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Abstract

This paper is devoted to the solvability of generalized mixed variational inequalities in reflexive Ba-
nach spaces. We prove the existence of solutions of the generalized mixed variational inequalities for f -
quasimonotone set-valued mappings without any assumption on bounded values. Furthermore, we give
some conditions that guarantee the existence of solutions of the generalized mixed variational inequali-
ties over unbounded closed convex subsets. Our results extend and improve some recent results from the
literature. c©2016 All rights reserved.
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1. Introduction

Throughout this paper, unless otherwise stated, we use → for convergence in strong sense and ⇀ for
convergence in weak sense. Let B be a reflexive Banach space with the dual space B∗, the norm and the
dual pair between B and B∗ be denoted by ‖ · ‖ and 〈·, ·〉, respectively. Let K be a nonempty convex subset
of B, R = (−∞,+∞), f : K → R ∪ {+∞} be a proper, convex and lower semicontinuous function and
F : K → 2B

∗
be a set-valued mapping. We consider the following generalized mixed variational inequality

(in short, GMVI): find x ∈ K and x∗ ∈ F (x) such that

〈x∗, y − x〉+ f(y)− f(x) ≥ 0 for all y ∈ K. (1.1)
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This problem and its special cases has been studied by several authors and encountered in many applications,
in particular, in mechanical problems and equilibrium problems. See [1, 2, 4, 5, 6, 7, 9, 14, 15, 20, 23, 24,
25, 28, 29] and the references therein.

If F is the subdifferential of a finite-valued convex continuous function φ defined on B, then GMVI (1.1)
reduces to the following nondifferential convex optimization problem:

minx∈K{f(x) + φ(x)}. (1.2)

If f = 0 then GMVI (1.1) reduces to the following generalized variational inequality (in short, GVI):
find x ∈ K and x∗ ∈ F (x) such that

〈x∗, y − x〉 ≥ 0, for all y ∈ K. (1.3)

If f = 0 and F is a single-valued mapping, then GMVI (1.1) reduces to the following classical variational
inequality (in short, VI): find x ∈ K such that

〈F (x), y − x〉 ≥ 0, for all y ∈ K.

Since 1960s, researchers have obtained many existence results of solutions for variational inequality
problems; see [4, 6, 11, 13, 14, 16, 17, 19, 21, 22, 23, 24, 25, 27] and the references therein. Recently, By
using the generalized projection operators in [2], Wong, Ansari and Yao[22] obtained existence results for
solutions of the generalized variational inequality problem in a reflexive and smooth Banach space. By
using the Lyapunov functional G and the generalized f -projection operators in [23], Wu and Huang [25]
established existence results for solutions of GMVI (1.1) in a reflexive and smooth Banach space. By using
degree theory in [20], exceptional family of elements and the generalized f -projection operators, Wang and
Huang [21] studied solvability results for the generalized set-valued variational inequality and its special cases
in a reflexive, smooth and locally uniformly convex Banach space. Junlouchai and Plubtieng [14] presented
the existence of solutions of GVI (1.3) involved the upper semicontinuous compact contractible valued
multivalued mappings over compact convex subsets in a reflexive Banach space with a Fréchet differentiable
norm. We note that if Banach spaces is only reflexive, existence results for solutions of the corresponding
variational inequalities would not hold in [14, 21, 22, 25]. In addition, it is well known different kinds of
generalized monotonicity of the operators play an important role in the theory of variational inequalities. By
employing the notion of φ-pseudomonotonicity of the operator, Zhong and Huang [28] studied the stability of
Minty mixed variational inequality. By using the notion of the stable φ-quasimonotonicity, Tang and Huang
[19] studied the existence of solutions for the variational-hemivariational inequalities in reflexive Banach
spaces. For more details, see [10, 19, 28, 29] and the references therein.

One may ask whether existence of solutions for GMVI (1.1) can be established or not under suitable
monotonicity assumptions if Banach spaces are only reflexive.

The aim of this paper is to answer the above question. We would show that the existence of solutions
of the generalized mixed variational inequalities for f -quasimonotone set-valued mappings, and give some
conditions that guarantee the existence of solutions of the generalized mixed variational inequalities over
unbounded closed convex subsets in reflexive Banach spaces. Moreover, the operator is not supposed to
be bounded valued. The results presented in this paper extend and improve some corresponding results in
[13, 14, 17, 21, 22, 25].

This rest of the paper is organized as follows. In Section 2, we introduce some basic notations and
preliminary results. In Section 3, we established some solvability results for the generalized mixed variational
inequalities and its special cases.

2. Preliminaries

Definition 2.1. Let f : K → (−∞,+∞] be a function.
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(i) f is said to be convex if, for all pairs (x, y) ∈ K ×K and all λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y);

(ii) f is said to be lower semicontinuous if, for every x ∈ K,

lim inf
y→x

f(y) ≥ f(x).

Definition 2.2. Let F : K → 2B
∗

be a set-valued mapping with nonempty values and f : K → (−∞,+∞]
be a proper convex function.

(i) F is said to be upper semicontinuous at x0 ∈ K if, for any open set V ⊂ B∗ with F (x) ⊂ V , there exists
an open neighborhood U of x0 such that F (y) ⊂ V for all y ∈ U ∩K. If F is upper semicontinuous at
every x ∈ K, we say that F is upper semicontinuous on K, where B∗ is equipped with the w∗-topology;

(ii) F is said to be upper hemicontinuous on K if the restriction of F to every line segment of K is upper
semicontinuous with respect to the w∗-topology in B∗;

(iii) F is said to be f -upper sign-continuous at x ∈ K if the following implication holds

inf
x∗
t∈F (xt)

〈x∗t , xt − x〉+ f(xt)− f(x) ≥ 0 ⇒ sup
x∗∈F (x)

〈x∗, y − x〉+ f(y)− f(x) ≥ 0 ∀ y ∈ K,

where xt = x+ t(y − x) ∀ t ∈ (0, 1). If F is f -upper sign-continuous at every x ∈ K, we say that F is
f -upper sign-continuous on K.

Remark 2.3.

(i) If f = 0, then the f -upper sign-continuity is precisely upper sign-continuity in [9].

(ii) If F is upper hemicontinuous, then F is f -upper sign-continuous. Indeed, if the assertion is not true,
by definition of f -upper sign-continuity, we know there exists some y ∈ K, such that

〈x∗, y − x〉+ f(y)− f(x) < 0,∀ x∗ ∈ F (x).

Since the set {〈x∗, y − x〉+ f(y)− f(x) < 0} is a w∗-open neighborhood of F (x), K is convex and F
is upper hemicontinuous, setting xt = x+ t(y − x) ∈ K, for some t ∈ (0, 1) small enough, we have

〈x∗t , y − x〉+ f(y)− f(x) < 0,∀ x∗t ∈ F (xt).

xt − x = t(y − x) implies that

〈x∗t , xt − x〉+ t(f(y)− f(x)) < 0, ∀ x∗t ∈ F (xt).

Since f is convex, we know that
f(xt) ≤ tf(y) + (1− t)f(x)

and so f(xt)− f(x) ≤ t(f(y)− f(x)). Thus

〈x∗t , xt − x〉+ f(xt)− f(x) < 0,∀ x∗t ∈ F (xt),

which contradicts the assumption. So this assertion is true.

Definition 2.4. Let F : K → 2B
∗

be a set-valued mapping with nonempty values and f : K → (−∞,+∞]
be a proper function.

(i) F is said to be monotone on K if, for all (x, x∗), (y, y∗) in the graph of F ,

〈y∗ − x∗, y − x〉 ≥ 0;
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(ii) F is said to be pseudomonotone on K if, for all (x, x∗), (y, y∗) in the graph of F ,

〈x∗, y − x〉 ≥ 0 ⇒ 〈y∗, y − x〉 ≥ 0;

(iii) F is said to be f -pseudomonotone on K if, for all (x, x∗), (y, y∗) in the graph of F ,

〈x∗, y − x〉+ f(y)− f(x) ≥ 0 ⇒ 〈y∗, y − x〉+ f(y)− f(x) ≥ 0;

(iv) F is said to be quasimonotone on K if, for all (x, x∗), (y, y∗) in the graph of F ,

〈x∗, y − x〉 > 0 ⇒ 〈y∗, y − x〉 ≥ 0;

(v) F is said to be f -quasimonotone on K if, for all (x, x∗), (y, y∗) in the graph of F ,

〈x∗, y − x〉+ f(y)− f(x) > 0 ⇒ 〈y∗, y − x〉+ f(y)− f(x) ≥ 0;

Remark 2.5.

(i) If f = 0, then the f -pseudomonotonicity and f -quasimonotonicity of mappings are precisely pseu-
domonotonicity and quasimonotonicity, respectively.

(ii) We would like to point out that the f -pseudomonotonicity of mappings was used to study the F -
complementarity problems and mixed variational inequalities in Banach spaces in [28, 29]. Especially,
by using some examples, Zhong and Huang [28] showed that a f -pseudomonotone mapping may not be
pseudomonotone, a pseudomonotone mapping may not be f -pseudomonotone and a f -pseudomonotone
mapping may not be monotone in general.

(iii) It is clear that the following implications hold:

monotonicity⇒ pseudomonotonicity⇒ quasimonotonicity;

monotonicity⇒ f−pseudomonotonicity⇒ f−quasimonotonicity.

By using some examples, Tang and Huang [19] showed that the inverse direction of each implication
relationship mentioned above is false in general.

Lemma 2.6 ([8]). Let K̃ be a nonempty subset of a Hausdorff topological vector space E and Ḡ : K̃ → E
be a set-valued mapping from K̃ into E satisfying the following properties:

(i) Ḡ is a KKM mapping, i.e., for every finite subset A of K̃, convA ⊂
⋃

x∈A Ḡ(x);

(ii) Ḡ(x) is closed in E for every x ∈ K̃;

(iii) Ḡ(x̄0) is compact in E for some x̄0 ∈ K̃.

Then
⋂

x∈K̃ Ḡ(x) 6= ∅.

Lemma 2.7 ([18]). Let A1 be a nonempty convex set in a vector space and let A2 be a nonempty compact
convex set in a Hausdorff topological vector space. Suppose that g is a real-valued function on A1×A2 such
that, for each fixed a ∈ A1, g(a, ·) is lower semicontinuous and convex on A2, and for each fixed b ∈ A2,
g(·, b) is concave on A1. Then

inf
b∈A2

sup
a∈A1

g(a, b) = sup
a∈A1

inf
b∈A2

g(a, b).

3. Main results

It is known that a solution of the Minty mixed variational inequality is also a solution of the generalized
mixed variational inequality, provided that F is upper hemicontinuous with convex, w∗-compact values, see
Lemma 2.4 in [29]. Using essentially the similar argument, we show that the same is true under weaker
assumptions.
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Lemma 3.1. Let K be a nonempty convex subset of B, F : K → 2B
∗

be an operator and f : K → R∪{+∞}
be a proper and convex function. Suppose that, for every x ∈ K, there exists a convex neighborhood Vx of x
and a f -upper sign-continuous operator Sx : Vx ∩K → 2B

∗
with nonempty, w∗-compact and convex values

satisfying Sx(y) ⊆ F (y) ∀ y ∈ Vx ∩K. Moreover, if there exist x ∈ K and a convex neighborhood U of x
such that for all y ∈ K ∩ U

〈y∗, x− y〉+ f(x)− f(y) ≤ 0 ∀ y∗ ∈ F (y), (3.1)

then x ∈ K is a solution of GMVI (1.1).

Proof. We claim that for each y ∈ K ∩ U ∩ Vx, there exists x∗ ∈ Sx(x) such that

〈x∗, y − x〉+ f(y)− f(x) ≥ 0. (3.2)

For each y ∈ K ∩ U ∩ Vx, since K ∩ U ∩ Vx is convex, xt = x+ t(y − x) ∈ K ∩ U ∩ Vx ⊂ K ∩ U ∀t ∈ (0, 1).
By (3.1), we have

〈x∗t , xt − x〉+ f(xt)− f(x) ≥ 0,∀ x∗t ∈ Sx(xt)

and so
inf

x∗
t∈Sx(xt)

〈x∗t , xt − x〉+ f(xt)− f(x) ≥ 0.

From f -upper sign-continuity of Sx, it follows that

sup
x∗∈Sx(x)

〈x∗, y − x〉+ f(y)− f(x) ≥ 0.

Since Sx is w∗-compact, there exists x∗ ∈ Sx(x) ⊂ F (x) such that

〈x∗, y − x〉+ f(y)− f(x) ≥ 0 ∀ y ∈ K ∩ U ∩ Vx.

So this assertion is true.
From (3.2), it follows that

sup
y∈K∩U∩Vx

inf
x∗∈Sx(x)

〈x∗, x− y〉+ f(x)− f(y) ≤ 0.

As Sx has w∗-compact and convex values and f is convex, Lemma 2.7 implies

sup
y∈K∩U∩Vx

inf
x∗∈Sx(x)

〈x∗, x− y〉+ f(x)− f(y) = inf
x∗∈Sx(x)

sup
y∈K∩U∩Vx

〈x∗, x− y〉+ f(x)− f(y)

and so there exists some x∗ ∈ Sx(x) such that

〈x∗, y − x〉+ f(y)− f(x) ≥ 0, ∀ y ∈ K ∩ U ∩ Vx. (3.3)

For any given y ∈ K, there exists t′ ∈ (0, 1) such that x+ t′(y−x) ∈ K ∩U ∩Vx. Equation (3.3) implies
that

〈x∗, x+ t′(y − x)− x〉+ f(x+ t′(y − x))− f(x) ≥ 0.

Since f is convex, we know

f(x+ t′(y − x))− f(x) ≤ t′f(y) + (1− t′)f(x)− f(x) = t′(f(y)− f(x)).

Thus we get
〈x∗, y − x〉+ f(y)− f(x) ≥ 0.

Thus x is a solution of GMVI (1.1). The proof is complete.
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As the authors [3] pointed out if F itself is f -upper sign-continuous and has nonempty, convex and
w∗-compact values, then we can take in the lemma Vx = K, Sx = F . However, the lemma in its present
form permits application to operators whose values are unbounded, such as cone-valued operators. If f = 0,
then Lemma 3.1 reduces to Lemma 2.1 of [3].

Theorem 3.2. Let K be a nonempty bounded and closed convex subset of B and f : K → R ∪ {+∞}
be a proper and convex lower semicontinuous function. Suppose that F : K → 2B

∗
is f -quasimonotone,

and for every x ∈ K, there exists a convex neighborhood Vx of x and a f -upper sign-continuous operator
Sx : Vx ∩K → 2B

∗
with nonempty, w∗-compact and convex values satisfying Sx(y) ⊆ F (y) ∀ y ∈ Vx ∩K.

Then GMVI (1.1) has a solution.

Proof. Since K be a nonempty bounded and closed convex subset of the reflexive Banach space B, K is a
w∗-compact set. Let G : K → 2K be a set-valued mapping defined by

G(y) = {x̂ ∈ K, 〈y∗, x̂− y〉+ f(x̂)− f(y) ≤ 0 ∀ y∗ ∈ F (y)} ∀ y ∈ K.

Obviously G(y) 6= ∅ ∀ y ∈ K. We prove that G(y) is a closed subset of K. In fact, for any xn ∈ G(y) with
xn → x̄, we have

〈y∗, xn − y〉+ f(xn)− f(y) ≤ 0 ∀ y∗ ∈ F (y).

The lower semicontinuity of f implies that

〈y∗, x̄− y〉+ f(x̄)− f(y) ≤ lim inf
n→+∞

〈y∗, xn − y〉+ lim inf
n→+∞

f(xn)− f(y) ≤ 0 ∀ y∗ ∈ F (y).

This shows that G(y) ⊂ K is closed and so G(y) is w∗-compact.
Next we consider two cases regarding G: (i) G is not a KKM mapping, and (ii) G is a KKM mapping.
Case (i) If G is not a KKM mapping, then, according to the definition of KKM mapping, there exist

t1, t2, · · · , tn ∈ [0, 1], y1, y2, · · · , yn ∈ K,
n∑

i=1
ti = 1 and ȳ =

n∑
i=1

tiyi such that ȳ 6∈
⋃
G(yi), i = 1, 2, · · · , n.

Then there exists y∗i ∈ F (yi) such that

〈y∗i , ȳ − yi〉+ f(ȳ)− f(yi) > 0, i = 1, 2, · · · , n.

Since 〈y∗i , · − yi〉 + f(·) − f(yi) is lower semicontinuous at ȳ in the Banach space B, there exists a convex
neighborhood U1 of ȳ satisfying, for any y ∈ K ∩ U1, one has

〈y∗i , y − yi〉+ f(y)− f(yi) > 0, i = 1, 2, · · · , n.

f -quasimonotonicity of F implies that for all y∗ ∈ F (y)

〈y∗, y − yi〉+ f(y)− f(yi) ≥ 0, i = 1, 2, · · · , n.

Since ȳ =
n∑

i=1
tiyi and f is convex, we have

〈y∗, y − ȳ〉+ f(y)− f(ȳ) ≥ 〈y∗,
n∑

i=1

tiy −
n∑

i=1

tiyi〉+

n∑
i=1

tif(y)−
n∑

i=1

tif(yi) ≥ 0,

and so
〈y∗, ȳ − y〉+ f(ȳ)− f(y) ≤ 0 ∀ y ∈ K ∩ U1 ∀ y∗ ∈ F (y).

By Lemma 3.1, we know ȳ is a solution of GMVI (1.1).
Case (ii) If G is a KKM mapping, then Lemma 2.6 implies that x ∈

⋂
y∈K G(y) 6= ∅. Thus we have for

all y ∈ K
〈y∗, x− y〉+ f(x)− f(y) ≤ 0 ∀ y∗ ∈ F (y). (3.4)

By Lemma 3.1, we know x is a solution of GMVI (1.1). The proof is complete.
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By taking f = 0 in Theorem 3.2, we get the following corollary.

Corollary 3.3. Let K be a nonempty bounded and closed convex subset of B. Suppose that F : K → 2B
∗

is
quasimonotone, and for every x ∈ K, there exists a convex neighborhood Vx of x and a upper sign-continuous
operator Sx : Vx ∩K → 2B

∗
with nonempty, w∗-compact and convex values satisfying Sx(y) ⊆ F (y) ∀ y ∈

Vx ∩K. Then GVI (1.3) has a solution.

Remark 3.4. Although we assume that K is a bounded and closed set in reflexive Banach space B, we don’t
suppose that K is nonempty convex and weakly compact in Proposition 2.1 of [3]. In addition, Corollary
3.3 extends and improves Theorem 3.1 in [14] in the following aspects:

(i) the Banach space B may not has a Fréchet differentiable norm;

(ii) K and F (K) = ∪x∈KF (x) may not be compact in B∗;

(iii) the upper semicontinuity of the mappings is relaxed to the upper sign-continuity.

Relaxing the constraint set K of variational inequalities to the unbounded case, various coercivity con-
ditions have been used [11, 13, 14, 16, 17, 19, 21, 22]. In order to show the existence of solutions for GMVI
(1.1) in unbounded constraint set, we give the following coercivity conditions:

(C1) Given x̂ ∈ B and for any {xn} ⊂ K with ‖xn‖ → +∞ as n → +∞, and any {un} with un ∈ F (xn),
there exist a positive integer N and x̄ ∈ K such that ‖x̄− x̂‖ ≤ ‖xN − x̂‖ and

〈uN , x̄− xN 〉+ f(x̄)− f(xN ) < 0;

(C2) Given x̂ ∈ B and for any {xn} ⊂ K with ‖xn‖ → +∞ as n → +∞, and any {un} with un ∈ F (xn),
there exist a positive integer N and x̄ ∈ K such that ‖x̄− x̂‖ < ‖xN − x̂‖ and

〈uN , x̄− xN 〉+ f(x̄)− f(xN ) ≤ 0;

(C3) Given x̂ ∈ B, there exists a constant ρ > 0 such that, for any x ∈ K with ‖x − x̂‖ > ρ, there exists
x̄ ∈ K satisfying ‖x̄− x̂‖ ≤ ‖x− x̂‖ and supu∈F (x)〈u, x̄− x〉+ f(x̄)− f(x) < 0;

(C4) Given x̂ ∈ B, there exists a constant ρ > 0 such that, for any x ∈ K with ‖x − x̂‖ > ρ, there exists
x̄ ∈ K satisfying ‖x̄− x̂‖ < ‖x− x̂‖ and supu∈F (x)〈u, x̄− x〉+ f(x̄)− f(x) ≤ 0;

(C5) Suppose that there exists a vector x̃ ∈ K such that the set

L<(x̃) := {x ∈ K : infu∈F (x)〈u, x− x̃〉+ f(x)− f(x̃) < 0}

is bounded (possibly empty).

Remark 3.5.

(i) If f = 0, B = Rn is a finite dimensional space, the conditions (C1) − (C4) become the conditions
(C1)− (C4), respectively in [26]. If f = 0, B = H is a Hilbert space and F is a single-valued mapping
from H to H, then the condition (C5) becomes F satisfying the (HP) condition according to Definition
6.4 in [12]. If x̂ = 0 and f = 0, the condition (C4) becomes the condition (3) of Theorem 2.1 in [3].

(ii) We firstly claim (C4)⇒ (C2). Indeed for any {xn} ⊂ K with ‖xn‖ → +∞ as n→ +∞, and any {un}
with un ∈ F (xn), since ρ is a constant, there exists a positive integer N such that ‖xN − x̂‖ > ρ. By
(C4), there exists x̄ ∈ K such that ‖x̄− x̂‖ < ‖xN − x̂‖ and

〈uN , x̄− xN 〉+ f(x̄)− f(xN ) ≤ 0.

Hence the condition (C2) holds.
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Next, we prove that (C3)⇒ (C1). In fact, for any {xn} ⊂ K with ‖xn‖ → +∞ as n→ +∞, and any
{un} with un ∈ F (xn), since ρ is a constant, there exists a positive integer N such that ‖xN − x̂‖ > ρ.
By (C3), there exist a positive integer N and x̄ ∈ K such that ‖x̄− x̂‖ ≤ ‖xN − x̂‖ and

〈uN , x̄− xN 〉+ f(x̄)− f(xN ) < 0.

Hence the condition (C1) holds.

(iii) Obviously (C5)⇒ (C4). Indeed, if the condition (C5) holds, then there exists x̃ ∈ K such that L<(x̃)
is bounded or empty. In this case, there exists ρ3 > 0 such that L<(x̃) ⊂ B(x̃, ρ3), where

B(x̃, ρ3) = {x ∈ K : ‖x− x̂‖ ≤ ρ3}.

Given x̂ ∈ K, we take ρ = max{ρ3, ‖x̃− x̂‖}. If x ∈ K is an arbitrary element such that ‖x− x̂‖ > ρ,
then we have x 6∈ L<(x̃), that is,

infu∈F (x)〈u, x− x̃〉+ f(x)− f(x̃) ≥ 0

and so
sup

u∈F (x)
〈u, x̃− x〉+ f(x̃)− f(x) ≤ 0.

For any x ∈ K such that ‖x− x̂‖ > ρ, taking x̄ = x̃, we know that the condition (C4) holds.

Theorem 3.6. Let K be a nonempty and closed convex subset of B and f : K → R ∪ {+∞} be a proper
and convex lower semicontinuous function. Suppose that F : K → 2B

∗
is f -quasimonotone, and for every

x ∈ K, there exists a convex neighborhood Vx of x and a f -upper sign-continuous operator Sx : Vx∩K → 2B
∗

with nonempty, w∗-compact and convex values satisfying Sx(y) ⊆ F (y) ∀ y ∈ Vx ∩K. If the condition (C1)
holds, then GMVI (1.1) has a solution.

Proof. Let Kn = {x ∈ K : ‖x − x̂‖ ≤ n}, (n = 1, 2, · · · ). We note that Kn is a nonempty bounded and
closed convex subset of B. Without loss of generality, we assume that it starts from some n. By Theorem
3.2, there exist xn ∈ Kn and un ∈ F (xn) such that

〈un, y − xn〉+ f(y)− f(xn) ≥ 0 ∀ y ∈ Kn. (3.5)

If the sequence {xn} is unbounded, and without loss of generality, we assume that ‖xn‖ → +∞. The
condition (C1) implies that there exist a positive integer N and x̄ ∈ K such that ‖x̄− x̂‖ ≤ ‖xN − x̂‖ ≤ N
(and hence x̄ ∈ KN ) and

〈uN , x̄− xN 〉+ f(x̄)− f(xN ) < 0 ∀ uN ∈ F (xN ).

This contradicts with (3.5). Hence {xn} is bounded and so there exist a positive integer M such that
‖xn − x̂‖ ≤ M. Let n = M + 1 in (3.5). For each y ∈ K, we can choose t ∈ (0, 1) such that z =
xn + t(y − xn) ∈ Kn. Setting y = z in (3.5), we have

〈un, xn + t(y − xn)− xn〉+ f(xn + t(y − xn))− f(xn) ≥ 0. (3.6)

Since f is convex, we know that

f(xn + t(y − xn)) ≤ tf(y) + (1− t)f(xn)

and so f(xn + t(y − xn)) − f(xn) ≤ tf(y) + (1 − t)f(xn) − f(xn) = t(f(y) − f(xn)). From (3.6), it follows
that

〈un, y − xn〉+ f(y)− f(xn) ≥ 0.

Since y is arbitrary, xn is a solution of GMVI (1.1). The proof is complete.
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Theorem 3.7. Let K be a nonempty and closed convex subset of B and f : K → R ∪ {+∞} be a proper
and convex lower semicontinuous function. Suppose that F : K → 2B

∗
is f -quasimonotone, and for every

x ∈ K, there exists a convex neighborhood Vx of x and a f -upper sign-continuous operator Sx : Vx∩K → 2B
∗

with nonempty, w∗-compact and convex values satisfying Sx(y) ⊆ F (y) ∀ y ∈ Vx ∩K. If the condition (C2)
holds, then GMVI (1.1) has a solution.

Proof. First, we will show that if there is no solution of GMVI (1.1), then it follows from the condition (C2)
that the condition (C1) holds. Since the condition (C2) holds, then given any x̂ ∈ B, for any {xn} ⊂ K with
‖xn‖ → +∞ as n→ +∞, and any {un} with un ∈ F (xn), there exist a positive integer N and x̄ ∈ K such
that ‖x̄− x̂‖ < ‖xN − x̂‖ and

〈uN , x̄− xN 〉+ f(x̄)− f(xN ) ≤ 0. (3.7)

Since there is no solution of GMVI (1.1), xN is not a solution of GMVI (1.1), that is, there exists y0 ∈ K
such that

〈uN , y0 − xN 〉+ f(y0)− f(xN ) < 0. (3.8)

Since ‖xN − x̂‖ − ‖x̄− x̂‖ > 0, we can select sufficiently small a0 ∈ (0, 1) such that

a0‖y0 − x̂‖ ≤ (1− a0)(‖xN − x̂‖ − ‖x̄− x̂‖).

Put z = (1− a0)x̄+ a0y0. Since K is convex, we have z ∈ K, and

‖z − x̂‖ ≤ (1− a0)‖x̄− x̂‖+ a0‖y0 − x̂‖ ≤ (1− a0)‖xN − x̂‖ ≤ ‖xN − x̂‖.

Since f is convex, by (3.7) and (3.8) we get

〈uN , z − xN 〉+ f(z)− f(xN )

≤ (1− a0)〈uN , x̄− xN 〉+ a0〈uN , y0 − xN 〉+ (1− a0)f(x̄) + a0f(y0)− f(xN )

= (1− a0)〈uN , x̄− xN 〉+ (1− a0)(f(x̄)− f(xN )) + a0〈uN , y0 − xN 〉+ a0(f(y0)− f(xN ))

≤ a0〈uN , y0 − xN 〉+ a0(f(y0)− f(xN )) < 0.

Hence the condition (C1) holds. Theorem 3.6 implies that GMVI (1.1) has a solution. This is a contradiction.
Therefore, GMVI (1.1) has a solution. The proof is complete.

Combining Remark 3.5 and Theorems 3.6 and 3.7, we obtain the following corollary.

Corollary 3.8. Let K be a nonempty and closed convex subset of B and f : K → R∪{+∞} be a proper and
convex lower semicontinuous function. Suppose that F : K → 2B

∗
is f -quasimonotone, and for every x ∈ K,

there exists a convex neighborhood Vx of x and a f -upper sign-continuous operator Sx : Vx ∩K → 2B
∗

with
nonempty, w∗-compact and convex values satisfying Sx(y) ⊆ F (y) ∀ y ∈ Vx ∩K. If one of the conditions
(C3 − C5) holds, then GMVI (1.1) has a solution.

Remark 3.9. We would like to mention that the differences between Theorems 3.6 and 3.7 and Theorem 4.2
in [25] lie in the following aspects: Theorem 4.2 in [25] asked the condition (i) and (ii) involved the Lyapunov
functional G introduced in [23] hold, while Theorems 3.6 and 3.7 of this paper have no any assumption about
the Lyapunov functional G; (ii) Theorem 4.2 in [25] required that B is a reflexive and smooth Banach space,
but Theorems 3.6 and 3.7 need B is only a reflexive Banach space. Moreover, Theorems 3.6 and 3.7 improve
and extend Theorem 4.1 in [20] and Theorem 4.1 in [21] in the following aspects: (i) B may not be strictly
convex and smooth; (ii) F may not equal to J − T and may not be a compact mapping. (iii) By Remark
3.5, the condition (C4) and (C2) is weaker than the one that L<(x̂) is bounded (possibly empty) in Theorem
4.1 of [20].

From Theorems 3.6, 3.7 and Remark 3.5, it is easy to obtain the following corollary.
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Corollary 3.10. Let K be a nonempty bounded and closed convex subset of B. Suppose that F : K → 2B
∗

is
quasimonotone, and for every x ∈ K, there exists a convex neighborhood Vx of x and a upper sign-continuous
operator Sx : Vx ∩K → 2B

∗
with nonempty, w∗-compact and convex values satisfying Sx(y) ⊆ F (y) ∀ y ∈

Vx ∩K. Assume that one of the following conditions holds:

(C ′1) Given x̂ ∈ B and for any {xn} ⊂ K with ‖xn‖ → +∞ as n → +∞, and any {un} with un ∈ F (xn),
there exist a positive integer N and x̄ ∈ K such that ‖x̄− x̂‖ ≤ ‖xN − x̂‖ and

〈uN , x̄− xN 〉 < 0;

(C ′2) Given x̂ ∈ B and for any {xn} ⊂ K with ‖xn‖ → +∞ as n → +∞, and any {un} with un ∈ F (xn),
there exist a positive integer N and x̄ ∈ K such that ‖x̄− x̂‖ < ‖xN − x̂‖ and

〈uN , x̄− xN 〉 ≤ 0;

(C ′3) Given x̂ ∈ B, there exists a constant ρ > 0 such that, for any x ∈ K with ‖x − x̂‖ > ρ, there exists
x̄ ∈ K satisfying ‖x̄− x̂‖ ≤ ‖x− x̂‖ and supu∈F (x)〈u, x̄− x〉 < 0;

(C ′4) Given x̂ ∈ B, there exists a constant ρ > 0 such that, for any x ∈ K with ‖x − x̂‖ > ρ, there exists
x̄ ∈ K satisfying ‖x̄− x̂‖ < ‖x− x̂‖ and supu∈F (x)〈u, x̄− x〉 ≤ 0;

(C ′5) Suppose that there exists a vector x̃ ∈ K such that the set

L<(x̃) := {x ∈ K : infu∈F (x)〈u, x− x̃〉 < 0}

is bounded (possibly empty).

Then GVI (1.3) has a solution.

Remark 3.11. Corollary 3.10 improves and extends Theorem 4.2 in [21] in the following aspects: (i) If x̂ = 0,
then the condition (C ′4) is precisely the condition (C3) in Theorem 4.2 of [21]. According to Remark 3.5,
we know the condition (C ′2) is weaker than the condition (C3) in Theorem 4.2 of [21]. (ii) B may not be
strictly convex and smooth; (iii) F may not be equivalent to J − T and may not be a compact mapping.
Thus Corollary 3.10 also improves and extends Theorem 5 in [13] and Corollary 4.3 in [17].

Corollary 3.10 extends and improves Theorems 3.4 and 3.6 in [14] in the following aspects: (i) the Banach
space B may not has a Fréchet differentiable norm; (ii) F (B) = ∪x∈KF (x) may not be compact in B∗; (iii)
the upper semicontinuity of the mappings is relaxed to the sign-upper continuity; (iv) the weakly convergent
sequence in K may not be norm convergent.

We note that the differences between Theorem 3.2 in [22] and Corollary 3.10 lie in the following aspects:
(i) Theorem 3.2 in [22] asked G(y0) is compact and the set-valued mapping T is upper semicontinuous,
while Corollary 3.10 of this paper has no any compactness assumption and requires F is a quasimonotone
mapping; (ii) Theorem 3.2 in [22] required that E is a reflexive and smooth Banach space, but Corollary
3.10 needs B is only a reflexive Banach space.

We note that the differences between Theorem 2.1 in [3] and Corollary 3.10 lie in the following aspects:
(i) although we assume that B is a reflexive Banach space, we don’t suppose that K ∩ B̄(0, ρ′) is nonempty
weakly compact in Theorem 2.1 of [3]. In addition, if x̂ = 0, then the condition (C ′4) reduces to the condition
(4) in Theorem 2.1 of [3].
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