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Abstract

The aim of this paper is to present fixed point results of convex contraction, convex contraction of order
2, weakly Zamfirescu and Ćirić strong almost contraction mappings in the framework of G-metric spaces.
Some examples are presented to support the results proved herein. As an application, we derive Suzuki type
fixed point in G-metric spaces. Our results generalize and extend various results in the existing literature.
We also present some examples to illustrate our new theoretical results. c©2016 All rights reserved.
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1. Introduction and preliminaries

Over the past two decades, the development of fixed point theory in metric spaces has attracted a
considerable attention due to numerous applications in areas such as variational inequalities, optimization,
and approximation theory. Mustafa and Sims [25] generalized the concept of a metric in which to every
triplet of points of an abstract set, a real number is assigned. Based on the notion of generalized metric
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Received 2016-03-05
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spaces, Mustafa et al. [22, 24, 26] obtained several fixed point theorems for mappings satisfying different
contractive conditions. On the other hand, Mustafa et al. [18–24, 26] also obtained some interesting fixed
point results for mappings satisfying new different contractive conditions. Chugh et al. [13] obtained some
fixed point results for maps satisfying property P in G-metric spaces. Saadati et al. [30] studied fixed
point of contractive mappings in partially ordered G-metric spaces. Shatanawi [33] obtained fixed points of
Φ-maps in G-metric spaces. For more details, we refer to [1–7, 9, 11, 12, 27–29, 34, 35].

Jleli and Samet [16] (see also, [32]) observed that some fixed point results in the context of a G-metric
space can be deduced by some existing results in the setting of a (quasi-) metric space. In fact, if the
contraction condition of the fixed point theorem on a G-metric space can be reduced to two variables
instead of three variables, then one can construct an equivalent fixed point theorem in the setting of a usual
metric space. More precisely, they noticed that d(x, y) = G(x, y, y) forms a quasi-metric. Therefore, if one
can transform the contraction condition of existence results in a G-metric space in terms such as G(x, y, y),
then the related fixed point results become the known fixed point results in the context of a quasi-metric
space.

On the other hands, Istratescu [15] introduced the notion of a convex contraction mapping. Recently,
Miandaragh et al. [17] proved some fixed point results for generalized convex contractions on complete
metric space.

The aim of this paper is to study the notion of convex contraction, convex contraction of order 2, weakly
Zamfirescu mappings and Ćirić strong almost contraction in the setup of G-metric spaces. We obtain several
fixed point results for such mappings in the setting of generalized metric spaces. As an application, Suzuki
type fixed point result is also derived. Some examples are provided to support the results proved herein.
Our results extend and generalize various existing results in the literature.

Consistent with Mustafa and Sims [25], the following definitions and results will be needed in the sequel.

Definition 1.1. Let X be a nonempty set. A mapping G : X ×X ×X → R+ is said to be a G-metric on
X, if for any x, y, z ∈ X, the following conditions hold:

(a) G(x, y, z) = 0, if x = y = z;

(b) 0 < G(x, y, z), for all x, y ∈ X with x 6= y;

(c) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X, with y 6= z;

(d) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z (symmetry);

(e) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X.

The pair (X,G) is called a G-metric space [25].

Definition 1.2. A sequence {xn} in a G-metric space X is called:

(i) a G-Cauchy sequence if for any ε > 0, there is an n0 ∈ N (the set of natural numbers) such that for
all n,m, l ≥ n0, G(xn, xm, xl) < ε;

(ii) a G-convergent sequence if for any ε > 0, there is an x ∈ X and an n0 ∈ N such that for all n,m ≥ n0,
G(x, xn, xm) < ε.

A G-metric space is said to be G-complete, if every G-Cauchy sequence in X is G-convergent in X. It
is known that a sequence {xn} converges to x ∈ X if and only if G(xm, xn, x)→ 0 as n,m→∞ [25].

Proposition 1.3 ([25]). Let X be a G-metric space. Then following are equivalent:

1. {xn} is G-convergent to x.

2. G(xn, xn, x)→ 0 as n→∞.
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3. G(xn, x, x)→ 0 as n→∞.

4. G(xn, xm, x)→ 0 as n,m→∞.

Definition 1.4. A G-metric on X is said to be symmetric if G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Proposition 1.5. Every G-metric on X will define a metric dG on X given by

dG(x, y) = G(x, y, y) +G(y, x, x), for all x, y ∈ X.

For a symmetric G-metric, we have

dG(x, y) = 2G(x, y, y), for all x, y ∈ X.

However, if G is not symmetric, then the following inequality holds:

3

2
G(x, y, y) ≤ dG(x, y) ≤ 3G(x, y, y), for all x, y ∈ X.

Definition 1.6 ([31]). Let ϕ be the collection of all mappings ψ : [0,∞)→ [0,∞) that satisfy the following
conditions:

•
∞∑
n=1

ψn(t) <∞ for each t > 0, where ψn is the n-th iterate of ψ;

• ψ is nondecreasing.

Definition 1.7 ([8]). Let X be a nonempty set and α: X ×X ×X → [0,∞). A self mapping T on X is
said to be α-admissible, if for any x, y, z ∈ X

α(x, y, z) ≥ 1 implies that α(Tx, Ty, Tz) ≥ 1.

Example 1.8 ([8]). Let X = [0,∞) and T : X → X by

T (x) =

{
2 lnx, if x 6= 0;

e, otherwise.

Define α : X ×X ×X → [0,∞) by

α(x, y, z) =

{
e, x ≥ y ≥ z;
0, x < y < z.

Then the mapping T is α-admissible.

2. Fixed point results for convex contractions

Definition 2.1. Let X be a G-metric space, T a self-map on X and ε > 0 a given number. A point x in X
is called

(a) an ε-fixed point of T , if G(x, Tx, T 2x) < ε;

(b) approximate fixed point of T , if T has an ε-fixed point for all ε > 0.

Definition 2.2. Let X be a G-metric space. A self-mapping T on X is called asymptotic regular if for any
x in X, we have G(Tnx, Tn+1x, Tn+2x)→ 0 as n→∞.

Now, we have the following simple lemma.
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Lemma 2.3. Let X be a G-metric space and T an asymptotic regular map on X. Then T has an approximate
fixed point.

Proof. Let x0 be a given point in X and ε > 0. Since T is an asymptotic regular map on X, we can choose
n0(ε) ∈ N such that

G(Tnx0, T
n+1x0, T

n+2x0) < ε

for all n ≥ n0(ε). That is, G(Tnx0, T (Tnx0), T
2(Tnx0)) < ε for all n ≥ n0(ε). If we put Tn(x0) = y0 then

G(y0, T (y0), T
2(y0)) < ε implies that y0 = Tn(x0) is an ε-fixed point of T in X. As ε > 0 is an arbitrary

number, so T has an approximate fixed point.

Definition 2.4. Let X be a nonempty set and α, η : X ×X ×X → [0,∞) two mappings. A self-mapping
T on X is said to be α-admissible with respect to η if for any x, y, z ∈ X

α(x, y, z) ≥ η(x, y, z) implies that α(Tx, Ty, Tz) ≥ η(Tx, Ty, Tz).

Example 2.5. Let X = [0,∞) and T : X → X by

T (x) =

{
2 lnx, if x 6= 0;

e, otherwise.

Define α, η : X ×X ×X → [0,∞) by

α(x, y, z) =

{
e, x ≥ y ≥ z;
2, x < y < z,

and η(x, y, z) = 1. Then the mapping T is α-admissible with respect to η.

Definition 2.6. Let X be a nonempty set and α, η : X ×X ×X → [0,∞) two mappings. A self-mapping
T on X is said to be convex contraction, if for any x, y, z in X

η(x, Tx, Ty) ≤ α(x, y, z) implies that G(T 2x, T 2y, T 2z, ) ≤ aG(Tx, Ty, Tz) + bG(x, y, z), (2.1)

where a, b ≥ 0 with a+ b < 1.

Definition 2.7. Let X be a nonempty set and α, η : X ×X ×X → [0,∞) two mappings. A self-mapping
T on X is said to be convex contraction if for any x, y, z in X

η(x, Tx, Ty) ≤ α(x, y, z),

implies that

G(T 2x, T 2y, T 2z, ) ≤ a1G(x, Tx, Tx) + a2G(Tx, T 2x, T 2x) + b1G(y, Ty, Ty)

+ b2G(Ty, T 2y, T 2y) + c1G(z, Tz, T 2z) + c2G(Tz, T 2z, T 2z), (2.2)

where a1, a2, b1, b2, c1, c2 ≥ 0 with a1 + a2 + b1 + b2 + c1 + c2 < 1.

Theorem 2.8. Let X be a complete G-metric space and T an α-admissible convex contraction with respect
to η. If α(x, Tx, Tx) ≥ η(x, Tx, Tx) for any x ∈ X, then T has an approximate fixed point.

Proof. Let x0 be a given point in X. Since α(x0, Tx0, Tx0) ≥ η(x0, Tx0, Tx0) and T is an α-admissible
mapping with respect to η, we have α(Tx0, T

2x0, T
3x0) ≥ η(Tx0, T

2x0, T
3x0). By continuing this way,

we obtain that α(Tnx0, T
n+1x0, T

n+2x0) ≥ η(Tnx0, T
n+1x0, T

n+2x0), for all n ∈ N ∪{0 }. Put ϑ =
G(T 3x0, T

2x0, Tx0)+G(T 2x0, Tx0, x0) and r = a+b. Obviously, G(T 3x0, T
2x0, Tx0), G(T 2x0, Tx0, x0) ≤ ϑ.

By using x = x0, y = Tx0 and z = T 2x0 in (2.1), we have

G(T 2x0, T
3x0, T

4x0, ) ≤ aG(Tx0, T
2x0, T

3x0) + bG(x0, Tx0, T
2x0) ≤ rϑ.
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Similarly, we have

G(T 3x0, T
4x0, T

5x0, ) ≤ aG(T 2x0, T
3x0, T

4x0) + bG(Tx0, T
2x0, T

3x0) ≤ r2ϑ.

By continuing this process, we arrive at

G(Tmx0, T
m+1x0, T

m+2x0) ≤ rlϑ,

where m = 2l or m = 2l + 1. On taking the limit as m → ∞ on both sides of above inequality, we have
G(Tmx0, T

m+1x0, T
m+2x0)→ 0, for any x0 ∈ X. By Lemma 2.3, T has an approximate fixed point.

Let T be a self-mapping on a nonempty set X and α, η : X × X × X → [0,∞). We say that the set
X has H?−property if for any x, y ∈ Fix(T ) with α(x, y, y) < η(x, Tx, Tx), there exists z ∈ X such that
α(x, z, z) ≥ η(x, z, z) and α(y, z, z) ≥ η(y, z, z). Also for any x, y ∈ X, we have η(x, Tx, Tx) ≤ η(x, y, z).

Theorem 2.9. Let X be a complete G-metric space and T a continuous convex contraction and α-admissible
mapping with respect to η. Suppose that there exists a point x0 in X such that

α(x0, Tx0, Tx0) ≥ η(x0, Tx0, Tx0).

Then T has a fixed point. Moreover, T has a unique fixed point provided that X has H?−property.

Proof. Define a sequence {xn} in X by xn = Tnx0, for all n ∈ N. Since T is an α-admissible mapping
with respect to η and α(x0, x1, x1) = α(x0, Tx0, , Tx0) ≥ η(x0, Tx0, Tx0), we have α(Tx0, T

2x0, T
2x0) =

α(x1, x2, x2)≥η(Tx0, T
2x0, T

2x0)=η(x1, x2, x2). By continuing this way, we obtain that α(xn, xn+1, zn+1) ≥
η(xn, xn+1, xn+1) = η(xn, Txn, Txn), for all n ∈ N ∪{0 }. Also, from (2.1), we have

G(xn+2, xn+3, xn+4) = G(Tn+2x0, T
n+3x0, T

n+4x0) = G(T 2(Tnx0), T
2(Tn+1x0), T

2(Tn+2x0))

≤ aG(T (Tnx0), T (Tn+1x0), T (Tn+2x0)) + bG(Tnx0, T
n+1x0, T

n+2x0)

= aG(xn+1, xn+2, xn+3) + bG(xn, xn+1, xn+2).

We set ϑ = G(x3, x2, x1) +G(x2, x1, x0) and r = a+ b. Then

G(xm, xm+1, xm+2) ≤ rlϑ,

where m = 2l or m = 2l + 1. Suppose that m = 2l. Then for n, k = 2p with p > 2, l ≥ 1 and m < n, k we
have

G(xm, xn, xk) ≤ G(xm, xm+1, xm+1) +G(xm+1, xm+2, xm+2) +G(xm+2, xm+3, xm+3)

+ · · ·+G(xn−2, xn−1, xn−l) +G(xn−1, xn, xk)

= G(x2l, x2l+1, x2l+1) +G(x2l+1, x2l+2, x2l+2)

+G(x2l+2, x2l+3, x2l+3) + · · ·+G(x2p−2, x2p−1, x2p−l) +G(x2p−1, x2p, x2p)

≤ rlϑ+ rlϑ+ rl+1ϑ+ · · ·+ rp−1ϑ

= 2rlϑ+ 2rl+1ϑ+ 2rl+2ϑ+ · · ·+ 2rp−1ϑ

≤ 2rl

1− r
ϑ.

Similarly, for n, k = 2p+ 1 with p ≥ 1, l ≥ 1 and m < n, k we have

G(xm, xn, xk) ≤
2rl

1− r
ϑ.
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Now, assume that m = 2l + 1. Then for n = 2p with p ≥ 2, l ≥ 1 and m < n, we have

G(xm, xn, xk) ≤ G(xm, xm+1, xm+1) +G(xm+1, xm+2, xm+2) +G(xm+2, xm+3, xm+3)

+ · · ·+G(xn−2, xn−1, xn−1) +G(xn−1, xn, xk)

= G(x2l+1, x2l+2, x2l+2) +G(x2l+2, x2l+3, x2l+3)

+G(x2l+3, x2l+4, x2l+4) + · · ·+G(x2p−2, x2p−1, x2p−l) +G(x2p−1, x2p, x2p)

≤ rlϑ+ rl+1ϑ+ rl+1ϑ+ · · ·+ rpϑ

≤ 2rlϑ+ 2rl+1ϑ+ 2rl+2ϑ+ · · ·+ 2rpϑ

≤ 2rl

1− r
ϑ.

Similarly, for n, k = 2p+ 1 with p ≥ 1, l ≥ 1 and m < n, k we obtain that

G(xm, xn, xk) ≤
2rl

1− r
ϑ.

Hence, for all m,n, k ∈ N with m < n, k, we have

G(xm, xn, xk) ≤
2rl

1− r
ϑ.

On taking the limit as l→∞ on both sides of above inequality, we have G(xm, xn, xk)→ 0 which implies
that {xn} is a Cauchy sequence. By completeness of X, there exists z ∈ X such that xn → z and n → ∞
and hence Tz = z as T is a continuous mapping.

Let x, y ∈ Fix(T ) where x 6= y. To prove the uniqueness, we consider the following cases.

(i) If α(x, y, y) ≥ η(x, Tx, Tx).

As T is a convex contraction, so we have

G(x, y, y) = G(T 2x, T 2y, T 2y) ≤ aG(Tx, Ty, Ty) + bG(x, y, y)

= aG(x, y, y) + bG(x, y, y)

= (a+ b)G(x, y, y)

< G(x, y, y),

a contraction.

(ii) If α(x, y, y) < η(x, Tx, Tx).

Since X has H?−property, there exists z ∈ X such that α(x, z) ≥ η(x, z) and α(y, z, z) ≥ η(y, z, z). Also, T
is an α-admissible mapping with respect to η, we have α(x, Tnz, Tnz) ≥ η(x, Tnz, Tnz) ≥ η(x, Tx, Tx) and
α(y, Tnz, Tnz) ≥ η(y, Tnz, Tnz) ≥ η(y, Ty, Ty). If α(x, Tnz, Tnz) ≥ η(x, Tx, Tx), then we have

G(x, Tn+2z, Tn+2z) ≤ aG(x, Tn+1z, Tn+1z) + bG(x, Tnz, Tnz).

By taking ϑ = G(x, Tz, Tz) +G(x, z, z) and r = a+ b < 1, we have

G(x, Tmz, Tmz) ≤ rlϑ,

where m = 2l or m = 2l+1 which on taking the limit as m→∞ implies that Tmz → x. Similarly, Tmz → y
as m→∞. Hence x = y, a contradiction. Thus the result follows.

Example 2.10. Let X = {0, 1, 2} be a set. Let G : X ×X ×X → [0,∞) be defined by



M. Abbas, A. Hussain, B. Popović, S. Radenović, J. Nonlinear Sci. Appl. 9 (2016), 6077–6095 6083

(x, y, z) G(x, y, z)

(0,0,0), (1,1,1), (2,2,2) 0
(0,1,1), (1,0,1), (1,1,0) 1
(0,0,1), (0,1,0), (1,0,0) 2
(1,2,2), (2,1,2), (2,2,1) 2
(0,0,2), (0,2,0), (2,0,0) 3
(0,2,2), (2,0,2), (2,2,0) 3
(1,1,2), (1,2,1), (2,1,1) 4
(0,1,2), (0,2,1), (1,0,2) 4
(1,2,0), (2,0,1), (2,1,0) 4

It is clear that G is a non-symmetric G-metric as G(0, 0, 1) 6= G(0, 1, 1). Let T : X → X be defined by

x 0 1 2

T (x) 1 0 2

Now,

(Tx, Ty, Tz) G(Tx, Ty, Tz) (T 2x, T 2y, T 2z) G(T 2x, T 2y, T 2z)

(1,1,1), (0,0,0), (2,2,2) 0 (0,0,0), (1,1,1), (2,2,2) 0
(1,0,0), (0,1,0), (0,0,1) 2 (0,1,1), (1,0,1), (1,1,0) 1
(1,1,0), (1,0,1), (0,1,1) 1 (0,0,1), (0,1,0), (1,0,0) 2
(0,2,2), (2,0,2), (2,2,0) 3 (1,2,2), (2,1,2), (2,2,1) 2
(1,1,2), (1,2,1), (2,1,1) 4 (0,0,2), (0,2,0), (2,0,0) 3
(1,2,2), (2,1,2), (2,2,1) 2 (0,2,2), (2,0,2), (2,2,0) 3
(0,0,2), (0,2,0), (2,0,0) 3 (1,1,2), (1,2,1), (2,1,1) 4
(1,0,2), (1,2,0), (0,1,2) 4 (0,1,2), (0,2,1), (1,0,2) 4
(0,2,1), (2,1,0), (2,0,1) 4 (1,2,0), (2,0,1), (2,1,0) 4

Define α, η : X ×X ×X → [0,∞) by

α(x, y, z) = 4 + xyz and η(x, y, z) = xyz.

For x 6= y 6= z we consider the following cases to check that T is convex contraction.

Case-I: For x = 0, y = 1 and z = 2.

G(T 2x, T 2y, T 2z) = 4 ≤ a(4) + b(4)

= aG(0, 1, 2) + bG(0, 1, 2)

= aG(Tx, Ty, Tz) + bG(x, y, z).

Case-II: For x = 0, y = 2 and z = 1.

G(T 2x, T 2y, T 2z) = 4 ≤ a(4) + b(4)

= aG(0, 2, 1) + bG(0, 2, 1)

= aG(Tx, Ty, Tz) + bG(x, y, z).

Case-III: For x = 1, y = 0 and z = 2.

G(T 2x, T 2y, T 2z) = 4 ≤ a(4) + b(4)

= aG(1, 0, 2) + bG(1, 0, 2)

= aG(Tx, Ty, Tz) + bG(x, y, z).
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Case-IV: For x = 1, y = 2 and z = 0.

G(T 2x, T 2y, T 2z) = 4 ≤ a(4) + b(4)

= aG(1, 2, 0) + bG(1, 2, 0)

= aG(Tx, Ty, Tz) + bG(x, y, z).

Case-V: For x = 2, y = 0 and z = 1.

G(T 2x, T 2y, T 2z) = 4 ≤ a(4) + b(4)

= aG(2, 0, 1) + bG(2, 0, 1)

= aG(Tx, Ty, Tz) + bG(x, y, z).

Case-VI: For x = 2, y = 1 and z = 0.

G(T 2x, T 2y, T 2z) = 4 ≤ a(4) + b(4)

= aG(2, 1, 0) + bG(2, 1, 0)

= aG(Tx, Ty, Tz) + bG(x, y, z).

Thus, in all cases T is convex contraction with a, b ≤ 1
2 with a 6= b. Hence all the conditions of Theorem

2.8 are satisfied and 2 is a fixed point of T .

Remark 2.11. A G-metric naturally induces a metric dG given by dG(x, y) = G(x, y, y) + G(x, x, y). If
the G-metric is not symmetric, the inequalities (2.1) do not reduce to any metric inequality with the
metric dG. Hence our results do not reduce to fixed point problems in the corresponding metric space
(X, dG). For instance, if we take x = 0 and y = 2 in above example, we obtain dG(T 2x, T 2y) = 2,
dG(Tx, Ty) = 1, dG(x, y) = 2, so there does not exist any a, b ≥ 0 with a+ b < 1 such that dG(T 2x, T 2y) ≤
adG(Tx, Ty) + bdG(x, y) holds. So, we can not apply the result of [14] to obtain fixed point of T .

Theorem 2.12. Let X be a complete G-metric space, T a convex contraction of order 2 α-admissible with
respect to η and α(x, Tx, Tx) ≥ η(x, Tx, Tx) for all x ∈ X. Then T has an approximate fixed point.

Proof. Let x0 be a given point in X. The following arguments similar to those in the proof of Theorem 2.8 we
obtain that α(Tnx0, T

n+1x0, T
n+2x0) ≥ η(Tnx0, T

n+1x0, T
n+2x0), for all n ∈ N. We set r = a1+a2+b1+c1,

β = 1 − b2 − c2 and ϑ = G(T 2x0, T
2x0, Tx0) + G(Tx0, Tx0, x0). From (2.2) with x = x0 and y = z = Tx0

we have

G(T 2x0, T
3x0, T

3x0) ≤ a1G(x0, Tx0, Tx0) + a2G(Tx0, T
2x0, T

2x0) + b1G(Tx0, T
2x0, T

2x0)

+ b2G(T 2x0, T
3x0, T

3x0) + c1G(Tx0, T
2x0, T

2x0) + c2G(T 2x0, T
3x0, T

3x0),

which implies that

βG(T 2x0, T
3x0, T

3x0) = (1− b2 − c2)G(T 2x0, T
3x0, T

3x0)

≤ a1G(x0, Tx0, Tx0) + (a2 + b1 + c1)G(Tx0, T
2x0, T

2x0)

≤ rϑ.

Thus G(T 2x0, T
3x0, T

3x0) ≤
(
r
β

)
ϑ. Again from (2.2) with x = Tx0 and y = z = T 2x0, we have

G(T 3x0, T
4x0, T

4x0) ≤ a1G(Tx0, T
2x0, T

2x0) + a2G(T 2x0, T
3x0, T

3x0) + b1G(T 2x0, T
3x0, T

3x0)

+ b2G(T 3x0, T
4x0, T

4x0) + c1G(T 2x0, T
3x0, T

3x0) + c2G(T 3x0, T
4x0, T

4x0),
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βG(T 3x0, T
4x0, T

4x0) ≤ rϑ,

G(T 3x0, T
4x0, T

4x0) ≤
(
r

β

)
ϑ,

which implies that

βG(T 3x0, T
4x0, T

4x0) = (1− b2 − c2)G(T 3x0, T
4x0, T

4x0)

≤ a1G(Tx0, T
2x0, T

2x0) + (a2 + b1 + c1)G(T 2x0, T
3x0, T

3x0)

≤ rϑ.

Hence G(T 3x0, T
4x0, T

4x0) ≤
(
r
β

)
ϑ. Similarly, we have

G(T 4x0, T
5x0, T

5x0) ≤
(
r

β

)2

ϑ,

G(T 5x0, T
6x0, T

6x0) ≤
(
r

β

)2

ϑ.

By continuing this way, we can obtain that G(Tmx0, T
m+1x0, T

m+1x0) ≤
(
r
β

)l
ϑ, where m = 2l or

m = 2l + 1. Hence G(Tmx0, T
m+1x0, T

m+1x0)→ 0 as m→∞, which by Lemma 2.3 implies that T has an
approximate fixed point.

Theorem 2.13. Let X be a complete G-metric space, T a continuous convex contraction of order 2 and α-
admissible mapping with respect to η. Suppose that there exists a point x0 in X such that α(x0, Tx0, Tx0) ≥
η(x0, Tx0, Tx0). Then T has a fixed point. Moreover, T has a unique fixed point provided that X has
H?−property.

Proof. Define a sequence {xn} in X by xn = Tnx0, for all n ∈ N. We set r = a1+a2+b1+c1, β = 1−b2−c2
and ϑ = G(T 2x0, T

2x0, Tx0) +G(Tx0, Tx0, x0). From (2.2) with x = x0 and y = z = Tx0, we have

G(T 2x0, T
3x0, T

3x0) ≤ a1G(x0, Tx0, Tx0) + a2G(Tx0, T
2x0, T

2x0) + b1G(Tx0, T
2x0, T

2x0)

+ b2G(T 2x0, T
3x0, T

3x0) + c1G(Tx0, T
2x0, T

2x0) + c2G(T 2x0, T
3x0, T

3x0)

≤ rϑ,

which implies that

βG(T 2x0, T
3x0, T

3x0) = (1− b2 − c2)G(T 2x0, T
3x0, T

3x0)

≤ a1G(x0, Tx0, Tx0) + (a2 + b1 + c1)G(Tx0, T
2x0, T

2x0)

≤ rϑ.

Thus, G(T 2x0, T
3x0, T

3x0) ≤
(
r
β

)
ϑ.

Again from (2.2) with x = Tx0 and y = z = T 2x0, we have

G(T 3x0, T
4x0, T

4x0) ≤ a1G(Tx0, T
2x0, T

2x0) + a2G(T 2x0, T
3x0, T

3x0) + b1G(T 2x0, T
3x0, T

3x0)

+ b2G(T 3x0, T
4x0, T

4x0) + c1G(T 2x0, T
3x0, T

3x0) + c2G(T 3x0, T
4x0, T

4x0),

which implies that

βG(T 3x0, T
4x0, T

4x0) = (1− b2 − c2)G(T 3x0, T
4x0, T

4x0)

≤ a1G(Tx0, T
2x0, T

2x0) + (a2 + b1 + c1)G(T 2x0, T
3x0, T

3x0)

≤ rϑ.



M. Abbas, A. Hussain, B. Popović, S. Radenović, J. Nonlinear Sci. Appl. 9 (2016), 6077–6095 6086

Hence G(T 3x0, T
4x0, T

4x0) ≤
(
r
β

)
ϑ.

Similarly, we have

G(T 4x0, T
5x0, T

5x0) ≤
(
r

β

)2

ϑ,

G(T 5x0, T
6x0, T

6x0) ≤
(
r

β

)2

ϑ.

By continuing this way, we obtain that G(Tmx0, T
m+1x0, T

m+1x0) ≤
(
r
β

)l
ϑ, where m = 2l or m = 2l+1.

Now for m = 2l, n, k = 2p with p > 2,l ≥ 1 and m < n, k, we have

G(xm, xn, xk) ≤ G(xm, xm+1, xm+1) +G(xm+1, xm+2, xm+2) +G(xm+2, xm+3, xm+3)

+ · · ·+G(xn−2, xn−1, xn−l) +G(xn−1, xn, xk)

= G(x2l, x2l+1, x2l+1) +G(x2l+1, x2l+2, x2l+2)

+G(x2l+2, x2l+3, x2l+3) + · · ·+G(x2p−2, x2p−1, x2p−l) +G(x2p−1, x2p, x2p)

≤
(
r

β

)l
ϑ+

(
r

β

)l
ϑ+

(
r

β

)l+1

ϑ+ · · ·+
(
r

β

)p−1
ϑ

= 2

(
r

β

)l
ϑ+ 2

(
r

β

)l+1

ϑ+ 2

(
r

β

)l+2

ϑ+ · · ·+ 2

(
r

β

)p−1
ϑ

≤
2
(
r
β

)l
1−

(
r
β

)ϑ.
Similarly, for m = 2l and n, k = 2p+ 1 with p ≥ 1, l ≥ 1 and m < n, k we get

G(xm, xn, xk) ≤
2
(
r
β

)l
1−

(
r
β

)ϑ.
If m = 2l + 1, then for n = 2p with p ≥ 2, l ≥ 1 and m < n we have

G(xm, xn, xk) ≤ G(xm, xm+1, xm+1) +G(xm+1, xm+2, xm+2) +G(xm+2, xm+3, xm+3)

+ · · ·+G(xn−2, xn−1, xn−l) +G(xn−1, xn, xk)

= G(x2l+1, x2l+2, x2l+2) +G(x2l+2, x2l+3, x2l+3)

+G(x2l+3, x2l+4, x2l+4) + · · ·+G(x2p−2, x2p−1, x2p−l) +G(x2p−1, x2p, x2p)

≤
(
r

β

)l
ϑ+

(
r

β

)l+1

ϑ+

(
r

β

)l+1

ϑ+ · · ·+
(
r

β

)p
ϑ

≤ 2

(
r

β

)l
ϑ+ 2

(
r

β

)l+1

ϑ+ 2

(
r

β

)l+2

ϑ+ · · ·+ 2

(
r

β

)p
ϑ

≤
2
(
r
β

)l
1−

(
r
β

)ϑ.
Similarly, for m = 2l + 1 and n, k = 2p+ 1 with p ≥ 1, l ≥ 1 and m < n, k, we have

G(xm, xn, xk) ≤
2
(
r
β

)l
1−

(
r
β

)ϑ.
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Hence, for all m,n, k ∈ N with m < n, k we obtain that

G(xm, xn, xk) ≤
2
(
r
β

)l
1−

(
r
β

)ϑ.
By taking the limit as l→∞ in the above inequality we get {G(xm, xn, xk)} converges to 0. Since (X,G)

is a complete G-metric space, we have xn → z and n→∞ for some z ∈ X. By continuity of T , Tz = z. By
following arguments similar to those in proof of Theorem 2.9, we obtain the uniqueness of fixed point of T
provided that X has H?-property.

3. α-η-weakly Zamfirescu mappings

In this section we obtain fixed point results of α-η-weakly Zamfirescu mapping in the framework of
G-metric spaces.

Definition 3.1. Let T be a self-mapping on a G-metric space X and a, b ∈ R+ with 0 < a ≤ b. If there
exists a mapping γ : X ×X ×X → [0, 1] with θ(a, b) := sup{γ(x, y, z) : a ≤ G(x, y, z) ≤ b} < 1 such that
for any x, y, z ∈ X

η(x, Tx, Tx) ≤ α(x, y, z),

implies that

G(Tx, Ty, Tz) ≤ γ(x, y, z) max

{
G(x, y, z),

G(x, Tx, Tx) +G(y, Ty, Ty) +G(z, Tz, Tz)

2
,

G(x, Ty, Tz) +G(y, Tz, Tx) +G(z, Tx, Ty)

2

}
,

then T is α-η-weakly Zamfirescu mapping.

Theorem 3.2. Let X be a G-metric space and T a self-mapping on X. If T is an α-η-weakly Zamfirescu
mapping and α-admissible with respect to η with α(x, Tx, Tx) ≥ η(x, Tx, Tx) for any x ∈ X, then T has an
approximate fixed point.

Proof. If G is symmetric, then we have

dG(x, y) = 2G(x, y, y), (3.1)

and (3.1) becomes

dG(Tx, Ty) ≤ γ(x, y) max

{
dG(x, y),

dG(x, Tx) + dG(y, Ty)

2
,
dG(x, Ty) + dG(y, Tx)

2

}
,

by taking γ : X ×X → [0, 1] instead of γ : X ×X ×X → [0, 1]. The result then follows from Theorem 20
in [14]. Suppose that G is non-symmetric. We proceed as follows. Let x0 be a given point in X. We define
a sequence {xn} by xn = Tnx0. By following arguments similar to those in the proof of Theorem 2.8 we
obtain that α(Tnx0, T

n+1x0, T
n+1x0) ≥ η(Tnx0, T

n+1x0, T
n+1x0) for all n ∈ N. Then we have

G(xn, xn+1, xn+1) = G(TTn−1x0, TT
nx0, TT

nx0)

≤ γ(Tn−1x0, T
nx0, T

nx0) max

{
G(Tn−1x0, T

nx0, T
nx0),

G(Tn−1x0, TT
n−1x0, TT

n−1x0) + 2G(Tnx0, TT
nx0, TT

nx0)

2
,
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G(Tn−1x0, TT
nx0, TT

nx0) + 2G(Tnx0, TT
n−1x0, TT

n−1x0)

2

}
= γ(xn−1, xn, xn) max

{
G(xn−1, xn, xn),

G(xn−1, xn, xn) + 2G(xn, xn+1, xn+1)

2
,

G(xn−1, xn, xn) + 2G(xn, xn, xn)

2

}
≤ γ(xn−1, xn, xn) max

{
G(xn−1, xn, xn),

G(xn−1, xn, xn) + 2G(xn, xn+1, xn+1)

2

}
.

If

max

{
G(xn−1, xn, xn),

G(xn−1, xn, xn) + 2G(xn, xn+1, xn+1)

2

}
= G(xn−1, xn, xn),

then we have
G(xn, xn+1, xn+1) ≤ γ(xn−1, xn, xn)G(xn−1, xn, xn).

If

max

{
G(xn−1, xn+1, xn+1),

G(xn−1, xn, xn) + 2G(xn, xn+1, xn+1)

2

}
=
G(xn−1, xn, xn) + 2G(xn, xn+1, xn+1)

2
,

then

G(xn, xn+1, xn+1) ≤ γ(xn−1, xn, xn)

[
G(xn−1, xn, xn) + 2G(xn, xn+1, xn+1)

2

]
,

gives

(2− 2γ)(xn−1, xn, xn))G(xn, xn+1, xn+1) ≤ γ(xn−1, xn, xn)G(xn−1, xn, xn),

G(xn, xn+1, xn+1) ≤
γ(xn−1, xn, xn)

2− 2γ(xn−1, xn, xn)
G(xn−1, xn, xn)

≤ γ(xn−1, xn, xn)G(xn−1, xn, xn),

which implies that
G(xn, xn+1, xn+1) ≤ γ(xn−1, xn, xn)G(xn−1, xn, xn).

Hence {G(xn−1, xn, xn)} is a non-increasing sequence which converges to a real number

s = inf
n≥1

G(xn−1, xn, xn).

Assume that s > 0. Since 0 < s ≤ G(xn, xn+1, xn+1) ≤ · · · ≤ G(x0, x1, x1) and γ(xn−1, xn, xn) ≤ θ for
all n ∈ N ∪{0}, where θ = θ(s,G(x0, x1, x1)), we obtain that

G(xn, xn+1, xn+1) ≤ θG(xn−1, xn, xn),

and
s ≤ G(xn−1, xn, xn) ≤ θnG(x0, x1, x1).

This implies s = 0 (on taking the limit as n→∞), a contradiction. Therefore,

lim
n→∞

G(xn−1, xn, xn) = lim
n→∞

G(Tn−1x0, T
nx0, T

nx0) = 0.

Now,

G(Tnx0, T
n+1x0, T

n+2x0) = G(xn, xn+1, xn+2)
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≤ G(xn, xn+1, xn+1) +G(xn+1, xn+1, xn+2)

≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+G(xn+2, xn+1, xn+2)

= G(xn, xn+1, xn+1) + 2G(xn+1, xn+2, xn+2),

gives G(Tnx0, T
n+1x0, T

n+2x0) → 0, as n → ∞. Hence, by Lemma 2.3, T has an approximate fixed
point.

Theorem 3.3. Let X be a complete G-metric space and T a continuous, α-η-weakly Zamfirescu and α-
admissible mapping with respect to η. If there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0), then T has
a fixed point.

Proof. Let x0 ∈ X be such that α(x0, Tx0, Tx0) ≥ η(x0, Tx0, Tx0). Define a sequence {xn} as in Theorem
2.8. By following arguments similar to those in proof of Theorem 3.2, we obtain that

G(xn, xn+1, xn+1) ≤ γ(xn−1, xn, xn)G(xn−1, xn, xn)

for all n ∈ N ∪{0}. Also, we deduce that {xn} is a Cauchy sequence. Since X is a complete G-metric space,
there exists z ∈ X such that xn → z. The result follows by the continuity of T .

Example 3.4. Let X = [0,∞) and G(x, y, z) = max{|x − y|, |y − z|, |z − x|} be a G-metric on X. Define
T : X → X and α, η : X ×X ×X → [0,∞) by

Tx =



x

5
, if x ∈ [0, 2],

(3x2 + xx+1)(4− x)

60
+
x− 1

x2+1
, if x ∈ (2, 4],

3(20− x)

16(x2 + 1)
+

100

16
(x− 4), if x ∈ (4, 20),

5x, if x ∈ [20,∞),

and

α(x, y, z) =

15, if x, y, z ∈ [0, 1],
1

2
, otherwise,

η(x, y, z) = 1.

Let γ : X ×X ×X → [0, 1] be a given function. If α(x, y, z) ≥ 1 then x, y, z ∈ [0, 1]. Therefore,

G(Tx, Ty, Ty) =
1

5
G(x, y, y)

≤ 1

3
max

{
G(x, y, y),

G(x, Tx, Tx) + 2G(y, Ty, Ty)

2
,
G(x, Ty, Ty) + 2G(y, Tx, Tx)

2

}
.

Take γ(x, y, z) = 1
3 and so,

G(Tx, Ty, Ty) =
1

5
G(x, y, y)

≤ γ(x, y, z) max

{
G(x, y, z),

G(x, Tx, Tx) + 2G(y, Ty, Ty)

2
,
G(x, Ty, Ty) + 2G(y, Tx, Tx)

2

}
.

That is, there exists γ : X ×X ×X → [0, 1] with θ(a, b) := sup{γ(x, y, z) : a ≤ G(x, y, z) ≤ b} < 1 for
all 0 < a ≤ b, such that η(x, Tx, Tx) ≤ α(x, y, y),

G(Tx, Ty, Ty) ≤ γ(x, y, y) max

{
G(x, y, y),

G(x, Tx, Tx) + 2G(y, Ty, Ty)

2
,
G(x, Ty, Ty) + 2G(y, Tx, Tx)

2

}
holds for all x, y ∈ X. Then T is α-η-weakly Zamfirescu mapping. Thus, T has a fixed point by Theorem
3.3.
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4. From α-η-Ćirić strong almost contraction to Suzuki type contraction

Definition 4.1. Let X be a G-metric space and α, η : X×X×X → [0,∞). A mapping T : X → X is called
an α-η-Ćirić strong almost contraction, if there exists a constant r ∈ [0, 1) such that for any x, y, z ∈ X,

η(x, Tx, Tx) ≤ α(x, y, z) implies that G(Tx, Ty, Tz) ≤ rM(x, y, z) + LG(y, Tz, Tx), (4.1)

where L ≥ 0 and

M(x, y, z) = max

{
G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)

G(x, Ty, Tz) +G(y, Tz, Tx) +G(z, Tx, Ty)

2

}
.

Theorem 4.2. Let X be a G-metric space and T be a continuous α-η-Ćirić strong almost contraction on
X. Also suppose that, T is an α-admissible mapping with respect to η. If there exists an x0 ∈ X such that
α(x0, Tx0) ≥ η(x0, Tx0), then T has a fixed point.

Proof. If G is symmetric, then we have

dG(x, y) = 2G(x, y, y),

and (4.1) becomes
dG(Tx, Ty) ≤ rM(x, y) + LdG(y, Tx).

The result then follows from Theorem 25 in [10]. Suppose that G is non-symmetric. Let x0 ∈ X be
such that α(x0, Tx0, Tx0) ≥ η(x0, Tx0, Tx0). Define a sequence {xn} by xn = Tnx0 = Txn−1. As T is an
α-admissible mapping with respect to η, so we have α(x0, x1, x1) = α(x0, Tx0, Tx0) ≥ η(x0, Tx0, Tx0) =
η(x0, x1, x1). By continuing this process, we have

η(xn−1, Txn−1, Txn−1) = η(xn−1, xn, xn) ≤ α(xn−1, xn, xn)

for all n ∈ N. From given assumption we have

G(xn, xn+1, xn+1) = G(Txn−1, Txn, Txn)

≤ rM(xn−1, xn, xn) + LG(xn, Txn−1, Txn−1)

= rM(xn−1, xn, xn),

where

M(xn−1, xn, xn) = max

{
G(xn−1, xn, xn), G(xn−1, Txn−1, Txn−1), G(xn, Txn, Txn),

G(xn−1, Txn, Txn) +G(xn, Txn, Txn−1) +G(xn, Txn−1, Txn)

2

}
= max

{
G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn+1, xn+1),

G(Txn, Txn, Txn) +G(xn, xn+1, xn) +G(xn, xn, xn+1)

2

}
= max

{
G(xn−1, xn, xn), G(xn, xn+1, xn+1),

G(xn, xn+1, xn) +G(xn, xn, xn+1)

2

}
= max{G(xn−1, xn, xn), G(xn, xn+1, xn+1, G(xn, xn, xn+1))}.
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Thus,
G(xn, xn+1, xn+1) ≤ max {G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn, xn, xn+1)} .

If
max {G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn, xn, xn+1)} = G(xn, xn+1, xn+1),

for some n, then
G(xn, xn+1, xn+1) ≤ rG(xn, xn+1, xn+1) < G(xn, xn+1, xn+1),

gives a contradiction. Similarly,

max {G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn, xn, xn+1)} = G(xn, xn, xn+1),

leads to a contradiction. Hence,

G(xn, xn+1, xn+1) ≤ rG(xn−1, xn, xn),

which further implies that

G(xn, xn+1, xn+1) ≤ rG(xn−1, xn, xn) ≤ · · · ≤ rnG(x0, x1, x1),

for all n ∈ N. Now for m < n

G(xm, xn, xn) ≤ G(xm, xm+1, xm+1) +G(xm+1, xm+2, xm+2) + · · ·+G(xn−1, xn, xn)

≤ rmG(x0, x1, x1) + rm+1G(x0, x1, x1) + · · ·+ rn−1G(x0, x1, x1)

= (rm + rm+1 + · · ·+ rn−1)G(x0, x1, x1)

≤ rm

1− r
G(x0, x1, x1).

By taking the limit as m,n→∞, we get that {xn} is a Cauchy sequence. By completeness of X, there
exists z ∈ X such that xn → z, as n→∞. The result follows by the continuity of T .

Theorem 4.3. Let X be a G-metric space, α, η : X × X × X → [0,∞), T an α-admissible with respect
to η and α-η-Ćirić strong almost contraction on X. If there exists an x0 ∈ X such that α(x0, Tx0, Tx0) ≥
η(x0, Tx0, Tx0) and for any sequence {xn} in X such that

α(xn, xn+1, xn+1) ≥ η(xn, xn+1, xn+1),

with xn → x as n→∞, then either

η(Txn, T
2xn, T

2xn) ≤ α(Txn, x, x), or η(T 2xn, T
3xn, T

3xn) ≤ α(T 2xn, x, x),

holds for all n ∈ N. Then T has a fixed point.

Proof. Let x0 be a given point in X such that α(x0, Tx0, Tx0) ≥ η(x0, Tx0, Tx0). Define a sequence {xn}
by xn = Tnx0 = Txn−1. As in proof of Theorem 3.3, we obtain that α(xn, xn+1, xn+1) ≥ η(xn, xn+1, xn+1)
for all n ∈ N. Also, there exists z ∈ X such that, xn → z as n→∞. If G(z, Tz, Tz) 6= 0, then

η(Txn−1, T
2xn−1, T

2xn−1) ≤ α(Txn−1, z, z), or η(T 2xn−1, T
3xn−1, T

3xn−1) ≤ α(T 2xn−1, z, z),

holds for all n ∈ N. Thus

η(xn, Txn, Txn) ≤ α(xn, z, z), or η(Txn, Txn+1, Txn+1) ≤ α(xn+1, z, z),

holds for all n ∈ N. Suppose that η(xn, Txn, Txn) ≤ α(xn, z, z) holds for all n ∈ N. By given assumption
we have
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G(xn+1, T z, Tz) = G(Txn, T z, Tz)

≤ rM(xn, z, z) + LG(z, Txn, Txn)

= rM(xn, z, z) + LG(z, xn+1, xn+1),

(4.2)

where

M(xn, z, z) = max

{
G(xn, z, z), G(xn, Txn, Txn), G(z, Tz, Tz),

G(xn, T z, Tz) +G(z, Tz, Txn) +G(z, Txn, T z)

2

}
= max

{
G(xn, z, z), G(xn, xn+1, xn+1), G(z, Tz, Tz),

G(xn, T z, Tz) +G(z, Tz, xn+1) +G(z, xn+1, T z)

2

}
. (4.3)

By using (4.3) in (4.2) and taking the limit as n→∞, we have

G(z, Tz, Tz) ≤ rG(z, Tz, Tz) < G(z, Tz, Tz),

a contradiction. Hence G(z, Tz, Tz) = 0. By following arguments similar to those given above, we obtain
that Tz = z, if η(xn+1, Txn+1, Txn+1) ≤ α(xn+1, z, z) holds for all n ∈ N.

Example 4.4. Let X = [0,+∞) and G(x, y, z) = max{|x − y|, |y − z|, |z − x|}. Define T : X → X and
α, η : X ×X ×X → [0,∞) by

Tx =


x2

4
, if x ∈ [0, 1],

(x3 + 2x+ 1)√
x2 + 1

, if x ∈ (1, 2],

3x, if x ∈ [2,+∞),

and

α(x, y, z) =


1

2
, if x, y, z ∈ [0, 1],

1

8
, otherwise,

η(x, y, z) =
1

4
.

Let α(x, y, z) ≥ η(x, y, z), then x, y, z ∈ [0, 1]. Also, Tw ∈ [0, 1] for all w ∈ [0, 1]. Then α(Tx, Ty, Tz) ≥
η(Tx, Ty, Tz). This shows T is α-admissible mapping with respect to η. Let {xn} be a sequence in X such
that xn → x as n → ∞ and that α(xn, xn+1, xn+1) ≥ η(xn, xn+1, xn+1). Then Txn, T

2xn, T
3xn ∈ [0, 1] for

all n ∈ N. That is,
η(Txn, T

2xn, T
2xn) ≤ α(Txn, x, x),

and
η(T 2xn, T

3xn, T
3xn) ≤ α(T 2xn, x, x)

hold for all n ∈ N. Clearly, α(0, T0, T0) ≥ η(0, T0, T0). Let α(x, y, z) ≥ η(x, Tx, Tx). Now, if x /∈ [0, 1],
then, 1

8 ≥
1
4 which is not possible. So, x, y, z ∈ [0, 1]. Therefore,

G(Tx, Ty, Tz) =
1

4
max{|x2 − y2|, |y2 − z2|, |z2 − x2|}

=
1

4
max{|x− y||x+ y|, |y − z||y + z|, |z − x||z + x|}

≤ 1

2
max{|x− y|, |y − z|, |z − x|}

≤ 1

2
M(x, y, z) + LG(y, Tz, Tx).
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Therefore, T is an α-η-Ćirić strong almost contraction. Hence all the conditions for Theorem 4.3 are
satisfied. Hence T has a fixed point.

As an application of the above result, we obtain the following Suzuki type fixed point theorem in the
setup of G-metric spaces.

Theorem 4.5. Let X be a complete G-metric space and T a self-mapping on X. If there exists r ∈ [0, 1)
such that for any x, y in X

1

1 + r
G(x, Tx, Tx) ≤ G(x, y, y) implies that G(Tx, Ty, Ty) ≤ rM(x, y, y) + LG(y, Tx, Tx), (4.4)

where

M(x, y, y) = max

{
G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty),

G(x, Ty, Ty) +G(y, Ty, Tx) +G(y, Tx, Ty)

2

}
,

then T has a fixed point.

Proof. Define α, η : X ×X ×X → [0,∞) by

α(x, y, y) = G(x, y, y) and η(x, y, y) = λ(r)G(x, y, y),

where 0 ≤ r < 1 and λ(r) = 1
1+r . As for any x, y ∈ X, λ(r)G(x, y, y) ≤ G(x, y, y) so we have η(x, y, y) ≤

α(x, y, y). Thus, conditions (i) and (ii) of Theorem 4.3 hold. Let {xn} be a sequence in X with xn → x
as n → ∞. If G(Txn, T

2xn, T
2xn) = 0 for some n. Then T 2xn = Txn implies that Txn is a fixed point

of T and the result follows. Suppose that T 2xn 6= Txn for all n ∈ N. As λ(r)G(Txn, T
2xn, T

2xn) ≤
G(Txn, T

2xn, T
2xn) for all n ∈ N, so from (4.4) we get,

G(T 2xn, T
3xn, T

3xn) ≤ rM(Txn, T
2xn, T

2xn) + LG(T 2xn, T
2xn, T

2xn)

= rM(Txn, T
2xn, T

2xn), (4.5)

where,

M(Txn, T
2xn, T

2xn) = max

{
G(Txn, T

2xn, T
2xn), G(Txn, T

2xn, T
2xn), G(T 2xn, T

3xn, T
3xn),

G(Txn, T
3xn, T

3xn) + 2G(T 2xn, T
2xn, T

2xn)

2

}
≤ max

{
G(Txn, T

2xn, T
2xn), G(T 2xn, T

3xn, T
3xn),

G(Txn, T
2xn, T

2xn) +G(T 2xn, T
3xn, T

3xn)

2

}
= max{G(Txn, T

2xn, T
2xn), G(T 2xn, T

3xn, T
3xn)}.

If
max{G(Txn, T

2xn, T
2xn), G(T 2xn, T

3xn, T
3xn)} = G(T 2xn, T

3xn, T
3xn),

for some n, then (4.5) becomes

G(T 2xn, T
3xn, T

3xn) ≤ rG(T 2xn, T
3xn, T

3xn),

a contradiction.
Hence

G(T 2xn, T
3xn, T

3xn) ≤ rG(Txn, T
2xn, T

2xn). (4.6)
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If there exists n0 ∈ N such that

η(Txn0 , T
2xn0 , T

2xn0) > α(Txn0 , x, x), and η(T 2xn0 , T
3xn0 , T

3xn0) > α(T 2xn0 , x, x),

then we have
λ(r)G(Txn0 , T

2xn0 , Tx
2
n0

) > G(Txn0 , x, x),

and
λ(r)G(T 2xn0 , T

3xn0 , T
3xn0) > G(T 2xn0 , T

2xn0 , x0).

Thus from (4.6) we obtain that

G(Txn0 , T
2xn0 , T

2xn0) ≤ G(Txn0 , x, x) +G(x, T 2xn0 , T
2xn0)

< λ(r)G(T 2xn0 , T
2xn0 , Txn0) + λ(r)G(T 2xn0 , T

3xn0 , T
3xn0)

≤ λ(r)G(Txn0 , T
2xn0 , Txn0) + rλ(r)G(Txn0 , T

2xn0 , T
2xn0)

= λ(r)(1 + r)G(Txn0 , T
2xn0 , T

2xn0)

= G(Txn0 , T
2xn0 , T

2xn0),

a contradiction. Hence, either

η(Txn, T
2xn, T

2xn) ≤ α(Txn, x, x), or η(T 2xn, T
3xn, T

3xn) ≤ α(T 2xn, x, x)

holds for all n ∈ N and the condition (iv) of Theorem 4.3 holds. Now η(x, Tx, Tx) ≤ α(x, y, y) gives that
λ(r)G(x, Tx, Tx) ≤ G(x, y, y). Thus from (4.4) we obtain G(Tx, Ty, Ty) ≤ rM(x, y, y) + LG(y, Tx, Tx).
Hence all the conditions of Theorem 4.3 are satisfied and the result follows.
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