9
Inin €z —dflz + |z, (4.2)
where
2 1 8 5 n 26
_ 3 -7 -3 -6 | e | =6
C=1_1 5 3 9 | *= ys |’ =1 7
7T -1 —4 2 Y4 —6

We set F(z) = 3||Cz — d||3 and G(z) = ||z|j;. Then VF(z) = CT(Cz — d) and VF(z) is K-Lipschitz
continuous by [3]. From [I1], it follows that, for any r > 0,

J2%(z) = (I +70G) " (z) = | max{|y; — r|,0}sign(y1), max{|y> — r|,0}sign(y2),
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max{|yz — r|,0}sign(ys), max{|ys — r|,0}sign(ya)|.

We see that

63 —-31 —-18 -3
-31 76 18 90
—-18 18 98 23
-3 90 23 146

cto =

and the largest eigenvalue of CT'C is 0.00915.
We choose o, = m, Bn = ﬁ, = 0.009, 21 = (3,-5,1,3)T and u = (1,—1,—1,-2)T. Using
algorithm (4.1]) in Theorem we obtain the following numerical results.

n Tn F(zn) + G(2y) [Zn+1 — nll2
1 (3.000000, -5.000000, 1.000000, 3.000000) 1073.000000 4.806639E4-00
50 (-0.926970, -2.533429, 2.102770, 3.138152) 24.821487 7.558257E-01
100 | (-0.857996, -2.666656, 2.025993, 2.870673) 9.253030 1.423229E-01
150 | (-0.845881, -2.693438, 2.011434, 2.821389) 8.701192 2.681196E-02
200 | (-0.843740, -2.698758, 2.008675, 2.812280) 8.681616 5.052011E-03
250 | (-0.843365, -2.699816, 2.008152, 2.810599) 8.680922 9.520138E-04
300 | (-0.843304, -2.700034, 2.008053, 2.810294) 8.680898 1.794090E-04

700 | (-0.843312, -2.700130, 2.008028, 2.810253) 8.680897 6.302689E-08

750 | (-0.843314, -2.700132, 2.008028, 2.810254) 8.680897 5.458308E-08

800 | (-0.843315, -2.700134, 2.008028, 2.810256) 8.680897 4.773015E-08

850 | (-0.843315, -2.700136, 2.008028, 2.810257) 8.680897 4.209251E-08

900 | (-0.843316, -2.700138, 2.008028, 2.810258) 8.680897 3.739877E-08

950 | (-0.843317, -2.700139, 2.008028, 2.810259) 8.680897 3.344924E-08
(- )

1000 0.843318, -2.700140, 2.008028, 2.810259 8.680897 3.009437E-08

Table 2

From Table 2 we see that x990 = (—0.843318, —2.700140, 2.008028, 2.810259) is an approximation of the
minimizer of F'+ G with an error 3.009437F — 08 and its minimum value is approximately 8.680897.
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Figure 2
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Example 4.3. Solve the following minimization:

1
min [|Az +¢ljz + 2tz +d 'z +9 (4.3)
z€R3 2
where
-1 3 4
A= 2 -7 9 , T = (yl,yg,yg)T, c= (11,976)T, d= (7,6,8)T.
-2 -5 -3

For each z € R?, we set F(z) = 3272 +d"z+9 and G(z) = ||Az+¢||2. Then VF(z) = z+(7,6,8)”. We can
check that F is convex and differentiable on R3 with 1-Lipschitz continuous gradient VF and G is convex
and lower semi-continuous. We choose oy, = Wlﬂ’ Bn = %, rn=0.1,21 = (8,-2,6)" and u = (-2,3,5)7.
We have that, for r > 0,

(1;’”)13, if |z||2 >,

2
0, otherwise.

(I +79G) (z) = {

Using algorithm (4.1)) in Theorem we obtain the following numerical results:

n Tn F(an) + G(an) [#n41 — @nll2

1 (8.000000, -2.000000, 6.000000) 161.316850 7.460748E+-00
50 (-0.524837, -0.433635, -0.574738) 0.545773 3.947994E-04
100 | (-0.520385, -0.438070, -0.582402) 0.497188 9.656413E-05
150 | (-0.518942, -0.439522, -0.584907) 0.481252 4.261886E-05
200 | (-0.518229, -0.440242, -0.586151) 0.473332 2.389088E-05
250 | (-0.517803, -0.440673, -0.586894) 0.468594 1.525893E-05
300 | (-0.517520, -0.440960, -0.587389) 0.465442 1.058212E-05
800 | (-0.516640, -0.441852, -0.588928) 0.455624 1.481869E-06
850 | (-0.516609, -0.441884, -0.588982) 0.455278 1.312465E-06
900 | (-0.516582, -0.441911, -0.589030) 0.454971 1.170533E-06
950 | (-0.516557, -0.441936, -0.589073) 0.454696 1.050439E-06
1000 | (-0.516535, -0.441959, -0.589112) 0.454449 9.479211E-07

Table 3

From Table 3, we see that x1900 = (—0.516535, —0.441959, —0.589112) is an approximation of the mini-
mizer of F'+ G with an error 9.479211F — 07 and its minimum value is approximately 0.454449.

10

09r -

08 -

0.7 - -

06 -

0&r- -

Erraors

0.4r -

03 -

0z2r -

01 -

0 ! I i i
0 200 400 G600 800 1000

lteration Mumber (r)

Figure 3



N. Pholasa,

P. Cholamjiak, Y. J. Cho, J. Nonlinear Sci. Appl. 9 (2016), 27662778 2778

Acknowledgements

Prasit Cholamjiak was supported by the Thailand Research Fund and University of Phayao under
Grant TRG5780075 and Yeol Je Cho was supported by Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning
(2014R1A2A2A0100 2100).

References

[1] D. P. Bertsekas, J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Englewood Cliffs,
NJ, Prentice hall, (1989).

[2] H. Brézis, P. L. Lions, Produits infinis de resolvantes, Israel J. Math., 29 (1978), 329-345.

[3] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse
Problems, 20 (2004), 103-120.

[4] G. H. G. Chen, R. T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim., 7 (1997),
421-444. [

[5] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Pub-
lishers, Dordrecht, (1990).

[6] P. L. Combettes, Iterative construction of the resolvent of a sum of maximal monotone operators, J. Convex
Anal., 16 (2009), 727-748.

[7] P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul.,
4 (2005), 1168-1200.

[8] J. Douglas, H. H. Rachford, On the numerical solution of heat conduction problems in two and three space
variables, Trans. Amer. Math. Soc., 82 (1956), 421-439.

[9] J. C. Dunn, Convexity, monotonicity, and gradient processes in Hilbert space, J. Math. Anal. Appl., 53 (1976),
145-158. I

[10] O. Giiler, On the convergence of the prozimal point algorithm for convex minimization, SIAM J. Control Optim.,
29 (1991), 403-419.

[11] E.T. Hale, W. Yin, Y. Zhang, A fized-point continuation method for Li-regularized minimization with applications
to compressed sensing, CAAM Technical Report, TR07-07, (2007).

[12] S. He, C. Yang, Solving the variational inequality problem defined on intersection of finite level sets, Abstr. Appl.
Anal., 2013 (2013), 8 pages.

[13] P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16
(1979), 964-979.

[14] G. Lépez, V. Martin-Mérquez, F. Wang, H. K. Xu, Forward-Backward splitting methods for accretive operators
in Banach spaces, Abstr. Appl. Anal., 2012 (2012), 25 pages.

[15] P. E. Maingé, Approzimation method for common fized points of nonexpansive mappings in Hilbert spaces, J.
Math. Anal. Appl., 325 (2007), 469-479.

[16] B. Martinet, Régularisation d’inéquations variationnelles par approzimations successives, Rev. Frangaise Infor-
mat. Recherche Opérationnelle, 4 (1970), 154-158.

[17] G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal.
Appl., 72 (1979), 383-390.

[18] D. W. Peaceman, H. H. Rachford, The numerical solution of parabolic and eliptic differential equations, J. Soc.
Indust. Appl. Math., 3 (1955), 28-41.

[19] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal.
Appl., 75 (1980), 287-292.

[20] R. T. Rockafellar, Monotone operators and the proxzimal point algorithm, SIAM J. Control Optim., 14 (1976),
877-898. [

[21] S. Saewan, P. Kumam, Y. J. Cho, Convergence theorems for finding zero points of mazimal monotone operators
and equilibrium problems in Banach spaces, J. Inequal. Appl., 2013 (2013), 18 pages.

[22] S. Saewan, P. Kumam, Y. J. Cho, Strong convergence for mazimal monotone operators, relatively quasi-
nonezxpansive mappings, variational inequalities and equilibrium problems, J. Global Optim., 57 (2013), 1299-
1318. [

[23] W. Takahashi, N. C. Wong, J. C. Yao, Two generalized strong convergence theorems of Halpern’s type in Hilbert
spaces and applications, Taiwanese J. Math., 16 (2012), 1151-1172.

[24] P. Tseng, A modified forward-backward splitting method for mazimal monotone mappings, SIAM J. Control
Optim., 38 (2000), 431-446.

[25] H. Zegeye, N. Shahzad, Strong convergence theorems for a common zero for a finite family of m-accretive map-

pings, Nonlinear Anal., 66 (2007), 1161-1169.



	1 Introduction
	2 Preliminaries
	3 Main results
	4 Applications and numerical examples

