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Abstract

The aim of this paper is to present fixed point results of convex contraction, convex contraction of order
2, weakly Zamfirescu and Ciri¢ strong almost contraction mappings in the framework of G-metric spaces.
Some examples are presented to support the results proved herein. As an application, we derive Suzuki type
fixed point in G-metric spaces. Our results generalize and extend various results in the existing literature.
We also present some examples to illustrate our new theoretical results. (©2016 All rights reserved.
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1. Introduction and preliminaries

Over the past two decades, the development of fixed point theory in metric spaces has attracted a
considerable attention due to numerous applications in areas such as variational inequalities, optimization,
and approximation theory. Mustafa and Sims [25] generalized the concept of a metric in which to every
triplet of points of an abstract set, a real number is assigned. Based on the notion of generalized metric
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spaces, Mustafa et al. [22] 24, 26] obtained several fixed point theorems for mappings satisfying different
contractive conditions. On the other hand, Mustafa et al. [I8-24] 26] also obtained some interesting fixed
point results for mappings satisfying new different contractive conditions. Chugh et al. [I3] obtained some
fixed point results for maps satisfying property P in G-metric spaces. Saadati et al. [30] studied fixed
point of contractive mappings in partially ordered G-metric spaces. Shatanawi [33] obtained fixed points of
$-maps in G-metric spaces. For more details, we refer to [TH7, 9, 1), 12] 27-29, 34, B5].

Jleli and Samet [16] (see also, [32]) observed that some fixed point results in the context of a G-metric
space can be deduced by some existing results in the setting of a (quasi-) metric space. In fact, if the
contraction condition of the fixed point theorem on a G-metric space can be reduced to two variables
instead of three variables, then one can construct an equivalent fixed point theorem in the setting of a usual
metric space. More precisely, they noticed that d(z,y) = G(z,y,y) forms a quasi-metric. Therefore, if one
can transform the contraction condition of existence results in a G-metric space in terms such as G(zx,y,y),
then the related fixed point results become the known fixed point results in the context of a quasi-metric
space.

On the other hands, Istratescu [15] introduced the notion of a convex contraction mapping. Recently,
Miandaragh et al. [I7] proved some fixed point results for generalized convex contractions on complete
metric space.

The aim of this paper is to study the notion of convex contraction, convex contraction of order 2, weakly
Zamfirescu mappings and Ciri¢ strong almost contraction in the setup of G-metric spaces. We obtain several
fixed point results for such mappings in the setting of generalized metric spaces. As an application, Suzuki
type fixed point result is also derived. Some examples are provided to support the results proved herein.
Our results extend and generalize various existing results in the literature.

Consistent with Mustafa and Sims [25], the following definitions and results will be needed in the sequel.

Definition 1.1. Let X be a nonempty set. A mapping G : X x X x X — R™ is said to be a G-metric on
X, if for any x,y, z € X, the following conditions hold:

(a) G(z,y,2) =0,ifx =y =z

(b) 0 < G(x,y, 2), for all x,y € X with x # y;

(¢) G(z,z,y) < G(x,y,2), for all z,y,z € X, with y # z;

(d) G(z,y,2) = G(p{x,y, z}), where p is a permutation of x,y, z (symmetry);
) G

(e
The pair (X, Q) is called a G-metric space [25].

(z,y,2) < G(z,a,a) + G(a,y, z), for all x,y,z,a € X.

Definition 1.2. A sequence {z,} in a G-metric space X is called:

(i) a G-Cauchy sequence if for any ¢ > 0, there is an ng € N (the set of natural numbers) such that for
all n,m, 1 > ng, G(zpn, Tm,x;) < &;

(ii) a G-convergent sequence if for any £ > 0, there is an z € X and an ng € N such that for all n, m > ny,
G(z,xn, Tm) < €.

A G-metric space is said to be G-complete, if every G-Cauchy sequence in X is G-convergent in X. It
is known that a sequence {z,} converges to x € X if and only if G(z,, z,,z) — 0 as n,m — oo [25].

Proposition 1.3 ([25]). Let X be a G-metric space. Then following are equivalent:

1. {zn} is G-convergent to x.
2. G(xp,xn, ) — 0 as n — oo.
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3. G(xp,z,x) = 0 as n — 0.
4. G(xp, Tm,x) = 0 as n,m — oo.

Definition 1.4. A G-metric on X is said to be symmetric if G(z,y,y) = G(y, z,x) for all x,y € X.
Proposition 1.5. Fvery G-metric on X will define a metric dg on X given by
dg(z,y) = G(z,y,y) + G(y,xz,x), forallz,y € X.
For a symmetric G-metric, we have
da(z,y) = 2G(z,y,y), forallxz,y € X.

Howewver, if G is not symmetric, then the following inequality holds:
3
5G(@,y,y) < dg(a,y) < 3G(z,y.y),  forallz,y € X.

Definition 1.6 ([31]). Let ¢ be the collection of all mappings % : [0, 00) — [0, 00) that satisfy the following
conditions:

e > Y"(t) < oo for each t > 0, where ¢™ is the n-th iterate of 1;
n=1

e 1) is nondecreasing.

Definition 1.7 ([8]). Let X be a nonempty set and c: X x X x X — [0,00). A self mapping 7" on X is
said to be a-admissible, if for any x,y,z € X

a(z,y,z) > 1 implies that «o(Tz,Ty,Tz) > 1.
Example 1.8 ([8]). Let X = [0,00) and T : X — X by

2Inz if ©x#£0;
m):{ . ife#0

e, otherwise.

Define a: X x X x X — [0,00) by

x>y 2z
r<y<z.

67
Then the mapping T is a-admissible.

2. Fixed point results for convex contractions

Definition 2.1. Let X be a G-metric space, T a self-map on X and € > 0 a given number. A point x in X
is called

(a) an e-fixed point of T, if G(x, Tz, T?z) < €
(b) approximate fixed point of 7', if T' has an e-fixed point for all € > 0.

Definition 2.2. Let X be a G-metric space. A self-mapping T on X is called asymptotic regular if for any
z in X, we have G(T"z, T" 1 x, T 22) — 0 as n — oo.

Now, we have the following simple lemma.
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Lemma 2.3. Let X be a G-metric space and T an asymptotic reqular map on X. ThenT has an approximate
fized point.

Proof. Let zg be a given point in X and € > 0. Since T is an asymptotic regular map on X, we can choose
no(€) € N such that
G(T"x, T 20, T"+2xg) <e€

for all n > ng(e). That is, G(T"wo, T(T"xo), T?(T"x0)) < € for all n > ng(e). If we put T"(xg) = yo then
G(yo, T(yo), T?(yo)) < € implies that yo = T™(xo) is an e-fixed point of T in X. As € > 0 is an arbitrary
number, so T has an approximate fixed point. O

Definition 2.4. Let X be a nonempty set and a,n: X x X x X — [0,00) two mappings. A self-mapping
T on X is said to be a-admissible with respect to n if for any x,y,z € X

a(z,y,z) > n(z,y,z) implies that «o(Tz,Ty,Tz) > n(Tz,Ty,Tz).
Example 2.5. Let X = [0,00) and T : X — X by

21 if :
T(a:):{ nx, if x #0;

e, otherwise.
Define a,n: X x X x X — [0,00) by

e xzy=z
a(x,y,z)—{z r<y<z,

and n(z,y,z) = 1. Then the mapping T is a-admissible with respect to 7.

Definition 2.6. Let X be a nonempty set and a,n: X x X x X — [0,00) two mappings. A self-mapping
T on X is said to be convex contraction, if for any z,y, z in X

n(z, Tz, Ty) < a(z,y,z) implies that G(T%z,T%y, T%z,) < aG(Tz, Ty, Tz) + bG(z,y, 2), (2.1)
where a,b > 0 with a + b < 1.

Definition 2.7. Let X be a nonempty set and a,7: X x X x X — [0,00) two mappings. A self-mapping
T on X is said to be convex contraction if for any z,y, z in X

n(x, Tz, Ty) < a(z,y, 2),
implies that
G(T?x,T%y,T%2,) < a1G(z, Tz, Tx) + aeG(Tx, T?x, T%x) + b1 G(y, Ty, Ty)
+ 0o G(Ty, Ty, T?y) + c1G(2, T2, T?2) + caG(T2,T?2,T%2), (2.2)
where a1, as,b1,bs,c1,c9 > 0 with a1 +as +b1 +bs +c¢1 + ¢ < 1.

Theorem 2.8. Let X be a complete G-metric space and T an a-admissible convexr contraction with respect
ton. If a(x,Tx,Tx) > n(x,Tx,Tx) for any x € X, then T has an approzimate fixved point.

Proof. Let xo be a given point in X. Since a(xzg, Tz, Tzo) > n(xo, Txo, Txo) and T is an a-admissible
mapping with respect to 1, we have o(Txo, T?zo, T3x0) > n(Tx0, T?x0, T?0). By continuing this way,
we obtain that a(T"xg, T"ag, T 220) > n(T™xo, T o, T 220), for all n € N U{0 }. Put 9 =
G(T3xg, T?x0, Txo)+G(T?x0, Txo, 20) and r = a+b. Obviously, G(T3xzg, T?xq, Txo), G(T*xg, Txg, 10) < V.
By using = = xg, y = Txg and z = T?x( in , we have

G(T%xo, T30, T*x0,) < aG(Txo, T?xo, T3x0) + bG(xg, Txo, T?x0) < 0.
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Similarly, we have
G(T3xo, T*xo, TOx0,) < aG(T?xg, T3x0, T*x0) + bG(Txo, T?x0, T3x0) < 120.
By continuing this process, we arrive at
G(T™xg, T™ Mg, T 2a0) < rlo,

where m = 2] or m = 2] + 1. On taking the limit as m — oo on both sides of above inequality, we have
G(T™zo, T xg, T™ 234) — 0, for any 29 € X. By Lemma T has an approximate fixed point. O

Let T be a self-mapping on a nonempty set X and o, n: X x X x X — [0,00). We say that the set
X has H*—property if for any z,y € Fiz(T) with a(z,y,y) < n(x,Tx,Tx), there exists z € X such that
a(z,z,2) > n(x, z,2) and oy, z,2) > n(y, z,2). Also for any x,y € X, we have n(z, Tz, Tz) < n(z,y, 2).

Theorem 2.9. Let X be a complete G-metric space and T a continuous convex contraction and c-admissible
mapping with respect to n. Suppose that there exists a point xg in X such that

a(zg, Txo, Txo) > n(xo, Txo, Tx0).

Then T has a fixed point. Moreover, T' has a unique fized point provided that X has H*—property.

Proof. Define a sequence {x,} in X by z, = T"xq, for all n € N. Since T is an a-admissible mapping
with respect to n and a(xg,z1,21) = a(zo, Two,, Txz0) > n(x0, Two, T20), We have a(Txo, T?xo, T?x0) =
a(zy, xo, 2) >n(Txg, T?x0, T?x0) =n(x1, T2, 22). By continuing this way, we obtain that o/(z,, Trni1, Zni1) >
N Xy Tyt1, Tnt1) = N(xn, Ty, Tay), for all n € N U{0 }. Also, from (2.1)), we have
G(a:n+2, Tn+3, $n+4> = G(T”+2x0, Tn+3$0, Tn+41‘0) = G(T2 (Tnxo), T2 (T”+1x0), T2 (T"+2x0))
< aG(T(T"x0), T(T™" M ao), T(T"20)) + bG(T" o, T o, T o)

= aG($n+1, Tn+2, -Tn+3) + bG($na Tn+1, xn+2)-
We set ¥ = G(x3,x2,21) + G(x2,21,20) and r = a + b. Then
G($m7 Tm+1, $m+2) < Tlﬁv

where m = 2l or m = 2l + 1. Suppose that m = 2[. Then for n,k = 2p with p > 2, [ > 1 and m < n, k we
have

G(2m, T, k) < G( Ty Timg1, Tmg1) + G(Tmg1s Tmg2, Tmg2) + G(Tmi2, Tmi3, Tmg3)

+ -+ G(rp—2,Tn—1,Tn—1) + G(Tp_1,Tn, xf)
= G(xo, Tor41, Tar41) + G(T2141, Tary2, Tor42)

+ G(2o+2, Ta1+3, T243) + - + G(z2p—2, Top—1, Top—1) + G(w2p—1, Tap, T2p)
<l 4+l + P9 4 Pl
=20l + 2PN 4+ 20129 o 2P LY

27l

—1-7

.

Similarly, for n,k =2p+ 1 with p > 1,1 > 1 and m < n, k we have

orl
1—7r

v

G(xm, T, k) <
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Now, assume that m = 2] + 1. Then for n = 2p with p > 2, [ > 1 and m < n, we have

G(my Tny ) < G(Ty Tt 1, Tmt1) + G(Timt1s Tmt2, Tmt2) + G(Tmt2, Tmtss Tm+3)
+ -+ G(rp—2,Tn-1,Tn-1) + G(xn_1, Tn, k)
= G(2o141, Tat2, Tary2) + G(Tar42, T2143, T243)
+ G(22143, Torya, Torqa) + - - + G(2p—2, Top—1, Top—1) + G(T2p—1, Tap, Tap)
< v+ 4 Y Py
< 2rh9 + 271 2Pt H29 o 2Py
27t

<
—1-r

.

Similarly, for n,k =2p+ 1 with p > 1, > 1 and m < n, k we obtain that

orl

G < 9.
(frma CEn,.Tk) =1_r
Hence, for all m,n,k € N with m < n, k, we have
27!
G(Tm, T, zk) < . rz?.

On taking the limit as | — oo on both sides of above inequality, we have G(xy,, Tp, ) — 0 which implies
that {x,} is a Cauchy sequence. By completeness of X, there exists z € X such that x,, — z and n — oo
and hence Tz = z as T is a continuous mapping.

Let z,y € Fiz(T) where x # y. To prove the uniqueness, we consider the following cases.

(i) If a(z,y,y) =2 n(z, Tz, Tx).
As T is a convex contraction, so we have

G(z,y,y) = G(T%z, Ty, T?y) < aG(Tz, Ty, Ty) + bG(z,y,y)
= aG(x,y,y) + bG(z,y,y)
= (a+b)G(z,y,y)
< G(z,y,y),

a contraction.
(i) If a(e,y,y) < n(z, Tz, Tx).

Since X has H*—property, there exists z € X such that a(zx, z) > n(x, z) and a(y, z,2) > n(y, z,2). Also, T
is an a-admissible mapping with respect to n, we have a(x,T"z,T"z) > n(x, T"z,T"z) > n(z, Tz, Tx) and
aly, T"z,T"z) > n(y, T"z,T"z) > n(y, Ty, Ty). If a(x,T"2,T"z) > n(x, Tz, Tx), then we have

Gz, T 22, T"%2) < aG(z, T" M2, T 2) + bG(z, T"2, T"2).
By taking ¥ = G(z,T2,Tz) + G(x,z,z) and r = a + b < 1, we have
Gz, T™z,T™z) < r'0,

where m = 2] or m = 20+ 1 which on taking the limit as m — oo implies that 7"z — z. Similarly, Tz — y
as m — oo. Hence x = y, a contradiction. Thus the result follows. O

Example 2.10. Let X = {0,1,2} be a set. Let G: X x X x X — [0,00) be defined by
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($7 y’ Z) G(x’y7 Z)
(0,0,0), (1,1,1), (2,2,2) 0
(0,1,1), (1,0,1), (1,1,0) 1
(0,0,1), (0,1,0), (1,0,0) 2
(1,2,2), (2,1,2), (2,2,1) 2
(0,0,2), (0,2,0), (2,0,0) 3
(0,2,2), (2,0,2), (2,2,0) 3
(1,1,2), (1,2,1), (2,1,1) 4
(0,1,2), (0,2,1), (1,0,2) 4
(1,2,0), (2,0,1), (2,1,0) 4

It is clear that G is a non-symmetric G-metric as G(0,0,1) # G(0,1,1). Let T': X — X be defined by

Now,

x 0 1 2
Tx) 1 0 2
(Tz,Ty,Tz) GTx,Ty,Tz) (T?z,T%y,T?2) G(T?z,T?y, T?z)

(1,1,1), (0,0,0), (2,2,2) 0 0,0,0), (1,1,1), (2,2,2) 0
(1,0,0), (0,1,0), (0,0,1) 2 0,1,1), (1,0,1), (1,1,0) 1
(1,1,0), (1,0,1), (0,1,1) 1 0,0,1), (0,1,0), (1,0,0) 2
(0,2,2), (2,0,2), (2.2,0) 3 1,2,2), (2.1,2), (2,2,1) P
(1,1,2), (1,2,1), (2,1,1) 4 0,0,2), (0,2,0), (2,0,0) 3
(1,2,2), (2,1,2), (2,2,1) p 0,2.2), (2,0,2), (2,2,0) 3
(0,0,2), (0,2,0), (2,0,0) 3 1,1,2), (1,2,1), (2,1,1) 4
(1,0,2), (1,2,0), (0,1,2) 4 0,1,2), (0,2,1), (1,0,2) 4
(0,2,1), (2,1,0), (2,0,1) 4 1,2,0), (2,0,1), (2,1,0) 4

Define a,n: X x X x X — [0,00) by

a(r,y,z) =4+ xyz and n(x,y,z) = zyz.

For x # y # z we consider the following cases to check that T' is convex contraction.

Case-I: Forx =0,y =1 and z = 2.

G(T?%x, Ty, T?z) = 4 < a(4) + b(4)

Case-II: Forz =0,y =2and z = 1.

G(T?z, T?y,T?2) =4 <

Case-III: Forz =1,y =0 and z = 2.

aG(0,1,2) + bG(0,1,2)

aG(Tx, Ty, Tz) + bG(z,y,z).

a(4) + b(4)
aG(0,2,1) + bG(0,2,1)

=aG(Tx,Ty,Tz) + bG(x,y, z).

G(T?%x, T?y,T?z) = 4 < a(4) + b(4)

aG(1,0,2) + bG(1,0,2)

=aG(Tx,Ty,Tz) + bG(x,y, z).
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Case-1V: Forx =1,y=2and z = 0.

G(T?x,T?y, T?2) = 4 < a(4) + b(4)
= aG(1,2,0) + bG(1,2,0)
=aG(Tx, Ty, Tz) + bG(x,y, 2).

Case-V: Forz =2, y=0and z = 1.

G(T?%x, T?y,T?z2) = 4 < a(4) + b(4)
=aG(2,0,1) +bG(2,0,1)
=aG(Tx,Ty,Tz) + bG(x,y, z).

Case-VI: For x =2,y =1 and z = 0.

G(T?%x, Ty, T?z) = 4 < a(4) + b(4)
= aG(2,1,0) + bG(2,1,0)
=aG(Tx,Ty,Tz) + bG(x,y, z).

Thus, in all cases T' is convex contraction with a,b < % with a # b. Hence all the conditions of Theorem
2.8 are satisfied and 2 is a fixed point of T

Remark 2.11. A G-metric naturally induces a metric dg given by dg(z,y) = G(z,y,y) + G(z,x,y). If
the G-metric is not symmetric, the inequalities do not reduce to any metric inequality with the
metric dg. Hence our results do not reduce to fixed point problems in the corresponding metric space
(X,dg). For instance, if we take z = 0 and y = 2 in above example, we obtain dg(T?z,T?%y) = 2,
da(Tz, Ty) =1, dg(x,y) = 2, so there does not exist any a,b > 0 with a + b < 1 such that dg(T?%z, T?y) <
adg(Tx,Ty) + bdg(x,y) holds. So, we can not apply the result of [I4] to obtain fixed point of 7T

Theorem 2.12. Let X be a complete G-metric space, T a convexr contraction of order 2 a-admissible with
respect to n and oz, Tx,Tx) > n(x, Tz, Tx) for allx € X. Then T has an approzimate fized point.

Proof. Let xq be a given point in X. The following arguments similar to those in the proof of Theorem [2.8| we
obtain that a(T g, T 2o, T 2xq) > n(T"x, T ag, T 220), for alln € N. We set r = aj +as+b1 +c1,
B=1—by—cy and ¥ = G(T%xg, T?x¢, Txg) + G(Tx0, Txo,z0). From ([2.2)) with 2 = g and y = z = Tz
we have
G(T2x0, T3:130, T3x0) < alG(azo, Txg, TIL’()) + CLQG(TIL’(), T2x0, T2:L'o) + blG(Txo, T2:E0, T2J}0)
+ bQG(TQ.%'o, T3.’L‘0, TS.%'()) + ch(Txg, T25L‘0, T2.’130) + CQG(TQ.fo, T3{L‘0, Tgxo),

which implies that

,BG(TQCCO, TgfL’(), TSxo) = (1 - bg - CQ)G(TZ.TO, T?’xo, TS.T())
< alG(.%'(), Txg, T:Bo) + (a2 + by + Cl)G(Tl‘O, TQI'(), T2$0)
< rd.

Thus G(T?zg, T3z0, T320) < (%) Y. Again from (2.2) with z = Txg and y = 2z = T?%x, we have

G(T3:c0, T4x0, T4x0) < alG(TCCQ, T2x0, TQ.TQ) + CL2G(T2$0, TBx(), Tsxo) + blG(T2aZ0, T3l‘0, Tgxo)
+ bQG(TBZCO, T4HJQ, T4:L'0) + ClG(Tzl'o, Tg.%'o, TSxo) + CQG(Tng, T4$0, T4x0),
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5G(T3"I;07 T4[E0, T4$0) < T797

G(T3xg, T o, Thz0) < <;> 9,

which implies that

ﬂG(T?’xO, T4$0, T4$0) = (1 — bQ — CQ)G(T?’m(), T4$0, T4I‘0)
< a1G(Txo, T?xo, T?x0) + (ag + by + ¢1)G(T?xg, T30, T3x0)
< rd.

Hence G(T3xq, T*xo, T*xg) < <%) . Similarly, we have
N\ 2
G(T4$O,T5$O,TS$O) < <ﬁ) 7-97
o\ 2
G(TPz0, TCzo, TOx0) < (ﬁ) 9.

l
By continuing this way, we can obtain that G(T™zg, T xg, T™ zg) < % ¥, where m = 2[ or
m = 2l + 1. Hence G(T™xq, T 2o, T 20) — 0 as m — oo, which by Lemma implies that T" has an
approximate fixed point. O

Theorem 2.13. Let X be a complete G-metric space, T a continuous convex contraction of order 2 and «-
admissible mapping with respect to n. Suppose that there exists a point xo in X such that oz, Txo, Txo) >
n(xo, Txo,Txo). Then T has a fixred point. Moreover, T has a unique fized point provided that X has
H*—property.

Proof. Define a sequence {z,} in X by x,, = T"xq, for alln € N. Weset r = a;+as+b1+c1, 5 =1-ba—co
and ¥ = G(T?xq, T?xg, Txo) + G(Txzo, Txo, z0). From (2.2) with = ¢ and y = z = Tz, we have
G(TQJJU, Tgl'o, T31,‘0) < alG(IL‘o, Txg, Tl’o) + azG(Tl'o, T2IL‘0, T2£L'0) + blG(Tl‘o, T2£L'0, T2IL‘0)
+ bQG(T2JJ0, T3J,‘0, Tgl’o) + ClG(T:L‘(), TQQZ(), T21‘0) + CQG(T2£UO, T3x0, Tsxo)
<rd,

which implies that
ﬂG(T2xg,T3xo,T3xg) =(1—bg— cz)G(TQxO,T3$0,T3x0)

< alG(xO,Ta:o,Tafo) + (ag + b + cl)G(Tmo,Ton,szo)
<rd.

Thus, G(T?zq, T3xo, T3x0) < (%) 9.

Again from (2.2) with z = Tzg and y = z = T2z, we have
G(T3:E0, T41'0, T4ZE0) < alG(T:EQ, TQI'(), T22E0) + azG(T2l'0, T31,‘0, Tgl’o) + blG(TQZ'o, T3IL‘0, TBSL'())
+ bQG(Tgl'O, T4.CUQ, T4I0) + ch(TQxO, T3l‘0, Tgx()) + C2G(T3l'(), T4$0, T4x0),

which implies that
,BG(TBJZ(), T4:IZ(), T4x0) = (1 - bg - CQ)G(Tgafo, T4.CC(), T4£L’0)

< alG(T.CL‘(), TQZ'(), T2.2L‘0) + (a2 + b + Cl)G(T2$0, Tg.%'(], Tgl'o)
<rd.



M. Abbas, A. Hussain, B. Popovi¢, S. Radenovié, J. Nonlinear Sci. Appl. 9 (2016), 6077-6095 6086

Hence G(T3xq, T*xo, T*xg) < <%) 0.
Similarly, we have

2
G(T*xg, TOx0, TOx0) < (;) v,
o\ 2
G(T5$0,T61‘0,T61‘0) S (B) 4.
By continuing this way, we obtain that G(T™xq, T™zg, T 2q) < (%) 9, where m = 2l or m = 2[+1.

Now for m = 2l, n, k = 2p with p > 2,1 > 1 and m < n, k, we have

G(xma Tn, xk) < G(.Z'm, Tm+1, xm-‘rl) + G(xm—‘rla Tm+2, $m+2) + G($m+2, Tm+3, 1'm+3)
4+ 4 G(mn_% Tn—1, [I}nfl) + G(xn—lu L, xk)
= G(xQZa L2141, $2[+1) + G($2l+17 L2142 x2[+2)

+ G (22142, Tor43, Tag3) + - + G(wop—2, Top—1, Top—1) + G(w2p—1, T2p, T2p)
r l r l r I+1 ” p—1
<(r) v+ () 9+ () It () 9
(5) p B B
l I+1 1+2 p—1
r r T T
o 19+2(> 942 () I t2 () 9
<ﬁ> B B B
l
2(3)
< —Z 9.
- (5)
Similarly, for m =2l and n,k =2p+ 1 withp> 1,1 >1 and m < n, k we get
l
2(5)
) < ——~—9.
1= (3)

If m =20+ 1, then for n = 2p with p > 2, [ > 1 and m < n we have

G(LE‘m, Tn, Tk

G(Tm, Tn, ) < G(Tims Tmt1, Tma1) + G(@ma1, Tmy2, Tmr2) + G(Tmt2, Tmas, Tmy3)
+ -+ G(rp—2,Tn-1,Tn—1) + G(Tp—1,Tn,xk)
= G(za141, Tart2, Tar+2) + G(Tart2, Tar4s, Tar+3)
+ G (143, Tou44, Tauva) + -+ + G(Top—2, Tap—1, T2p—1) + G(T2p—1, Tap, T2p)

<(5) 0+ () o (5) o (5)
& <> (>’“m<;>”%+---+2<;>%

Similarly, for m =2l 4+ 1 and n,k =2p+ 1 with p > 1,1 > 1 and m < n, k, we have
200
0.
T
5)

G(.’Em, Tn, l'k-

0
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Hence, for all m,n,k € N with m < n, k we obtain that

1
2(5)
)< Ly,
s
1= (3)
By taking the limit as | — oo in the above inequality we get {G(zm,, Tn, k) } converges to 0. Since (X, G)
is a complete G-metric space, we have x,, — z and n — oo for some z € X. By continuity of T, Tz = z. By

following arguments similar to those in proof of Theorem we obtain the uniqueness of fixed point of T
provided that X has H*-property. O

3. a-n-weakly Zamfirescu mappings

In this section we obtain fixed point results of a-n-weakly Zamfirescu mapping in the framework of
G-metric spaces.

Definition 3.1. Let T be a self-mapping on a G-metric space X and a,b € RT with 0 < a < b. If there
exists a mapping v : X x X x X — [0,1] with 6(a,b) := sup{vy(z,y,2) : a < G(x,y, z) < b} < 1 such that
for any x,y,z € X

n(z, Tz, Tx) < a(z,y, 2),

implies that

Gz, Tz, Tz) + Gy, Ty, Ty) + G(2,Tz,T%)
2 9
Gz, Ty, Tz) + G(y,Tz,Tz) + G(z, Tz, Ty) }

(T2, Ty, T2) < ~(2,1,2) max{G<x,y, 2,

2
then T is a-n-weakly Zamfirescu mapping.

Theorem 3.2. Let X be a G-metric space and T a self-mapping on X. If T is an a-n-weakly Zamfirescu
mapping and a-admissible with respect to n with oz, Tz, Tx) > n(z, Tz, Tx) for any x € X, then T has an
approzimate fized point.

Proof. If G is symmetric, then we have
dG($ay) = 2G($,y,y), (31)

and (3.1) becomes

d T d Ty) d T d T

2 ’ 2

by taking v : X x X — [0, 1] instead of v : X x X x X — [0,1]. The result then follows from Theorem 20
n [14]. Suppose that G is non-symmetric. We proceed as follows. Let z¢ be a given point in X. We define
a sequence {x,} by z, = T"z. By following arguments similar to those in the proof of Theorem we
obtain that a(T"xq, T g, T ag) > n(T"x0, T o, T 2g) for all n € N. Then we have

G(xp, Tpt1, Tnt1) = G(TT”_lazo, TT"xo, TT"x0)
< (T Lag, T2, TMx0) max{G(T”_lxo, T"xo, T"xg),

G(T" ag, TT" Yoo, TT" 'z0) + 2G(T" w0, TT™x0, TT 70)
2 b
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G(T" Yoo, TT"xo, TT"x0) + 2G (T 20, TT™ ‘20, TT" '10)

2

G(xp—1,%n, ) + 2G(Tn, Tng1, Tni1)
2 )

- ’Y(Cfn—l, Ty .’En) maX{G(l‘nla T,y xn)7

G(xnfla Tn, xn) + QG(xna Tn, .fl?n) }

2

G(fﬁn—lv Tn, xn) + 2G(mna Tn+1, xn—i—l) }

S 7(3777,—17:[’.7’17*%71) maX{G(‘an—17$n7mn)7 2

If
G(ajn*ly Tn, xn) + 2G($ny Tn+1, -Tn+1)

2

m&X{G(IBn_l,wn,xn), } = G(xn—lvxnvxn)v

then we have
G(l’n, Tn+1, xn-{—l) < 'Y(xn—l’ Ln, xn)G(xn—l, Ln, xn)

If
G(@n—1, Zn, 2G (2, Tn 11,
max{G(xn_l,an,an), (Tn—1,Zn xn)+2 (Tn, Tna1 l‘n+1)}
_ G(@n—1,%n, Tn) + 2G(&n, Tp41, Tnt1)
2 )
then o o |
Tn—1,Tn,Ty) + Ty Trt1s Tl
G($n>$n+17$n+1) < ')’(xnfbwmﬂ?n) - S 9 n Yt n+ :| )
gives

(2 - 2')’) (xn—la T, wn)>G(xm Tn+1, mn—i—l) < ’Y(mn—la Ty $n>G(xn—1a Ty mn):

W(xnfhx”’xn)
G ) ’ =
(xn Tn+1 $n+1) - 9_ 27(xn717 Tn, xn)

< ’Y(xn—lv Ty $n>G(xn—1a LTy xn):

G(xn—lv Tn, xn)

which implies that
G(.Tn, Tn+1, xn-{—l) S ’Y(wn—ly Tn,y xn)G($n—17 Tn,y .an)

Hence {G(xp—_1,n,xy)} is a non-increasing sequence which converges to a real number

5= fﬁfl G(Tn—1,Tn, Tn).

Assume that s > 0. Since 0 < s < G(Tp, Tpt1, Tnt1) < -+ < G(xo,x1,21) and Y(Tp—1, Tpn, Tn) < 0 for
all n € N U{0}, where 0 = 0(s, G(x¢, x1,21)), we obtain that

G(xm Tn+1, xn+1) < OG(xnfla Tn, xn)v

and
5 < G(Tp-1,2n,rn) < 0"G(xg, 21, 21).

This implies s = 0 (on taking the limit as n — o0), a contradiction. Therefore,

lim G(zy_1,2n,2,) = lim G(T" txg, T2, T"x0) = 0.
n—oo n—oo

Now,

G(T":UO,T”+1:1:0,T”+2$0) = G(Tp, Tnt1, Tni2)
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< G(xm Tpi1, Tng1) + G(Tntt1, Tnyl, 33n+2)

< G(Tn, Tt 1, Tnt1) + G(@nt1, Tnt2, Tnt2)
+ G(Tnt2, Tnt1, Tnt2)

= G(Zn, Tnt1, Tnt1) + 2G (41, Tnt2, Tnt2),

gives G(T"xo, T" wg, T 220) — 0, as n — oo. Hence, by Lemma T has an approximate fixed
point. O

Theorem 3.3. Let X be a complete G-metric space and T a continuous, a-n-weakly Zamfirescu and «-
admissible mapping with respect to n. If there exists xog € X such that a(xo, Txo) > n(xo, Txo), then T has
a fized point.

Proof. Let zp € X be such that a(xzo, Tz, Tzo) > n(xo, Txg, Txo). Define a sequence {z,} as in Theorem
2.8 By following arguments similar to those in proof of Theorem [3.2] we obtain that

G(l‘n, Tn+1, $n+1) < V(ZEnfla Tn, xn)G("L‘nfla Tn, xn)

for all n € N U{0}. Also, we deduce that {z,} is a Cauchy sequence. Since X is a complete G-metric space,
there exists z € X such that x, — z. The result follows by the continuity of T. O

Example 3.4. Let X = [0,00) and G(z,y,2) = max{|z — y|, |y — 2|, |z — x|} be a G-metric on X. Define
T:X — X and a,n: X x X x X — [0,00) by

x

g, lfﬂf € [0, 2],
Bz? + 2" (4 —-2) -1 .

T — 50 pors g if x € (2,4],
320 — ) 100 .
—— + —(x—4 f 4.20
G2l 16 @Y if z € (4,20,
5z, if z € [20, 00),

and
15, if z,y,2z € [0, 1],
Oé(fL‘,Z/, Z) =91 . n(xvyaz) =L
3 otherwise,

Let v: X x X x X — [0, 1] be a given function. If a(x,y,z) > 1 then z,y, z € [0,1]. Therefore,

1
G(Tz,Ty,Ty) = 5G(w, Y,Y)

1

S g ma‘X{G(‘T? y7 y)7

G(z,Tx,Tz) +2G(y, Ty, Ty) G(z,Ty,Ty)+2G(y,Tx,Tx) }
2 ’ 2 ’

Take vy(z,y,z) = % and so,

1
G(Tz,Ty,Ty) = gG(ﬂf,yw)

2 ’ 2
That is, there exists v: X x X x X — [0, 1] with 6(a,b) := sup{y(z,y,2) : a < G(x,y,2z) < b} < 1 for
all 0 < a < b, such that n(z, Tz, Tz) < a(z,y,y),

Gz, Tz, Tx) +2G(y, Ty, Ty) G(z,Ty,Ty) +2G(y, Tz, Tx) }

< (2.9, 2) max{G(x, v 2), G(z,Tx,Tx) +2G(y, Ty, Ty) G(z,Ty,Ty)+ 2G(y, Tz, Tx) }

G(T0, Ty, Ty) < 2 o) ma{ G, - , '

holds for all z,y € X. Then T is a-n-weakly Zamfirescu mapping. Thus, T has a fixed point by Theorem
3.3l
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4. From a—n—éirié strong almost contraction to Suzuki type contraction

Definition 4.1. Let X be a G-metric space and a,n: X x X x X — [0,00). A mapping T': X — X is called
an a-n-Ciri¢ strong almost contraction, if there exists a constant r € [0, 1) such that for any x,y,z € X,

n(x, Tz, Tz) < a(x,y,z) implies that G(Txz,Ty,Tz) <rM(z,y,z)+ LG(y, Tz, Tx), (4.1)

where L > 0 and

M(z,y,2) = max{G<x, y,2), G, T, Tx), Gy, Ty, Ty), Gz, T, T2)

Gz, Ty, Tz)+ Gy, Tz,Tx) + G(2,Tz, Ty) }
5 .

Theorem 4.2. Let X be a G-metric space and T be a continuous a—n—é’iric’ strong almost contraction on
X. Also suppose that, T is an a-admissible mapping with respect to n. If there exists an xo € X such that
a(zo, Txo) > n(zo, Txo), then T has a fixed point.

Proof. If G is symmetric, then we have
da(z,y) = 2G(z,y,y),

and (4.1) becomes
da(Tz,Ty) < rM(z,y) + Ldg(y, Tz).

The result then follows from Theorem 25 in [I0]. Suppose that G is non-symmetric. Let zop € X be
such that a(zo, Tz, Tzo) > n(xo, Tz, Txo). Define a sequence {z,} by =, = T"z¢g = Txp_1. As T is an
a-admissible mapping with respect to 1, so we have a(xg,x1,21) = a(x, Tzo, Txo) > n(xo, Tz, Tx0) =
n(zo, x1,21). By continuing this process, we have

77(1'an7 Tﬂjnfla Txnfl) = n(l‘nflv Tn, xn) < a(-fnfly Tn, xn)
for all n € N. From given assumption we have

G(xn, Tpi1, Tny1) = G(Trp—1, Txy, Txy)
< TM(l'nfly Tn, $n) + LG(-Tna Trp—1, Txnfl)

- TM(LUnf]_, x’na $n)7

where

M(zp—1,Zn,zy) = max{G(xn_l, Ty Tn)y G(Tn—1, Txn_1,TTn_1),G(xn, TTpn, Txy),

G(tn—1,Txpn, Txy) + G(xn, Txn, Tan_1) + G(xn, Txn_1,Txy) }
2

= maX{G($n—1v T, x’n)v G(xn—la T, xn)u G(xnu Tn+1, xn-i—l)a

G(Tﬂ’jn, Tzp, Tﬂjn) + G(l’n, Tn+1, xn) + G(l'nv T, xn—i—l) }

2

- maX{G(l’nl, T, xn); G(xnv Tn+41, $n+1)7

G(xna Tn+1, xn) + G(xna Tn, xn+1) }
2

= max{G(Tn_1, Tn, Tn), G(Tn, Tn+1, Tnt1, G(Tn, Tn, Tnt1))}-
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Thus,
G(Scn; Tn+1, xn+1) < max {G(ﬂ?n_l, Tn,y xn)7 G(xn’ Tn+1, xn—&-l)y G(Scn; Tn, $n—&-l)} .

If
max {G(Tn—1, Tn, Tn), G(Tn, Tng1, Tni1), G(Tn, Tn, Tng1)} = G(Tn, Tngt1, Tni1),

for some n, then
G(ﬂjna Tn+1, xn—i—l) < TG(SUn, Tn+1, xn—H) < G(In, Tn+1, fEn-l—l)’

gives a contradiction. Similarly,
max {G(Tn-1,Tn, Tn), G(Tn, Tnt1, Tnt1), G(Xn, Tny Tns1)} = G(Tn, T, Trt1),
leads to a contradiction. Hence,
G(xn, Ty, Tny1) < 1G(Tp—1, Ty, Tp),
which further implies that
G(xn, Tpi1, Tny1) < 1G(Tp—1, 20, 2n) < -+ < r"G(z0, 21, 71),
for all n € N. Now for m <n

G(xm’ Ln, xn) < G(l'mv Tm+1, 513m+1) + G($m+17 Tm+2, xm—&-Z) + -+ G(CCn_l, Tn, xn)
< "Gz, x1, 1) + "G (20, 21, 1) 4 -+ T G (20, 21, 21)
="+ L R T"_l)G(xo,xl,xl)

m

r

<
—1-r

G(an X1, .%'1).

By taking the limit as m,n — oo, we get that {x,} is a Cauchy sequence. By completeness of X, there
exists z € X such that x, — z, as n — oco. The result follows by the continuity of T'. O

Theorem 4.3. Let X be a G-metric space, a,n : X x X x X — [0,00), T an a-admissible with respect
to n and a-n-Ciri¢ strong almost contraction on X . If there exists an o € X such that a(zg, Txo, Txo) >
n(xo, Txo, Txo) and for any sequence {xy,} in X such that

T, Tnt1, Tnt1) = N(Tn, Tnt1, Tntl),
with x,, — * as n — oo, then either
(T, T, T?,) < (T, x,x), or n(Tw,, T3z, T3x,) < a(T?r,, z,z),
holds for all n € N. Then T has a fixed point.

Proof. Let xy be a given point in X such that a(xg, Txo, Txo) > n(xo, Txo, Txo). Define a sequence {x,,}
by z, = T"x¢g = Txp—1. As in proof of Theorem [3.3] we obtain that a(zy, Tnt+1, Tnt1) = N Ty Tntis Tntl)
for all n € N. Also, there exists z € X such that, z,, — z as n — oco. If G(z,T2,Tz) # 0, then

U(Txn—laszn—laszn—l) S Oé(T%n_l,Z,Z), or U(TZ!I?n—laTgiUn—l,Tan—l) S a(T2(L’n_1,Z,Z),
holds for all n € N. Thus
n(xanxn7Txn) < CV(II}n,Z,Z), or U(Tﬂcn,TH?nH,Tan) < Oz({En_H,Z,Z),

holds for all n € N. Suppose that n(zy,, Tx,, Tx,) < a(zy, 2, z) holds for all n € N. By given assumption
we have
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G(xny1,T2,T2) = G(Txp, Tz, Tz)
<rM(xp,z,2)+ LG(z, Txn, Txy) (4.2)
=rM(xn, 2,2) + LG(2, Tnt1, Tnt1),

where

M(xp,z,2) = max{G(:L‘n, z,2),G(xp, Tey, Txy),G(2,T2,Tz),

G(xn, T2, T2)+ G(2,Tz,Txy,) + G(2,Txy, Tz) }
2

= maX{G(aﬁn, 2,2), G(Tp, Tnt1, Tnt1), G(2,T2,Tz),

G(xn, T2, T2)+ G(2,Tz,xn41) + G(2, Tpnt1,T2) }
5 )

By using (4.3)) in (4.2) and taking the limit as n — oo, we have
G(2,T2z,Tz) <rG(2,T2,Tz) < G(2,Tz,Tz),

a contradiction. Hence G(z,Tz,Tz) = 0. By following arguments similar to those given above, we obtain
that Tz = z, if n(xps1, Toni1, Txnt1) < @(xpy1, 2, 2) holds for all n € N. O

Example 4.4. Let X = [0,400) and G(x,y,2) = max{|x — y|,|y — z|,|z — x|}. Define T': X — X and
a,n: X x X xX —[0,00) by

2

.
%3 if z € [0,1],
- 3422041
Tz = M, if z € (1,2,
2 +1
3z, if z € [2,+00),
and )
5) lf €r,Y,z € [07 1]5 ]_
a(ﬂs,y,z) = 1 77(%.%2) = Z
L 3’ otherwise,

Let a(z,y,2) > n(z,y, 2), then x,y, z € [0,1]. Also, Tw € [0, 1] for all w € [0,1]. Then o(Tz,Ty,Tz) >
n(Tx, Ty, Tz). This shows T is a-admissible mapping with respect to 7. Let {z,,} be a sequence in X such
that ¢, — = as n — oo and that a(zp, Tni1, Tni1) > (T, Tni1, Tni1). Then Tay,, Tz, T3z, € [0,1] for
all n € N. That is,

2 2
N(Txn, T xy, T xy) < a(Trp,x, ),

and
77(T2mn, T3xn, T3xn) < oz(Tan, x,x)

hold for all n € N. Clearly, «(0,70,70) > 7n(0,70,70). Let o(z,y,2) > n(x,Tx,Tz). Now, if x ¢ [0, 1],
then, % > i which is not possible. So, z,y, z € [0, 1]. Therefore,

1
G(T.%',Ty,TZ) = Zmax{’xZ - y2‘7 ‘y2 - Z2|7 ’22 - .%'2‘}

1
= qmax{le —yllz +yl. [y — zlly + 2|, |2 — 2l + 2}

1
< §max{|x - y|7 |y - Z|7 |Z - $|}

1
S §M(‘T7 Y, Z) + LG(y7 TZ> TI‘)
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Therefore, T is an a—n—Cirié strong almost contraction. Hence all the conditions for Theorem are
satisfied. Hence T has a fixed point.

As an application of the above result, we obtain the following Suzuki type fixed point theorem in the
setup of G-metric spaces.

Theorem 4.5. Let X be a complete G-metric space and T a self-mapping on X. If there exists r € [0,1)
such that for any x,y in X

1
147

Gz, Tz, Tz) < G(z,y,y) implies that G(Tz,Ty,Ty) <rM(x,y,y)+ LG(y,Tx,Tx), (4.4)

where

Ty, T Ty, T Tz, T
M(x,y,y):max{G(a;,y,y),G(x,Tx,Tx),G(y,Ty,Ty),G(x’ y, Ty) + G(y, 2@/, z) + Gy, Tz, y)}j

then T has a fixed point.

Proof. Define a,n: X x X x X — [0,00) by

a(z,y,y) = G(z,y,y) and n(z,y,y) = A\r)G(z,y,y),

where 0 < r < 1 and A(r) = %H, As for any z,y € X, A(r)G(z,y,y) < G(x,y,y) so we have n(z,y,y) <
a(z,y,y). Thus, conditions (i) and (ii) of Theorem hold. Let {z,} be a sequence in X with z,, — =
as n — oo. If G(Txy, T?xy,, T?x,) = 0 for some n. Then T2z, = Tx, implies that Tz, is a fixed point
of T and the result follows. Suppose that T?z, # Tx, for all n € N. As )G (Txyn, Ty, T?x,) <
G(Txy, T?x,, T?x,) for all n € N, so from ([4.4) we get,
G(T?xn, T3, T3x,) < rM(Txy, T, T%x,) + LG(T%x,, T2, T,
= rM(Tz,, T?x,, T?x,), (4.5)

where,

M(Txy, Tz, T2xn) = max{G(Txn, Tz, T2:):n), G(Txy, Tz, T2xn), G(Tan, T3z, T3:1:n),

G(Txn, T3xy, T32,) + 2G(T?2y, T2y, T?2y,) }
2

< max{G(Txn, T2, T%x,), G(T?2y, T32,, T32,),

G(Txn, T?wy, T?xy,) + G(T?2y, T3, T3x,)
2
= max{G(Tx,, T?z,, T?x,), G(T?%x,, T3z, T?z,)}.

If
max{G(Tx, T?x,, T2xn), G(Tan, T3x,. T3xn)} = G(Tan, T3z, T33:n),

for some n, then (4.5) becomes
G(T2$n,T31:n,T3xn) < T‘G(T2:L‘n,T3JJn,T3I'n),

a contradiction.
Hence
G(T2:Jcn,T3xn,T3xn) < rG(Txn,szn,Tan). (4.6)
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If there exists ng € N such that
T g, T Ty, T?20g) > (T, ), and (T2, T3Tny, T30 ) > (T 2py, z, ),

then we have
A(T)G(T:EHO,TQ:I:”O,TQL‘?LO) > G(Tzp,y,z,x),

and
MNr)G(T?xpy, T3 2y, T30y) > G(T? 20y, T2 0y, T0).

Thus from (4.6)) we obtain that

G(Txng, T 0y, T?ny) < G(Txpg, x, 1) + G(x, T2y, T220,)
< ANP)VG(T? %0y, T? g, Ty ) + M) G (T2 20y, T3 20y, T30, )
<N G(Txng, T 0y, Tng) + A G(T g, T Ty, T 20)
=X +1r)G(Txpny, T* Ty, T*Tp,)
= G(Txny, T? g, T?0y),

a contradiction. Hence, either
n(Txn,Tan,Tan) < o(Txp,z,z), or n(Tan,Tan,T?)xn) < a(TQ:Cn,x,ac)

holds for all n € N and the condition (iv) of Theorem holds. Now n(z,Tz,Tx) < a(z,y,y) gives that
ANr)G(z, Tz, Tz) < G(x,y,y). Thus from (4.4) we obtain G(Tz,Ty,Ty) < rM(z,y,y) + LG(y, Tz, Tzx).
Hence all the conditions of Theorem [4.3] are satisfied and the result follows. O
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