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Abstract

In this paper, we prove that the n-collinear elements x1, o, . .., Ty, u satisfy some special relations in an
n-normed space X. Further, we prove that u = % is the only unique element in the n-normed space
X such that x1,x9,...,x,,u are n-collinear elements in X satisfying some specified inequalities. Moreover,
we prove that the Riesz theorem holds when X is a linear n-normed space. (©2016 All rights reserved.
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1. Introduction

Misiak [10} IT] defined n-normed spaces and investigated the properties of these spaces. The concept of
an n-normed space is a generalization of the concepts of a normed space and of a 2-normed space. Let X
and Y be metric spaces. A mapping f: X — Y is called an isometry if f satisfies

dY(fx7 fy) = dX(:Evy)

for all z,y € X, where dx(-,-) and dy(-,-) denote the metrics in the spaces X and Y, respectively. For
some fixed number r > 0, suppose that f preserves distance r; that is, for all z,y in X with dx(z,y) =r,
we have dy (fz, fy) = r. Then r is called a conservative (or preserved) distance for the mapping f. The
basic problem of conservative distances is whether the existence of a single conservative distance for some f
implies that f is an isometry of X into Y. It is called the Aleksandrov problem. The Aleksandrov problem
has been extensively studied by many authors (see [T, 6} [7, 9, 12 13]). In 2004, Chu et al. [7] defined
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the concept of n-isometry which is suitable for representing the notion of n-distance preserving mappings
in linear n-normed spaces and studied the Aleksandrov problem in linear m-normed spaces. For related
works we refer the reader to [2, B 4] 5] [7, 8]. The concept of n-collinear elements in the n-normed space X
plays a major rule in conservative distance, for this reason the authors studies some special relations in the
n-normed space X.

2. Basic Concepts

Definition 2.1 ([11]). Let X be a real linear space with dim X > n and

o] X x X x---xX =R

n times

be a function. Then (X, ||-,---,-||) is called a linear n-normed space if

L. ||x1,. .., zp|] =0 iff 21,..., 2, are linearly dependent;

2. ||lz1, ... @0l = ||zj1, .. ., zjnl| for any permutation (j1,42,...,jn) of (1,2,...,n);

3. 1Bz, .-y xn||l = Bl 21, - - -zl

4. |z +y,z2, .. xn|| < ||z xe, .. x|l + |y, T2, .o 2]
for all 8 € R and z,y,x1,...,2, € X. The function ||-,--- ,|| is called an n-norm on X.
Definition 2.2 ([4]). The points xg, x1, ..., 2z, of X are said to be n-collinear if for every 4, the set {x; —; :
0 <j # 14 <n} is linearly dependent.
Remark 2.3. If the points zg, x1,...,x, of X are n-collinear, then there are n scalars Ag, A\1,...,A\,_1 not
all 0 such that .

i i

Ty = .
B Y Py

Following the Definition 3.2 of [5] of 2-closed sets in 2-normed space X, we introduce the following
definition.

Definition 2.4. Let W be a subset of an n-normed space X. Then W is called an n-closed set if for
T1,%2,...,Ly, € X such that

u}ggVHxl —w, Ty —W,..., Ty, —w|| =0,
then there is wy € W such that
|21 — wo, x2 — wo, ..., Ty — wpl| = 0.

From now on, unless otherwise stated, we let X be a linear n-normed space with dim(X) > 2.

3. Main Results

We start our works by proving the following proposition.
Proposition 3.1. Given x1,...,xz, € X. Let

u_t1131—|—t2l’2—|—...—|—tnl‘n
t1+t2+---+tn

for some scalars ti,to, ..., t, not all are 0. Then u satisfies the following relations:
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=t
L ||lz1 — e,z — ¢, oy@jm1 — 6,5 — U, Tjp1 — Cyeo o, Ty — ]| = WHxl—c,...,xn—cH, for all
=
jef{2,3,...,n—1},
_ _ _ _ _ ‘E?:zti’ _ _ _
2. ||lz1 —u,x9 —c,x3 —cyo o xy —cl| = S ||z —c,xo — ¢, ... xn — ||,
=1 "7
and
st .
3. lz1 —c,xe — ey T — Cxy — ul| = WHml—c,xg—c,...,xn—cH for some ¢ € X with
=1 "7
”xl—C,CCQ—C,...,xn_CH750-

Proof. To prove 1, choose ¢ € X with ||z1 —c,z2 —¢,...,x, — || #0. Given j € {2,...,n —1}. Then

llz1 —¢, ..., xj1 — ¢, T — U, Tjyp1 — €y ..., Ty — ||
_ 2?21 1ix;
= |1 —C ..., Tj—1 — CT5 — nit"xj-‘rl —Cy...,Tp —C
Zi:l )
1 n n
:m Tl —CeveyTj—1 —Cy,— E tix; + E t; TjyTj4l — Cyevy Ty —C
=1 i=1i#j i=1,i#j
Let
w=1tic—tictitoc—toc+ ... +t;1c—tj1c+tjpic—tjpic+ ... Fic—the.
Then
n n n n
— E tix; + E t; Tj = — E t;x; + E t; T;+w
i=1,i#j i=1,i#j i=1,i#j i=1,i#j
n n
= g tilc —x;) + E ti | (zj —c).
i=1,i#j i=1,i#j
Let
n
v = g ti(c —x;)
=1,
Then
|1 —cooymjmr — x5 —u, i1 — ¢, ., |
n
1
= =i— ||z1—¢...,Tj—1 —c, v+ g ti | (zj —c¢),zj41—c,...,xp —c
> i1 il ey
= 7’:171#]
Since ¢ — x1,¢ — X2,...,C— Tj_1,C — Tj41,...,C— Tp,v are linearly dependent, we have
l|lz1 — ¢, xjm1 — e,z —w, i1 — ¢, ..., 2y — |
n
1
= = ||T1—¢...,xj—1 — ¢ g ti| (xn—¢),2j41—C...,xy —cC
‘Zi:l ti| ey
i=1,i#j
n
)Zi:l,i;ﬁj ti
= ||z —c,x9 — ¢, ...,y — ||

T

By the same argument we can prove 2 and 3. O
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The following remark is a direct application to Proposition (3.1

Remark 3.2. Let 1,29, - ,x, be elements in the n-normed space X. Then

A Wl e e 7

n
satisfies the following equalities:
1. Hxl—c,:cg—c,...,xj_l—c,xj—u,xj+1—c,...,xn—cH:%]\ml—c,...,xn—cl\
forall j €{2,3,...,n— 1},
2. ||;U1—u,mg—c,x3—c,...,xn—c||:”T_lﬂxl—c,xg—c,...,xn—cH,
and
3. Hxl—c,:cg—c,...,xn_l—c,xn—uH:%|\x1—c,x2—c,...,xn—c|\
for some ¢ € X with ||z1 —¢c,z2 —¢,..., 2, — || # 0.

Proposition 3.3. Given x1,...,xz, € X. Let

u_tlxl—l—tga:g—l-'--—i-tnmn
t1+ta+...+1,

for some scalars t1,to,--- ,t, not all are 0. Then u satisfies the following relations:
t.
L. ||$1—U,I)’Jl—C,..-,ﬁjfl—C,ijJrl—C,...,l'n—CH = lzijti|Hxl_C,"'vxn_CH?
=
forall j € {2,3,...,n},
2. |jxg —u,x9 —c,x3 — ¢y my — | = ‘ZL’fll'MHxl — ¢,y —Cy. .., Ty —Cl],
L
and
3. ||lz1 —u,x1 —c,xa — ey T — || = ’Z|£"l|ti|\|x1—c,ajg—c,...,xn—cH
=
for some c € X with ||x1 — c,xe —c,...,xy — || # 0.

Proof. Choose ¢ € X with ||z1 —c,20 —¢,..., 2, — || #0. Given j € {2,3,...,n — 1}. Then

llz1 —w, 21 —¢, ..., 251 — ¢, Tjy1 — €y ..., Ty — ||
t1xy + -+ ity
= ||z1 - ottt 7371_07-“733]'71_Caijrl_Ca---afL'n_CH
n
1
:m||(t2+-~+tn)x1—(t2$2+---+tnxn),$1—c,...,mj_l—c,xjH—c,...,xn—c||.
n

Let w = toc — toc +t3c — tsc+ - - - + t,¢c — t,c. Then

(ta+ - +tn)x1 — (toxa + -+ tpay)

(to+ -+ +tn)T1 — (ta2g + - + tpan) + w

(ta+ -+ tp)xr +talc—a2) + -+ tu(c—xp) —c(ta + -+ 1y)
(ta 4+ ty)(w1 —c) —ta(wa — ) — - — ty(xn — ©).

Let

n

v="(ta+ - +tp)(xr1 — ) — Z ti(z; — c).

i=2,i#]
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Then
llz1 —u, 21 —¢, ..., Tjm1 — ¢, Tjp1 — €., Ty — (]
e [
=—— v —ti(z; —c),x1 —Cy...,Tj_1 — C, Tji1 — Cy...,Tp —C||.
|t1++tn| YACH s L1 ) s Lj—1 s Lj41 ’ s dn
Since x1 — ¢, T2 — ¢, ..., Tj_1 — €, Tj41 — C, ..., Ty — ¢, v are linearly dependent, we have
|lz1 —u,z1 —¢,...,zj-1 — ¢, Tjp1 — ¢, .., Ty — (]
T [
=——— || —ti(z; —¢)yx1—C,. .., Tj_1 — C,Tj11 — C,. .., Ty —C
‘t1+"'+tn‘ VA » U1 ) ybj—1 s Lj+1 ) ybn
:Lﬂxl—c,m—c,...,xn—c“.
[ty + -+t
O
Theorem 3.4. Let x1,xs,...,x, be elements in the n-normed space X. Then
u_$1+1‘2+-'-+:13n
N n
1s the only unique element in X satisfying the following relations:
L |lz1 — w21 — ¢, 22 — €, oo, Tjo1 — € Tjg1 — Gy Ty — || = L[ — ¢, 2 — (|
forallj€{2,3,...,n—1},
2. ||wg —u, 23 —c, w3 —c,...,an —c|| = Lz —cma—c, ... 20 — (],
and
3. ||z —u, 1 — w0 — ¢y o1 — || = 2|z — e, — e,z —
for some c € X with ||x1 —¢c,xa —¢,...,xy — || # 0.
Proof. Choose t; =1 for all i =1,2,...,n in Proposition [3.3] Then
1+ + Ty
yu= ——
n
satisfies
L |lz1 — w21 — ¢, 22 — €., Tjo1 — €, Tjg1 — €y Ty — || = L[ — ¢, 2 — (|
for all j € {2,3,...,n— 1},
2. ||wg —u, 23— w3 —c,...,an —c|| = Loy — w2 —c, ... 1y — (],
and
3. |z —u, 1 —c,wa — ¢, o1 — || = 2|z — e — e,z — (.
To prove the uniqueness, assume that v is an element in X such that zi,xo,...,z,,v are n-collinear and v
satisfies
1. Hxl—v,:cl—c,xg—c,...,xj_l—c,xjﬂ—c,...,xn—cH:%Hxl—c,...,xn—cH
forall j €{2,3,...,n— 1},
2. ng—U,xg—c,xg—c,...,xn—cH:%Hxl—c,xg—c,...,xn—cH,
and

3. |jx1 —v, 21 —c,xe — ¢y T — | = %Hxl —C, Ty —Cy..., Ty —C||.
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Since x1 — v, 22 — v, ..., T, — v are linearly dependent, there are n scalars A1, Ag, ..., A, such that
AT+ AT+ Ay
AMAX N
Following the same argument in the proof of Proposition we conclude that v satisfies
L ||lz1 —v,21—¢,...,zj—1 — ¢, jp1 — ¢, . .. —cH—lZ )\|||x1 Cyevoy Ty —clf,
for all j € {2,3,...,n},
2. HxQ -V, X2 —CT3 —C,...,Tp _CH = |Z|n1‘)\ |H.T1 C, T2 _Cv"-awn_ch
and
[An
3. ||:L'1—U,xl—c,xQ—C,-..,xn,1 || |Z ‘||$1 $2—C,--.,$n—c||-
So for any j =1,2,...,n, we have
A _ 1
A+ 4 A n
Therefore
n|Adil=nlAl = =n| | = A+ + Ay
Hence we get
TL|)\1| = |>\1+)\2—|—...+)\n|
< M+ A2 4+ A
= [Ar] + AL+ A A
n times
Therefore
AL+ X+ o+ A = A A 44 A
So we get that A1, Ao, ..., A, are all positive or all negative. In both cases we get that v = u. O
The following corollary is a direct application to Propositions and
Corollary 3.5. Given x1,...,z, € X. Let
_ tiwy +taze + -+ tnTy
t1+to+ -+ 1ty
for some ti,to, ... t, not all zero. Then u satisfies the following relations:
Lol —eyzo — ey mjm1 — 635 — w1 — €@l = (200 il —wm — e mio —
C,Tjy1 — Cynony Ty —c||, forallj €{2,3,...,2p-1},
2. ftllles ~ a2 = e,y = el = | Sy tllles —w,m — .z — ]
3. |tn|||x1—c,m2— L1 — C Ty —ul] = | >0 t||]:n1—u X1 —C X2 — Cyuvey Tp—1 — ||
for some ¢ € X with ||z1 — ¢,z —¢,...,xy — || #0.

Our next result shows that the Riesz theorem holds when X is a linear n-normed space.
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Theorem 3.6. Let Z and W be subspaces of a linear n-normed space X and W be an n-closed proper subset

of Z with codimension greater than or equal n. For each 6 € (0,1), there are elements z1,z29,...,2n, € Z
such that
l|21,22,...,2n]| =1
and
HZl —'LU,ZQ—'IU,...,Zn_wH 20
for allw e W.

Proof. Let vy,vs,...,v, € Z()W be linearly independent. Let

a:wigévﬂvl—w,vg—w,...,vn—w||.

If @ = 0, then by definition of an n-closed set, there is wy € W such that
[lv1 — wo, v2 — wo, ..., v, —wol|| = 0.

Since v1,v9,...,v, are linearly independent we get that wg # 0. Since wy € W, we have vy, vs,...,wq are
linearly independent. On the other hand, since

||U1 —wo,vg—wo,...,vn—on :0,

we conclude that v; — wg, vo — wy,...,v, — wg are linearly dependent. Hence vy, vs, ..., v,, wo are linearly
dependent which is a contradiction. So a > 0. Given ¢ € (0,1). Since § > a, there exists wo € W such that

a
agHv1—wo,vg—wo,...,vn—on<§.
Let
’72Hvl*woavszov---,vn*woﬂ-
For each i € {1,2,...,n}, let
V; — Wo
Zi = 1 .
fyﬁ
Then 1
Hzl,zz,...,an:;Hvl—wo,vg—wg,...,vn—wOH:
Also, we have
V1 — W Un — Wo
l|z1 — w, 20 —w, ..., 2z, —wl|| = — —W,.. ., — —
e Y
1 1 1
= - Ul—wg—’ynw,...,vn—wg—’yan
Y
1 1 1
=5 U1*(w0+7”w)a---,vn*(wo+’7”w)H
0 1 1
>E Ul—(w0+V"w)a---7vn—(w0+’7"w)H
0
>—-a=20
a

for all w € W. O
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4. Open Problems

Question 1. Is u in Remark [3.2] unique?

Question 2. Let x1,x2,...,T, be elements in the n-normed space X. As an application to Corollary
_T1H+x2+ -+ Ty

n
satisfies the following equalities:
Lo |jzr —c,xa — ¢, Tjm1 — €05 — U, Tyl — Gy, || = (0 — 1|21 —w, 21 — ¢, ... 251 — ¢, @41 —
Cyooyy —cl|, forall j € {2,3,...,2,-1},
2. ||lze —uyx9 — ¢y yxpy —cl| = (n— D21 — uyx2 — ¢, ..., 20 — €|,
3. ||z —ec,we—cy oy —cyxn —ull = (n—=1)||z1 —u,x1 —c,x2 — ¢y, Tp_1 — ]
for some ¢ € X with ||z1 —¢,z2 —¢,...,xn — ¢|| # 0. Is u unique?
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