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Abstract

This paper considers local M-estimation of the unknown drift and diffusion functions of integrated
diffusion processes. We show that under appropriate conditions, the proposed estimators for drift and
diffusion functions in the integrated process are consistent, and the conditions that ensure the asymptotic
normality of these local M-estimators are also stated. The simulation studies show that the proposed
estimators perform better than the kernel estimator in robustness. c©2016 All rights reserved.
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1. Introduction

In this paper, we consider the stochastic process Yt =
∫ t

0 Xsds where X is a one-dimensional diffusion
process given by

dXt = µ(Xt)dt+ σ(Xt)dBt, (1.1)

where {Bt, t ≥ 0} is a standard Brownian motion (or Wiener process), and µ(·) and σ(·), the drift and
diffusion of the process {Xt}, are functions only of the contemporaneous value of Xt. The integrated
diffusion process (Yt, Xt) solves the following second-order stochastic differential equation:{

dYt = Xtdt,

dXt = µ(Xt)dt+ σ(Xt)dBt.
(1.2)
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This integrated diffusion processes can model integrated and differentiated diffusion processes, and at
the same time overcome the difficulties associated with the nondifferentiability of the Brownian motion, so
these models play an important role in the financial and economic field.

As we all know, the diffusion models (1.1) represent a widely accepted class of processes in finance
and economics. Estimation and inference about infinitesimal mean function µ(·) and infinitesimal variance
function σ(·) in (1.1) has been an important area in modern econometrics, especially the estimators proposed
and studied based on a discrete time observation of the sample path. For example, one can view [3, 4] for
parametric estimation and [18] for nonparametric estimation based on low-frequency data, as for the high-
frequency data, one can view [2, 6, 14] and so on.

However, all sample functions of a diffusion process (1.1) driven by a Brownian motion are of unbounded
variation and nowhere differentiable, so it can not model integrated and differentiated diffusion processes.
On the other hand, integrated diffusion processes play an important role in the field of finance, engineering
and physics. For example, Xt may represent the velocity of a particle and Yt its coordinate, see e.g. [11, 23].
P. D. Ditlevsen and et al. in [10] used integrated diffusion process to model and analyze the ice-core data.

Statistical inference for discretely observed integrated diffusion processes has been considered recently.
For example, parametric inference for integrated diffusion processes has been addressed by [11, 15, 16, 17].
As for the nonparametric inferences, [22] obtained the Nadaraya-Waston estimators for drift and diffusion
functions, [24] studied the local linear estimators for the two functions, and [25] developed the re-weighted
estimator of the diffusion function.

All the above nonparametric estimators are based on local polynomial regression smoothers. However,
local polynomial regression smoothers are not robust, so there is a growing literature on the robust methods.
One popular robust technique is the so-called M-estimator, which is the easiest to cope with as far as
asymptotic theory is concerned as pointed out by [20]. Therefore, M-estimation has been studied by many
authors such as [8, 9, 19] and references therein. Furthermore, some modified M-estimators were proposed,
such as local M-estimator, which is a combination of the local linear smoothing technique and the M-
estimation technique. The local M-estimators inherit the nice properties from not only M-estimators but
also local linear estimators. For example, [13] proposed local linear M-estimator with variable bandwidth for
regression function, [21] developed a robust estimator of the regression function by using local polynomial
regression techniques.

So in the present paper, we study robust nonparametric statistical inference for drift and diffusion func-
tions of integrated diffusions. We wish to construct local M-estimators of the drift and diffusion coefficients
in integrated diffusion processes (1.2) based on local linear smoothing technique and the M-estimation
technique.

The remainder of the paper is organized as follows. Section 2 introduces the local M-estimators of drift
and diffusion coefficients in integrated diffusion model and develops the asymptotic results of the estimators
under some mild conditions. Simulation studies are developed in Section 3. Some useful lemmas and all
mathematical proofs are presented in Section 4.

2. Local M-estimator and Asymptotic Results

2.1. Local M-estimators

Just as [22, 25] pointed out that there is a difficulty to estimate the integrated diffusion processes, i.e.,
the value of X in model (1.2) at time ti is impossible to obtain, and at the same time the estimation of
model (1.2) can not be based on the observations {Yti , i = 1, 2, · · · }.

To simplify we use the notation ti = i∆ ,where ∆ = ti − ti−1, by Yt =
∫ t

0 Xudu, we have

Yi∆ − Y(i−1)∆

∆
=

1

∆

(∫ i∆

0
Xudu−

∫ (i−1)∆

0
Xudu

)
=

1

∆

∫ i∆

(i−1)∆
Xudu,
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when ∆ tends to zero, the values of Xi∆, X(i−1)∆ and
Yi∆−Y(i−1)∆

∆ become nearly to each other, so our
estimation procedure will be based on the following equivalent set of data,

X̃i∆ =
Yi∆ − Y(i−1)∆

∆
.

The estimation of drift and diffusion functions in the integrated diffusion model (1.2) depends on the
following equations:

E

(
X̃(i+1)∆ − X̃i∆

∆

∣∣∣∣∣F(i−1)∆

)
= µ(X(i−1)∆) + o(1), ∆→ 0, (2.1)

E

(
3
2(X̃(i+1)∆ − X̃i∆)

2

∆

∣∣∣∣∣F(i−1)∆

)
= σ2(X(i−1)∆) + o(1), ∆→ 0, (2.2)

where Ft = σ{Xs, s ≤ t}. Eqs. (2.1) and (2.2) can be obtained from Lemma 4.1 in Section 4, readers
can also refer to [7] or [22] for more details about them.

By (2.1), the local linear estimator for µ(x) is defined as the solution to the following problem: Choose
a1 and b1 to minimize the following weighted sum

n∑
i=1

(
X̃(i+1)∆ − X̃i∆

∆
− a1 − b1(X̃i∆ − x)

)2

K

(
X̃(i−1)∆ − x

h

)
,

and by (2.2) the local linear estimator for σ2(x) is defined as the solution to the following problem: Choose
a2 and b2 to minimize the following weighted sum

n∑
i=1

(
3
2(X̃(i+1)∆ − X̃i∆)

2

∆
− a2 − b2(X̃i∆ − x)

)2

K

(
X̃(i−1)∆ − x

h

)
,

where K(·) is the kernel function and h = hn is bandwidth.
However, the above local linear estimators are not robust. Therefore, let us choose a1 and b1 to minimize

n∑
i=1

ρ1

(
X̃(i+1)∆ − X̃i∆

∆
− a1 − b1(X̃i∆ − x)

)
K

(
X̃(i−1)∆ − x

h

)
and a2 and b2 to minimize

n∑
i=1

ρ2

(
3
2(X̃(i+1)∆ − X̃i∆)

2

∆
− a2 − b2(X̃i∆ − x)

)
K

(
X̃(i−1)∆ − x

h

)
,

or to satisfy the following equations:

n∑
i=1

ψ1

(
X̃(i+1)∆ − X̃i∆

∆
− a1 − b1(X̃i∆ − x)

)
K

(
X̃(i−1)∆ − x

h

)(
1

X̃i∆−x
h

)
=

(
0
0

)
, (2.3)

and

n∑
i=1

ψ2

(
3
2(X̃(i+1)∆ − X̃i∆)

2

∆
− a2 − b2(X̃i∆ − x)

)
K

(
X̃(i−1)∆ − x

h

)(
1

X̃i∆−x
h

)
=

(
0
0

)
, (2.4)

where ρ1(·) and ρ2(·) are given functions and ψ1(·) and ψ2(·) are the derivatives of ρ1(·) and ρ2(·), respectively.
The local M-estimators of µ(x) and µ′(x) are denoted as µ̂(x) = â1 and µ̂′(x) = b̂1, which are the

solutions of (2.3), the local M-estimators of σ2(x) and (σ2(x))′ are denoted as σ̂2(x) = â2 and (σ̂2(x))′ = b̂2,
which are the solutions of (2.4).
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2.2. Assumptions and Asymptotic Results

Suppose x0 is a given point, the asymptotic results for our local M-estimators of drift and diffusion
functions in integrated diffusion processes need the following conditions.

(A1). ([22])

(i) Let interval D = (l, r) be the state space of X, s(z) = exp{−
∫ z
z0

2µ(x)
σ2(x)

dx} is the scale density

function (z0 is an arbitrary point inside D). For x ∈ D, l < x1 < x < x2 < r, let

S(l, x] = lim
x1→l

∫ x

x1

s(u)du =∞, S[x, r) = lim
x2→r

∫ x2

x
s(u)du =∞;

(ii)
∫ r
l m(x)dx <∞, where m(x) = (σ2(x)s(x))−1 is a speed density function;

(iii) X0 = x has distribution P 0, where P 0 is the invariant distribution of the ergodic process
(Xt)t∈[0,∞).

(A2). Let interval D = (l, r) be the state space of X, we assume that

lim sup
x→r

(
µ(x)

σ(x)
− σ′(x)

2

)
< 0, lim sup

x→l

(
µ(x)

σ(x)
− σ′(x)

2

)
> 0;

Remark 2.1. (A1) assures that X is stationary ([1]), the stationary density of X denotes as p(x) in this
paper. (A2) assures that the process X is α−mixing. Under assumptions (A1) and (A2), we know that
{X̃i∆, i = 0, 1, · · · } is stationary and α−mixing.

Let α(k) be the mixing coefficient of process X, we assume that α(k) satisfy the following condition.

(A3). The mixing coefficient α(k) of process X satisfies
∑
k≥1

ka(α(k))γ/(2+γ) < ∞ for some a > γ/(2 + γ),

where γ is given in assumption (A10).

The kernel function K(·) and bandwidth h satisfy the following assumptions (A4) and (A5).

(A4). The kernel K(·) is a continuously differentiable, symmetric density function compactly supported on
[−1, 1].

(A5). ∆→ 0, h→ 0 and nh2 →∞ as n→∞.

Remark 2.2. To simplify our purpose, we consider at this stage only positive and symmetrical kernels which
are the most classical ones. As for how to choose bandwidth the book of [12] is recommended.

(A6). (i) µ(x) and σ(x) have continuous derivative of order 4 and satisfy |µ(x)| ≤ C(1 + |x|)λ and |σ(x)| ≤
C(1 + |x|)λ for some λ > 0;

(ii) E[Xr
0 ] <∞, where r = max{4λ, 1 + 3λ,−1 + 5λ,−2 + 6λ}.

Remark 2.3. Assumption (A6) guarantees that Lemma 4.1 can be used properly throughout the paper.

(A7). The density function p(x) of the process X is continuous at x0, and p(x0) > 0. Furthermore, the joint
density of Xi∆ and Xj∆ are bounded for all i, j.

(A8). (i) lim
h→0

1
hE(|K ′(ξni)|2) <∞;

(ii) lim
h→0

1
hE(|K ′(ξni)|4) <∞, where

ξni = θ((X(i−1)∆ − x)/h) + (1− θ)((X̃(i−1)∆ − x)/h), 0 ≤ θ ≤ 1.
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(A9). (i) E[ψ1(ui∆)|X(i−1)∆ = x] = o(1) with ui∆ =
X̃(i+1)∆−X̃i∆

∆ − µ(X(i−1)∆);

(ii) E[ψ2(vi∆)|X(i−1)∆ = x] = o(1) with vi∆ =
3
2

(X̃(i+1)∆−X̃i∆)
2

∆ − σ2(X(i−1)∆).

(A10). (i) The function ψ1(·) is continuous and has a derivative ψ′1(·) almost everywhere. Furthermore, it
is assumed that functions

E[ψ′1(ui∆)
∣∣X(i−1)∆ = x] > 0, E[ψ2

1(ui∆)
∣∣X(i−1)∆ = x] > 0, E[ψ′1

2
(ui∆)

∣∣∣X(i−1)∆ = x] > 0

and continuous at the point x0, and there exists a constant γ > 0 such that

E[ |ψ1(ui∆)|2+γ
∣∣∣X(i−1)∆ = x], E[

∣∣ψ′1(ui∆)
∣∣2+γ

∣∣∣X(i−1)∆ = x]

are bounded in a neighborhood of x0;

(ii) The function ψ2(·) is continuous and has a derivative ψ′2(·) almost everywhere. Furthermore,
it is assumed that functions E[ψ′2(vi∆)|X(i−1)∆ = x] > 0, E[ψ2

2(vi∆)
∣∣X(i−1)∆ = x] > 0,

E[ψ′2
2(vi∆)

∣∣∣X(i−1)∆ = x] > 0, and continuous at the point x0, and there exists a constant

γ > 0 such that E[ |ψ2(vi∆)|2+γ
∣∣∣X(i−1)∆ = x], E[ |ψ′2(vi∆)|2+γ

∣∣∣X(i−1)∆ = x] are bounded in a

neighborhood of x0.

(A11). (i) For any i, j,
E[ψ2

1(ui∆) + ψ2
1(uj∆)

∣∣X(i−1)∆ = x,X(j−1)∆ = y],

E[ψ′1
2
(ui∆) + ψ′1

2
(uj∆)

∣∣∣X(i−1)∆ = x,X(j−1)∆ = y]

are bounded in the neighborhood of x0;

(ii) For any i, j,
E[ψ2

2(vi∆) + ψ2
2(vj∆)

∣∣X(i−1)∆ = x,X(j−1)∆ = y],

E[ψ′2
2
(vi∆) + ψ′2

2
(vj∆)

∣∣∣X(i−1)∆ = x,X(j−1)∆ = y]

are bounded in the neighborhood of x0.

(A12). (i) The function ψ′1(·) satisfies

E[ sup
|z|≤δ

∣∣ψ′1(ui∆ + z)− ψ′1(ui∆)
∣∣∣∣X(i−1)∆ = x] = o(1),

E[ sup
|z|≤δ

∣∣ψ1(ui∆ + z)− ψ1(ui∆)− ψ′1(ui∆)z
∣∣∣∣X(i−1)∆ = x] = o(δ),

as δ → 0 uniformly in x in a neighborhood of x0;

(ii) The function ψ′2(·) satisfies

E[ sup
|z|≤δ

∣∣ψ′2(vi∆ + z)− ψ′2(vi∆)
∣∣∣∣X(i−1)∆ = x] = o(1),

E[ sup
|z|≤δ

∣∣ψ2(vi∆ + z)− ψ2(vi∆)− ψ′2(vi∆)z
∣∣∣∣X(i−1)∆ = x] = o(δ),

as δ → 0 uniformly in x in a neighborhood of x0.

Remark 2.4. The conditions in assumptions (A9)-(A12) imposed on ψ1(·) and ψ2(·) are mild and satisfied
for many applications. Particularly, they are fulfilled for Huber’s ψ(·) function. In this paper, we do not
need the monotonicity and boundedness of ψi(·), i = 1, 2 and the convexity of the function ρi(·), i = 1, 2.
For more details about these conditions we refer to [5] or [13].
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(A13). Assume that there exists a sequence of positive integers qn such that qn → ∞, qn = o((nh)1/2) and
(n/h)1/2α(qn)→ 0 as n→∞.

(A14). There exists τ > 2 + γ, where γ is given in Assumption 10, such that E{|ψ1(ui∆)|τ |X(i−1)∆ =

x}, E{|ψ2(vi∆)|τ |X(i−1)∆ = x} are bounded for all x in a neighborhood of x0, and α(n) = O(n−θ),
where θ ≥ (2 + γ)τ/{2(τ − 2− γ)}.

(A15). n−γ/4h(2+γ)/τ−1−γ/4 = O(1), where γ and τ are given in assumptions (A10) and (A14), respectively.

Remark 2.5. Obviously, Assumption 15 is automatically satisfied for γ ≥ 1 and it is also fulfilled for 0 < γ < 1
if τ satisfies γ < τ − 2 ≤ γ/(1− γ).

Throughout the whole paper, let

Kl =

∫
K(u)uldu, Jl =

∫
ulK2(u)du, for l ≥ 0.

U =

(
K0 K1

K1 K2

)
, V =

(
J0 J1

J1 J2

)
, A =

(
K2

K3

)
,

G1(x) = E[ψ′1(ui∆)
∣∣X(i−1)∆ = x], G2(x) = E[ψ2

1(ui∆)
∣∣X(i−1)∆ = x],

H1(x) = E[ψ′2(vi∆)
∣∣X(i−1)∆ = x], H2(x) = E[ψ2

2(vi∆)
∣∣X(i−1)∆ = x].

Our main results are as follows:

Theorem 2.6. Under assumptions (A1)-(A7) and the conditions (i) of the assumptions (A8)-(A12), there
exist solutions µ̂(x0) and µ̂′(x0) to equation (2.3) such that

(i)

(
µ̂(x0)− µ(x0)

h(µ̂′(x0)− µ′(x0))

)
P→ 0, as n→∞.

(ii) Furthermore, if assumptions (A13)-(A15) hold, then

√
nh

[(
µ̂(x0)− µ(x0)

h(µ̂′(x0)− µ′(x0))

)
− h2µ′′(x0)

2
U−1A

]
D→N(0,Σ1),

where “
P→” means convergence in probability, “

D→” means convergence in distribution, and

Σ1 =
G2(x0)

G2
1(x0)p(x0)

U−1V U−1.

Theorem 2.7. Under assumptions (A1)-(A7) and the conditions (ii) of the assumptions (A8)-(A12), there
exist solutions σ̂2(x0) and (σ̂2(x0))′ to equation (2.4) such that

(i)

(
σ̂2(x0)− σ2(x0)

h((σ̂2(x0))′ − (σ2(x0))′)

)
P→ 0, as n→∞.

(ii) Furthermore, if assumptions (A13)-(A15) hold, then

√
nh

[(
σ̂2(x0)− σ2(x0)

h[(σ̂2(x0))′ − (σ2(x0))′]

)
− h2(σ2(x0))′′

2
U−1A

]
D→N(0,Σ2),

where “
P→” means convergence in probability, “

D→” means convergence in distribution, and

Σ2 =
H2(x0)

H2
1 (x0)p(x0)

U−1V U−1.
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3. Simulations

In this section, we perform a Monte Carlo experiment to show the performance of the local M-estimators
discussed in the paper by comparing the mean square error (MSE) between the new estimators and the
following kernel-type estimators for µ(x) and σ2(x)(see [22]):

µ̄(x) =

n∑
i=1

K

(
X̃(i−1)∆−x

h

)
(X̃(i+1)∆−X̃i∆)

∆

n∑
i=1

K

(
X̃(i−1)∆−x

h

) ,

σ̄2(x) =

n∑
i=1

K

(
X̃(i−1)∆−x

h

)
3
2

(X̃(i+1)∆−X̃i∆)
2

∆

n∑
i=1

K

(
X̃(i−1)∆−x

h

) .

Our experiment is based on the simulation of Yt = Y0 +
∫ t

0 Xudu, where X is an ergodic process governed
by the following stochastic differential equation:

dXt = −10Xtdt+
√

0.1 + 0.1X2
t dBt, (3.1)

and we use the Euler-Maruyama method to approximate the numerical solution of our stochastic differential
equation.

Throughout we take Huber’s function ψ1(z) = max{−c,min(c, z)} with c = 0.135 and we smooth using
a Gauss kernel, and the bandwidth used in our simulation is h = hopt, where hopt is the optimal bandwidth,
which minimize the mean square error (MSE):

1

n

n∑
i=1

(µ̂(xi)− µ(xi))
2,

where {xi, i = 1, 2, · · · , n} are chosen uniformly to cover the range of sample path of Xt, and we obtain µ̂(·)
by iteration since it has no explicit expression. For any initial value µ̂0(x), we have(

µ̂t(x)
µ̂′t(x)

)
=

(
µ̂t−1(x)
µ̂′t−1(x)

)
− [Wn(µ̂t−1(x), µ̂′t−1(x))]−1Ψn(µ̂t−1(x), µ̂′t−1(x)),

where µ̂t−1(x) and µ̂′t−1(x) are the tth iteration value of µ̂′(x) and µ̂(x), and

Wn(a1, b1) =
(

∂Ψn(a1,b1)
∂a1

, ∂Ψn(a1,b1)
∂b1

)
,

Ψn(a1, b1) =
n∑
i=1

ψ1

(
X̃(i+1)∆ − X̃i∆

∆
− a1 − b1(X̃i∆ − x)

)
K

(
X̃(i−1)∆ − x

h

)(
1

X̃i∆−x
h

)
.

This procedure terminates when ∥∥∥∥( µ̂t(x)
µ̂′t(x)

)
−
(
µ̂t−1(x)
µ̂′t−1(x)

)∥∥∥∥ ≤ 1× 10−4.

In order to illustrate continuous time integrated processes, Figure 1 presents a simulated path of X which
is defined by (3.1) and Figure 2 presents a simulated path of Yt = Y0 +

∫ t
0 Xudu where t ∈ [0, T ] = [0, 10]

and X is governed by (3.1).
In order to compare the robustness of the local M-estimators with that of the Nadaraya-Watson es-

timators, Table 1 and Table 2 show the performance of the local M-estimator and the Nadaraya-Watson
estimator for drift function µ(·) and diffusion function σ2(·) in terms of the MSE, respectively. We can see
that the local M-estimator performs better than the Nadaraya-Watson estimator, and the performances of
the both estimators are improved as the sample size increases.
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Figure 1: THE SAMPLE PATH OF THE
PROCESS Xt.
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Figure 2: THE SAMPLE PATH OF THE INTEGRATED
PROCESS Yt.

Table 1: The mean square error of Nadaraya-Watson es-
timator (MSE11) and local M-estimator (MSE12) for drift
function µ(·).

Sample size n MSE11 MSE12

n = 100 0.9084 0.1652
n = 200 0.7499 0.1214
n = 400 0.5754 0.1272
n = 800 0.3742 0.1171

Table 2: The mean square error of Nadaraya-Watson es-
timator (MSE21) and local M-estimator (MSE22) for dif-
fusion function σ2(·).

Sample size n MSE21 MSE22

n = 100 0.0988 0.0459
n = 200 0.0891 0.0458
n = 400 0.0881 0.0390
n = 800 0.0862 0.0392

4. Lemmas and Proofs

In order to prove Theorem 2.6 and Theorem 2.7 , we need the following lemmas.

Lemma 4.1 ([22]). Let Z be a d-dimensional diffusion process governed by the stochastic integral equation

Zt = Z0 +

∫ t

0
µ(Zs)ds+

∫ t

0
σ(Zs)dBs,

where µ(z) = [µi(z)]d×1 is a d × 1 vector, σ(z) = [σij(z)]d×d is a d × d diagonal matrix, and Bt is a d × 1
vector of independent Brownian motions. Assume that µ and σ have continuous partial derivatives of order
2s. Let f(z) be a continuous function defined on Rd with values in Rd and with continuous partial derivative
of order 2s+ 2. Then

E[f(Zi∆)|Z(i−1)∆] =
s∑

k=0

Lkf(Z(i−1)∆)
∆k

k!
+R,

where L is a second-order differential operator defined as

L =

d∑
i=1

µi(z)
∂

∂zi
+

1

2
(σ2

11(z)
∂2

∂z2
1

+ σ2
22(z)

∂2

∂z2
2

+ ...+ σ2
dd(z)

∂2

∂z2
d

),

and

R =

∫ i∆

(i−1)∆

∫ u1

(i−1)∆

∫ u2

(i−1)∆
· · ·
∫ us

(i−1)∆
E[Ls+1f(Zus+1)

∣∣Z(i−1)∆]dus+1dus · · · du1

is a stochastic function of order ∆s+1.

Lemma 4.2 ([22]). Let

ξni = θ((X(i−1)∆ − x)/h) + (1− θ)((X̃(i−1)∆ − x)/h), 0 ≤ θ ≤ 1,
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and

ε1,n =
1

nh

n∑
i=1

K

(
X̃(i−1)∆ − x

h

)
g(X̃(i−1)∆, X̃i∆),

ε2,n =
1

nh

n∑
i=1

K

(
X(i−1)∆ − x

h

)
g(X̃(i−1)∆, X̃i∆),

where g is a measurable function on R×R. Assume that Assumption 1, Assumption 4, and
√

∆/h→ 0. If
one of the following two conditions holds,

(i) E[(g(X̃(i−1)∆, X̃i∆))2] <∞ and Assumption 8 (ii).

(ii) h−1E[|(X̃(i−1)∆ −X(i−1)∆)g(X̃(i−1)∆, X̃i∆)|2] <∞ and Assumption 8 (i).

Then
|ε1n − ε2n|

P→ 0.

Lemma 4.3. Under Assumptions 1-7 and the conditions (i) of the Assumptions 8-12, for any random
sequence {ηj}nj=1, if max

1≤j≤n
|ηj | = op(1), we have

(i)
n∑
i=1

ψ′1(ui∆ + ηi∆)K

(
X̃(i−1)∆−x0

h

)
(X̃i∆ − x0)l = nhl+1G1(x0)p(x0)Kl(1 + op(1)),

(ii)
n∑
i=1

ψ′1(ui∆ + ηi∆)R1(Xi∆)K

(
X̃(i−1)∆−x0

h

)
(X̃i∆ − x0)l = nhl+3G1(x0)

2 µ′′(x0)p(x0)Kl+2(1 + op(1)),

where R1(X̃i∆) = µ(X̃i∆)− µ(x0)− µ′(x0)(X̃i∆ − x0).

Proof. (i) Obviously, we have

n∑
i=1

ψ′1(ui∆ + ηi∆)K

(
X̃(i−1)∆ − x0

h

)
(X̃i∆ − x0)l

=
n∑
i=1

ψ′1(ui∆)K

(
X̃(i−1)∆ − x0

h

)
(X̃i∆ − x0)l

+
n∑
i=1

[ψ′1(ui∆ + ηi∆)− ψ′1(ui∆)]K

(
X̃(i−1)∆ − x0

h

)
(X̃i∆ − x0)l

:= Tn1 + Tn2.

For Tn1, by Lemma 4.2, we need to consider

E

[
n∑
i=1

ψ′1(ui∆)K

(
X(i−1)∆ − x0

h

)
(X̃i∆ − x0)

l

]

= E

[
n∑
i=1

K

(
X(i−1)∆ − x0

h

)
(X̃i∆ − x0)

l
E[ψ′1(ui∆)

∣∣X(i−1)∆ = x0]

]

= G1(x0)E

[
n∑
i=1

K

(
X(i−1)∆ − x0

h

)
(X̃i∆ − x0)

l

]
.
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Next, we will show that

E

[
n∑
i=1

K

(
X(i−1)∆ − x0

h

)
(X̃i∆ − x0)

l

]
= nhl+1p(x0)Kl(1 + o(1)).

In the same lines of arguments as in Lemma 1 of [5], we have

E

[
n∑
i=1

K

(
X(i−1)∆ − x0

h

)
(X(i−1)∆ − x0)l

]
= nhl+1p(x0)Kl(1 + o(1)),

so it suffices to show that

1

nhl+1

n∑
i=1

K

(
X(i−1)∆ − x0

h

)
(X̃i∆ − x0)

l − 1

nhl+1

n∑
i=1

K

(
X(i−1)∆ − x0

h

)
(X(i−1)∆ − x0)l

P→ 0. (4.1)

For (4.1), let

δ1n =
1

nhl+1

n∑
i=1

K

(
X(i−1)∆ − x0

h

)
[(X̃i∆ − x0)

l − (X(i−1)∆ − x0)l],

it suffices to show that
lim
n→∞

E(δ1n) = 0, lim
n→∞

V ar(δ1n) = 0.

By the stationarity and Lemma 4.1, we have

E(δ1n) =E

[
1

nhl+1

n∑
i=1

K

(
X(i−1)∆ − x0

h

)
((X̃i∆ − x0)

l − (X(i−1)∆ − x0)l)

]

=E

[
1

hl+1
K

(
X(i−1)∆ − x0

h

)
((X̃i∆ − x0)

l − (X(i−1)∆ − x0)l)

]
=E

[
1

hl+1
K

(
X(i−1)∆ − x0

h

)
l(X(i−1)∆ − x0)l−1(X̃i∆ −X(i−1)∆)

]
+ o(1)

=E

[
1

hl+1
K

(
X(i−1)∆ − x0

h

)
l(X(i−1)∆ − x0)l−1E[(X̃i∆ −X(i−1)∆)

∣∣X(i−1)∆ ]

]
+ o(1)

=
∆

2h
E

[
1

h
K

(
X(i−1)∆ − x0

h

)
l

(
X(i−1)∆ − x0

h

)l−1

µ(X(i−1)∆)

]
+O(∆2),

which implies that lim
n→∞

E(δ1n) = 0.

On the other hand,

V ar(δ1n) = V ar

[
1

nhl+1

n∑
i=1

K

(
X(i−1)∆ − x0

h

)
((X̃i∆ − x0)

l − (X(i−1)∆ − x0)l)

]

=
1

nh2
V ar

[
1√
n

n∑
i=1

1

h
K

(
X(i−1)∆ − x0

h

)
l

(
X(i−1)∆ − x0

h

)l−1

(X̃i∆ −X(i−1)∆)

]
+ o(1)

=
1

nh2
V ar

[
1√
n

n∑
i=1

fil

]
+ o(1),

where fil = 1
hK

(
X(i−1)∆−x0

h

)
l
(
X(i−1)∆−x0

h

)l−1
(X̃i∆ −X(i−1)∆), and we have

V ar

[
1√
n

n∑
i=1

fil

]
=

1

n

n∑
i=1

V ar(fil) +
2

n

n∑
i=j+1

n−1∑
j=1

Cov(fil, fjl).
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Next we will show that V ar

[
1√
n

n∑
i=1

fil

]
< ∞, with the same arguments as [23], we only need to show

E(f2
il) <∞. In fact,

E(f2
il) = E

(
1

h2
K2

(
X(i−1)∆ − x0

h

)
l2
(
X(i−1)∆ − x0

h

)2l−2

(X̃i∆ −X(i−1)∆)
2

)

= E

(
1

h2
K2

(
X(i−1)∆ − x0

h

)
l2
(
X(i−1)∆ − x0

h

)2l−2

E[(X̃i∆ −X(i−1)∆)
2 ∣∣X(i−1)∆]

)
,

and

E[(X̃i∆ −X(i−1)∆)2
∣∣X(i−1)∆] = E[X̃2

i∆

∣∣X(i−1)∆] − 2E[X̃i∆X(i−1)∆

∣∣X(i−1)∆] + E[X2
(i−1)∆

∣∣X(i−1)∆] .

By Lemma 4.1, for the first term, we have

E[X̃2
i∆

∣∣X(i−1)∆] = E

(
(Yi∆ − Y(i−1)∆)2

∆2

∣∣X(i−1)∆

)
= X2

(i−1)∆+
1

3
σ2(X(i−1)∆)∆+X(i−1)∆µ(X(i−1)∆)∆+R1,

where R1 is a stochastic function of order ∆2. For the second term, we have

E[X̃i∆X(i−1)∆

∣∣X(i−1)∆] = E

(
Yi∆ − Y(i−1)∆

∆
X(i−1)∆

∣∣X(i−1)∆

)
= X2

(i−1)∆ +
1

2
X(i−1)∆µ(X(i−1)∆)∆ +R2,

where R2 is a stochastic function of order ∆2. For the third term, we have

E[X2
(i−1)∆

∣∣X(i−1)∆] = X2
(i−1)∆.

Then we have

E[(X̃i∆ −X(i−1)∆)2
∣∣X(i−1)∆] =

1

3
σ2(X(i−1)∆)∆ +R,

where R = R1 − 2R2. So we have E(f2
il) <∞, and lim

n→∞
V ar(δ1n) = 0 is immediate from nh2 →∞.

For Tn2, by Assumption 5 and Assumption 12(i), with the similar arguments as in Lemma 5.1 of [13],
we can get Tn2 = op(nh

l+1). This completes the proof of lemma.

(ii) This part can be proved by the same arguments with the first part of this lemma, so we omit the
details.

Lemma 4.4. Under Assumptions 1-7 and the conditions (ii) of the Assumptions 8-12, for any random
sequence {ηj}nj=1, if max

1≤j≤n
|ηj | = op(1), we have

(i)
n∑
i=1

ψ′2(vi∆ + ηi∆)K

(
X̃(i−1)∆−x0

h

)
X̃i∆ − x0)l = nhl+1H1(x0)p(x0)Kl(1 + op(1)),

(ii)
n∑
i=1

ψ′2(vi∆ + ηi∆)R2(Xi∆)K

(
X̃(i−1)∆−x0

h

)
(X̃i∆ − x0)l = nhl+3H1(x0)

2 p(x0)(σ2(x0))′′Kl+2(1 + op(1)),

where R2(X̃i∆) = σ2(X̃i∆)− σ2(x0)− (σ2(x0))′(X̃i∆ − x0).

Proof. The proof of this lemma is similar to Lemma 4.3, so we omit the details.

The proofs of the following two lemmas are similar to Theorem 1 in [5], so we omit the details.
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Lemma 4.5. Under Assumptions 1-7, the conditions (i) of the Assumptions 8-11 and Assumptions 13-15,
we have

1√
nh


n∑
i=1

ψ1(ui∆)K

(
X̃(i−1)∆−x0

h

)
n∑
i=1

ψ1(ui∆)K

(
X̃(i−1)∆−x0

h

)
X̃i∆−x0

h

 D→N(0,Σ3),

where Σ3 = G2(x0)p(x0)V.

Lemma 4.6. Under Assumptions 1-7, the conditions (ii) of the Assumptions 8-11 and Assumptions 13-15,
we have

1√
nh


n∑
i=1

ψ2(vi∆)K

(
X̃(i−1)∆−x0

h

)
n∑
i=1

ψ2(vi∆)K

(
X̃(i−1)∆−x0

h

)
X̃i∆−x0

h

 D→N(0,Σ4),

where Σ4 = H2(x0)p(x0)V.

The proof of Theorem 2.6. (i) We prove the consistency of the local M-estimators of µ(x) and µ′(x). Let

r = (a1, hb1)T , r0 = (µ(x0), hµ′(x0))T , ri∆ = (r − r0)T

(
1

X̃i∆−x0
h

)
,

and

Ln(r) =
n∑
i=1

ρ1

(
X̃(i+1)∆ − X̃i∆

∆
− a1 − b1(X̃i∆ − x0)

)
K

(
X̃(i−1)∆ − x0

h

)
.

Then we have

ri∆ = (r − r0)T

(
1

X̃i∆−x0
h

)

= (a1 − µ(x0), hb1 − hµ′(x0))

(
1

X̃i∆−x0
h

)

= a1 − µ(x0) + (hb1 − hµ′(x0))
X̃i∆ − x0

h

= a1 − µ(x0) + (b1 − µ′(x0))(X̃i∆ − x0)

= a1 + b1(X̃i∆ − x0)− µ(x0)− µ′(x0)(X̃i∆ − x0)

= a1 + b1(X̃i∆ − x0) +R1(X̃i∆)− µ(X̃i∆)

= a1 + b1(X̃i∆ − x0) +R1(X̃i∆)−

(
X̃(i+1)∆ − X̃i∆

∆
− ui∆

)
.

Let Sδ be the circle centered at r0 with radius δ. We will show that for any sufficiently small δ,

lim
n→∞

P{ inf
r∈Sδ

Ln(r) > Ln(r0)} = 1. (4.2)

In fact, for r ∈ Sδ, we have

Ln(r)− Ln(r0) =

n∑
i=1

ρ1

(
X̃(i+1)∆ − X̃i∆

∆
− a1 − b1(X̃i∆ − x0)

)
K

(
X̃(i−1)∆ − x0

h

)
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−
n∑
i=1

ρ1

(
X̃(i+1)∆ − X̃i∆

∆
− µ(x0)− µ′(x0)(X̃i∆ − x0)

)
K

(
X̃(i−1)∆ − x0

h

)

=
n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)
[ρ1(ui∆ +R1(X̃i∆)− ri∆)− ρ1(ui∆ +R1(X̃i∆))]

=
n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)∫ ui∆+R1(X̃i∆)−ri∆

ui∆+R1(X̃i∆)
ψ1(t)dt

=
n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)∫ ui∆+R1(X̃i∆)−ri∆

ui∆+R1(X̃i∆)
ψ1(ui∆)dt

+

n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)∫ ui∆+R1(X̃i∆)−ri∆

ui∆+R1(X̃i∆)
ψ′1(ui∆)(t− ui∆)dt

+

n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)∫ ui∆+R1(X̃i∆)−ri∆

ui∆+R1(X̃i∆)
[ψ1(t)− ψ1(ui∆)− ψ′1(ui∆)(t− ui∆)]dt

:=Ln1 + Ln2 + Ln3.

Next, we will show that
Ln1 = op(nhδ), (4.3)

Ln2 =
nh

2
(r − r0)TG1(x0)p(x0)U(1 + op(1))(r − r0) +Op(nh

3δ), (4.4)

Ln3 = op(nhδ
2). (4.5)

For (4.3), we have

Ln1 =
n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)∫ ui∆+R1(X̃i∆)−ri∆

ui∆+R1(X̃i∆)
ψ1(ui∆)dt

=
n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)
ψ1(ui∆)(−ri∆)

= −(r − r0)T
n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)
ψ1(ui∆)

(
1

X̃i∆−x0
h

)
= −(r − r0)TWn,

where

Wn =


n∑
i=1

ψ1(ui∆)K

(
X̃(i−1)∆−x0

h

)
n∑
i=1

ψ1(ui∆)K

(
X̃(i−1)∆−x0

h

)
X̃i∆−x0

h

 .

By Lemma 4.5, we have E(Wn) = o(1), and

V ar(Wn) = nhG2(x)p(x0)V (1 + o(1)).

Note that
Wn = E(Wn) +Op

(√
V ar(Wn)

)
,
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so we have Wn = Op(
√
nh), which implies that (4.3) holds.

For (4.4), we have

Ln2 =

n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)∫ ui∆+R1(X̃i∆)−ri∆

ui∆+R1(X̃i∆)
[ψ′1(ui∆)(t− ui∆)]dt

=
1

2

n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)
ψ′1(ui∆)(r2

i∆ − 2R1(X̃i∆)ri∆)

=
1

2

n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)
ψ′1(ui∆)(r − r0)T

(
1 X̃i∆−x0

h
X̃i∆−x0

h
(X̃i∆−x0)

2

h2

)
(r − r0)

−
n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)
ψ′1(ui∆)R1(X̃i∆)ri∆

:= Ln21 + Ln22.

From Lemma 4.3 with l = 0, l = 1 and l = 2, respectively, we have

Ln21 =
1

2

n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)
ψ′1(ui∆)(r − r0)T

(
1 X̃i∆−x0

h
X̃i∆−x0

h
(X̃i∆−x0)

2

h2

)
(r − r0)

=
nh

2
(r − r0)TG1(x0)p(x0)

(
K0 K1

K1 K2

)
(1 + op(1))(r − r0)

=
nh

2
(r − r0)TG1(x0)p(x0)U(1 + op(1))(r − r0)

and

Ln22 = −
n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)
ψ′1(ui∆)R1(X̃i∆)ri∆

= −(r − r0)T
n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)
ψ′1(ui∆)R1(X̃i∆)

(
1

X̃i∆−x0
h

)

= −nh
3

2
(r − r0)TG1(x0)µ′′(x0)p(x0)

(
K2

K3

)
(1 + op(1))

= Op(nh
3δ).

Therefore

Ln2 = Ln21 + Ln22 =
nh

2
(r − r0)TG1(x0)p(x0)U(1 + op(1))(r − r0) +Op(nh

3δ).

For (4.5), we have

Ln3 =

n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)∫ ui∆+R1(X̃i∆)−ri∆

ui∆+R1(X̃i∆)
[ψ1(t)− ψ1(ui∆)− ψ′1(ui∆)(t− ui∆)]dt

=

n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)∫ R1(X̃i∆)−ri∆

R1(X̃i∆)
[ψ1(t+ ui∆)− ψ1(ui∆)− ψ′1(ui∆)t]dt
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=

n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)
[ψ1(zi∆ + ui∆)− ψ1(ui∆)− ψ′1(ui∆)zi∆](−ri∆)

= −(r − r0)T
n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)
[ψ1(zi∆ + ui∆)− ψ1(ui∆)− ψ′1(ui∆)zi∆]

(
1

X̃i∆−x0
h

)
,

where the second-to-last equality follows from the integral mean value theorem and zi∆ lies between R1(X̃i∆)

and R1(X̃i∆)− ri∆, for i = 1, 2, · · · , n. Since
∣∣∣X̃i∆ − x0

∣∣∣ ≤ h, we have

max
i
|zi∆| ≤ max

i

∣∣∣R1(X̃i∆)
∣∣∣+

∣∣∣∣∣(r − r0)T
(

1
X̃i∆−x0

h

)∣∣∣∣∣ ≤ max
i

∣∣∣R1(X̃i∆)
∣∣∣+ 2δ, (4.6)

and by Taylor’s expansion,

max
i

∣∣∣R1(X̃i∆)
∣∣∣ = max

i

∣∣∣µ(X̃i∆)− µ(x0)− µ′(x0)(X̃i∆ − x0)
∣∣∣ = max

i

∣∣∣∣12µ′′(ξi)(X̃i∆ − x0)
2
∣∣∣∣ ≤ Op(h2), (4.7)

where ξi lies between X̃i∆ and x0, for i = 1, 2, · · · , n.
For any given η > 0, let Dη = {(δ1∆, δ2∆, · · · , δn∆)T : |δi∆| ≤ η,∀i ≤ n}, by Assumption 12(i) and∣∣∣X̃i∆ − x0

∣∣∣ ≤ h, we have

E

[
sup
Dη

∣∣∣∣∣
n∑
i=1

[ψ1(δi∆ + ui∆)− ψ1(ui∆)− ψ′1(ui∆)δi∆]K

(
X̃(i−1)∆ − x0

h

)
(X̃i∆ − x0)

l

∣∣∣∣∣
]

≤ E

[
n∑
i=1

sup
Dη

∣∣ψ1(δi∆ + ui∆)− ψ1(ui∆)− ψ′1(ui∆)δi∆
∣∣K (X̃(i−1)∆ − x0

h

)∣∣∣X̃i∆ − x0

∣∣∣l]

≤ aηδE

[
n∑
i=1

K

(
X̃(i−1)∆ − x0

h

)∣∣∣X̃i∆ − x0

∣∣∣l]
≤ bηδ,

where aη and bη are two sequences of positive numbers, tending to zero as η → 0. Therefore by (4.6) and
(4.7), we have

n∑
i=1

[ψ1(zi∆ + ui∆)− ψ1(ui∆)− ψ′1(ui∆)zi∆]K

(
X̃(i−1)∆ − x0

h

)
(X̃i∆ − x0)l = op(nh

l+1δ),

which implies that (4.5) holds.
Let λ be the smallest eigenvalue of the positive definite matrix U . Then, for any r ∈ Sδ, we have

Ln(r)− Ln(r0) = Ln1 + Ln2 + Ln3

=
nh

2
G1(x0)p(x0)(r − r0)TU(r − r0)(1 + op(1)) +Op(nh

3δ)

≥ nh

2
G1(x0)p(x0)λδ2(1 + op(1)) +Op(nh

3δ).

So as n→∞, we have

P

{
inf
r∈Sδ

Ln(r)− Ln(r0) >
nh

2
G1(x0)p(x0)λδ2 > 0

}
→ 1,
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which implies that (4.2) holds. From (4.2), we know that Ln(r) has a local minimum in the interior
of Sδ, so there exists solutions to equation (2.3). Let (µ̂(x0), hµ̂′(x0))T be the closest solutions to r0 =
(µ(x0), hµ′(x0))T , then

lim
n→∞

P
{

(µ̂(x0)− µ(x0))2 + h2(µ̂′(x0)− µ′(x0))
2 ≤ δ2

}
= 1,

which implies the consistency of the local M-estimators of µ(x) and µ′(x).

(ii) We prove the asymptotic normality of the local M-estimators of µ(x) and µ′(x). Let

η̂i∆ = R1(X̃i∆)− (µ̂(x0)− µ(x0))− (µ̂′(x0)− µ′(x0))(X̃i∆ − x0). (4.8)

Then we have

X̃(i+1)∆ − X̃i∆

∆
= µ(X̃i∆) + ui∆

= ui∆ + µ(X̃i∆)− µ(x0)− µ′(x0)(X̃i∆ − x0) + µ(x0) + µ′(x0)(X̃i∆ − x0)

= ui∆ +R1(X̃i∆) + µ̂(x0) + µ̂′(x0)(X̃i∆ − x0) + η̂i∆ −R1(X̃i∆)

= µ̂(x0) + µ̂′(x0)(X̃i∆ − x0) + ui∆ + η̂i∆.

Therefore by (2.3), we have

n∑
i=1

ψ1(ui∆ + η̂i∆)K

(
X̃(i−1)∆ − x0

h

)(
1

X̃i∆−x
h

)
= 0. (4.9)

Let

Tn1 =
n∑
i=1

ψ1(ui∆)K

(
X̃(i−1)∆ − x0

h

)(
1

X̃i∆−x
h

)
= Wn,

Tn2 =

n∑
i=1

ψ′1(ui∆)η̂i∆K

(
X̃(i−1)∆ − x0

h

)(
1

X̃i∆−x
h

)
,

Tn3 =
n∑
i=1

[ψ1(ui∆ + η̂i∆)− ψ1(ui∆)− ψ′1(ui∆)η̂i∆]K

(
X̃(i−1)∆ − x0

h

)(
1

X̃i∆−x
h

)
.

Then by (4.9), we have Tn1 + Tn2 + Tn3 = 0. And by (4.8), we have

Tn2 =

n∑
i=1

ψ′1(ui∆)R1(X̃i∆)K

(
X̃(i−1)∆ − x0

h

)(
1

X̃i∆−x
h

)

−
n∑
i=1

ψ′1(ui∆)K

(
X̃(i−1)∆ − x0

h

)(
(µ̂(x0)− µ(x0)) + (µ̂′(x0)− µ′(x0))(X̃i∆ − x0)

X̃i∆−x
h [(µ̂(x0)− µ(x0)) + (µ̂′(x0)− µ′(x0))(X̃i∆ − x0)]

)

=
n∑
i=1

ψ′1(ui∆)R1(X̃i∆)K

(
X̃(i−1)∆ − x0

h

)(
1

X̃i∆−x
h

)

−
n∑
i=1

ψ′1(ui∆)K

(
X̃(i−1)∆ − x0

h

)(
1 X̃i∆−x

h
X̃i∆−x

h
(X̃i∆−x)

2

h2

)(
µ̂(x0)− µ(x0)

h(µ̂′(x0)− µ′(x0))

)
=
nh3

2
G1(x0)µ′′(x0)p(x0)

(
K2

K3

)
(1 + op(1))
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− nhG1(x0)p(x0)

(
K0 K1

K1 K2

)
(1 + op(1))

(
µ̂(x0)− µ(x0)

h(µ̂′(x0)− µ′(x0))

)
=
nh3G1(x0)µ′′(x0)p(x0)

2
A(1 + op(1))− nhG1(x0)p(x0)U(1 + op(1))

(
µ̂(x0)− µ(x0)

h(µ̂′(x0)− µ′(x0))

)
:=Tn21 + Tn22,

where the third equality follows from Lemma 4.3.

Noting that for
∣∣∣X̃i∆ − x0

∣∣∣ ≤ h, we have

sup
i
|η̂i∆| = sup

i

∣∣∣R1(X̃i∆)− (µ̂(x0)− µ(x0))− (µ̂′(x0)− µ′(x0))(X̃i∆ − x0)
∣∣∣

≤ sup
i

∣∣∣R1(X̃i∆)
∣∣∣+ |µ̂(x0)− µ(x0)|+ h

∣∣µ̂′(x0)− µ′(x0)
∣∣

= Op(h
2 + (µ̂(x0)− µ(x0)) + h(µ̂′(x0)− µ′(x0)))

= op(1),

where the last equality follows from the consistency of (µ̂(x0), hµ̂′(x0)). Then, by the Assumption 12(i) and
the same argument as that in the first part of Theorem 2.6, we have

Tn3 =

n∑
i=1

[ψ1(ui∆ + η̂i∆)− ψ1(ui∆)− ψ′1(ui∆)η̂i∆]K

(
X̃(i−1)∆ − x0

h

)(
1

X̃i∆−x
h

)
= op(nh)[h2 + (µ̂(x0)− µ(x0)) + h(µ̂′(x0)− µ′(x0))]

= op(Tn22).

Therefore, by Tn1 + Tn2 + Tn3 = 0, we have(
µ̂(x0)− µ(x0)

h(µ̂′(x0)− µ′(x0))

)
=

1

nh
G−1

1 (x0)p−1(x0)U−1(1 + op(1))Wn +
h2

2
µ′′(x0)U−1A(1 + op(1)).

It follows that

√
nh

[(
µ̂(x0)− µ(x0)

h(µ̂′(x0)− µ′(x0))

)
− h2µ′′(x0)

2
U−1A(1 + op(1))

]
= G−1

1 (x0)p−1(x0)U−1(1 + op(1))
1√
nh
Wn.

So by Lemma 4.5, Assumption 5 and the Slutsky’s theorem, we have

√
nh

[(
µ̂(x0)− µ(x0)

h(µ̂′(x0)− µ′(x0))

)
− h2µ′′(x0)

2 U−1A

]
D→G−1

1 (x0)p−1(x0)U−1N(0,Σ3)

= N
(

0, G2(x0)
G2

1(x0)p(x0)
U−1V U−1

)
= N(0,Σ1).

This completes the proof.

The proof of Theorem 2.7. The proof follows from Theorem 2.6 using Lemmas 4.4 and 4.6, and is omitted
here.
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