
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 3197–3202

Research Article

Tripled fixed point theorems for contractions in
partially ordered L-fuzzy normed spaces

Juan Mart́ınez-Morenoa, Poom Kumamb,c,∗
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Abstract

Recently, Kumam, et al. in [P. Kumam, J. Martinez-Moreno, A. Roldán, C. Roldán, J. Inequal. Appl.,
2014 (2014), 7 pages] proved some tripled fixed point theorems in fuzzy normed spaces. In this paper, we
give a new version of the result of Kumam, et al. by removing some restrictions. In our result, the t-norms
are not required to be the minimum ones. c©2016 All rights reserved.
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1. Introduction

The tripled fixed point theorem and its applications in metric spaces are firstly obtained by Berinde and
Borcut [10]. Recently, some authors considered tripled fixed point (or coincidence point) theorems in fuzzy
metric spaces; see [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 16, 17, 18, 20].

In [15], the authors gave the following result,

Theorem 1.1. Let (X,v) be a partially ordered set and (X,P, T ) be a complete FNS such that T is of
H-type and T (a, a) ≥ a for all a ∈ [0, 1]. Let k ∈ (0, 1) be a number and F : X×X×X → X and g : X → X
be two mappings such that F has the mixed g-monotone property and
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P(F (x, y, z)− F (u, v, w), kt) ≥L T 3 (P(x− u, t),P(y − v, t),P(z − w, t)) ,

for which gx v gu and gy w gv and gz v gw, where 0 < k < 1. Suppose either

(a) F is continuous or

(b) X has the sequential g-monotone property.

If there exist x0, y0, z0 ∈ X such that gx0 v F (x0, y0, z0), gy0 w F (y0, x0, y0) and gz0 v F (z0, y0, x0), then
F and g have a tripled coincidence point.

The hypothesis T (a, a) ≥ a, for all a ∈ X (which we can find in the previous theorem) is a very restrictive
hypothesis, because there is an unique example of t-norm verifying this property.

Lemma 1.2 ([21]). The only t-norm T satisfying T (a, a) ≥ a, for all a ∈ X, is the minimum t-norm.

Therefore, the Theorem 1.1 is very restrictive because it is only valid in fuzzy metric spaces under the
minimum t-norm. In this paper, by modifying the conditions on the result of Kumam et al. [15], we give a
new tripled coincidence point (or fixed point) theorem in partial order fuzzy metric spaces. In our result,
we do not require that the t-norm T satisfies that T (a, a) ≥ a, for a ∈ X.

2. Preliminaries

Definition 2.1 ([12]). Let L = (L,≤L) be a complete lattice and U a non-empty set called universe. An
L-fuzzy set on U is defined as a mapping A : U → L. For each u in U , A(u) represents the degree (in L) to
which u satisfies A.

Lemma 2.2 ([12]). Consider the set L∗ and operation ≤L∗ defined by

L∗ =
{

(x1, x2) ∈ [0, 1]2 s.t. x21 + x22 ≤ 1
}
,

(x1, x2) ≤ (y1, y2) ⇔ x1 ≤ y1 and x2 ≥ y2, for all (x1, x2), (y1, y2) ∈ L∗. Then (L∗,≤L∗) is a complete
lattice.

Classically, a triangular norm (t-norm) T on ([0, 1],≤) is defined as an increasing, commutative, as-
sociative mapping T : [0, 1]2 → [0, 1] satisfying T (1, x) = x, for all x ∈ [0, 1]. These definitions can be
straightforwardly extended to any lattice L = (L,≤L). Define first 0L = inf L and 1L = supL.

Definition 2.3 ([19]). A t-norm on L is a mapping T : L2 −→ L satisfying the following conditions:

1. T (x, 1L) = x,

2. T (x, y) = T (y, x),

3. T (x, T (y, z)) = T (T (x, y), z),

4. If x ≤L x′ and y ≤L y′, then T (x, y) ≤L T (x′, y′).

A t-norm can also be defined recursively as an (n+ 1)-ary operation (n ∈ N) by T 1 = T and

T n(x1, ..., xn+1) = T (T n−1(x1, ..., xn), xn+1).

Definition 2.4 ([19]). A negation on L is any strictly decreasing mapping N : L→ L satisfying N (0L) = 1L
and N (1L) = 0L. If N (N (x)) = x, for all x ∈ L, then N is called an involute negation.

In this paper N : L → N is fixed. The negation Ns on ([0, 1],≤), defined, for all x ∈ [0, 1] by Ns(x) =
1− x, is called the standard negation on ([0, 1],≤).
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Definition 2.5 ([13]). For any a ∈ [0, 1], let the sequence {T na}∞n=1 be defined by T 1a = a and T na =
T (T n−1a, a). Then A t-norm T is said to be of H-type if the sequence {T na}∞n=1 is equicontinuous at a = 1.

Definition 2.6 ([19]). An L-fuzzy normed space is a triple (X,P, T ), where X is a vector space, T is a
continuous t-norm and P : X × (0,∞)→ L is a L-fuzzy set such that, for all x, y ∈ X and t, s > 0,

(F1) P(x, t) >L 0L;

(F2) P(x, t) = 1L for all t > 0 if and only if x = 0;

(F3) P(αx, t) = P(x, t
|α|) for all α 6= 0;

(F4) T (P(x, t),P(y, s)) ≤L P(x+ y, t+ s);

(F5) P(x, ·) : (0,∞)→ L is continuous;

(F6) limt→∞ P(x, t) = 1L and limt→0 P(x, t) = 0L.

Lemma 2.7 ([19]). Let P be an L-fuzzy norm on X. Then

1. P(x, ·) is a non-decreasing function on (0,∞);

2. P(x− y, t) = P(y − x, t), for all x, y ∈ X and t ∈ (0,+∞).

Definition 2.8 ([19]). Let (X,P, T ) be an L-fuzzy normed space.

1. A sequence {xn} ⊂ X is called a Cauchy sequence if, for any ε ∈ L \ {0L} and t > 0, there exists
n0 ∈ N such that P(xn − xm, t) >L N (ε) for all n,m ≥ n0.

2. A sequence {xn} ⊂ X is said to be convergent to a point x ∈ X, denoted by xn → x or by limn→∞ xn =
x, if, for any ε ∈ L \ {0L} and t > 0, there exists n0 ∈ N such that P(xn−x, t) >L N (ε) for all n ≥ n0.

3. An L-fuzzy normed space in which every Cauchy sequence is convergent is said to be complete.

Lemma 2.9 ([13]). Let (X,P, T ) be an L-fuzzy normed space such that T is of H-type. Let {xn} be a
sequence in X. If

P(xn+1 − xn, kt) ≥L P(xn − xn−1, t)

for some k > 1, n ∈ N and t > 0, then the sequence {xn} is Cauchy.

Definition 2.10 ([10]). Let F : X3 → X and g : X → X be two mappings.

• We say that F and g are commuting if gF (x, y, z) = F (gx, gy, gz) for all x, y, z ∈ X.

• A point (x, y, z) ∈ X3 is called a tripled coincidence point of the mappings F and g if F (x, y, z) = gx,
F (y, x, y) = gy and F (z, y, x) = gz. If g is the identity, (x, y, z) is called a tripled fixed point of F .

• If (X,v) is a partially ordered set, then F is said to have the mixed g-monotone property if it verifies
the following properties:

x1, x2 ∈ X, gx1 v gx2 =⇒ F (x1, y, z) v F (x2, y, z), ∀y ∈ X,
y1, y2 ∈ X, gy1 v gy2 =⇒ F (x, y1, z) w F (x, y2, z), ∀x ∈ X,
z1, z2 ∈ X, gz1 v gz2 =⇒ F (x, y, z1) v F (x, y, z2), ∀x ∈ X.

If g is the identity mapping, then F is said to have the mixed monotone property.

• If (X,v) is a partially ordered set, then X is said to have the sequential g-monotone property if it
verifies the following properties:

(B1) If {xn} is a non-decreasing sequence and limn→∞ xn = x, then gxn v gx for all n ∈ N.

(B2) If {xn} is a non-increasing sequence and limn→∞ yn = y, then gyn w gy for all n ∈ N.

If g is the identity mapping, then X is said to have the sequential monotone property.
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Definition 2.11 ([19]). Let X and Y be two L-fuzzy normed spaces. A function f : X → Y is said to be
continuous at a point x0 ∈ X if, for any sequence {xn} in X converging to x0, the sequence {f(xn)} in Y
converges to f(x0). If f is continuous at each x ∈ X, then f is said to be continuous on X.

The following lemma proved by Haghi et al. [14] is useful for our main results:

Lemma 2.12. Let X be a nonempty set and g : X → X be a mapping. Then there exists a subset E ⊂ X
such that g(E) = g(X) and g : E → X is one-to-one.

3. Main results

Theorem 3.1. Let (X,v) be a partially ordered set and (X,P, T ) be a complete L-fuzzy normed space,
such that T is of H-type. Let k ∈ (0, 1) be a number and F : X ×X ×X → X be mapping such that F has
the mixed monotone property and

P(F (x, y, z)− F (u, v, w), kt) ≥L T 3 (P(x− u, t),P(y − v, t),P(z − w, t)) , (3.1)

for which x v u, y w v and z v w . Suppose that either:

(a) F is continuous or

(b) X has the sequential monotone property.

If there exist x0, y0, z0 ∈ X such that x0 v F (x0, y0, z0), y0 w F (y0, x0, y0) and z0 v F (z0, y0, x0), then F
has a tripled fixed point. Furthermore, if x0 and y0 are comparable, then x = y, that is, x = F (x, x).

Proof. As in [1] starting with x0, y0, z0 ∈ X such that x0 v F (x0, y0, z0), y0 w F (y0, x0, y0) and z0 v
F (z0, y0, x0), one can define inductively three sequences {xn}, {yn}, {zn} ⊂ X such that xn+1 = F (xn, yn, zn),
yn+1 = F (yn, xn, yn) and zn+1 = F (zn, yn, xn).

Define
δn(t) = T 3 (P(xn − xn+1, t),P(yn − yn+1, t),P(zn − zn+1, t)) .

Continuing as in [1], we have

P(xn − xn+1, kt) ≥L δn−1(t), P(yn − yn+1, kt) ≥L δn−1(t) (3.2)

and
P(zn − zn+1, kt) ≥L T 2 (δn−1(t), δn−1(t)) . (3.3)

It follows that

δn(kt) = T 3 (P(xn − xn+1, kt),P(yn − yn+1, kt),P(zn − zn+1, kt)) ≥L T 4 (δn−1(t))

and so

1 ≥L δn(t) ≥L T 4

(
δn−1

(
t

k

))
≥L · · · ≥L T 4n

(
δ0

(
t

kn

))
. (3.4)

Since limn→∞ δ0
(
t
kn

)
= 1 for all t > 0, we have limn→∞ δn (t) = 1 for all t > 0.

On the other hand, we have

t(1− k)(1 + k + · · ·+ km−n−1) < t, ∀m > n, 0 < k < 1.

By Definition 2.6, we get

P(xn − xm, t) ≥L P
(
xn − xm, t(1− k)(1 + k + · · ·+ km−n−1)

)
≥L T 2

(
P(xn − xn+1, t(1− k)),P

(
xn+1 − xm, t(1− k)(k + · · ·+ km−n−1)

))
≥L T m−n (P(xn − xn+1, t(1− k)),P (xn+1 − xn+2, t(1− k)k) ,

· · · ,P
(
xm−1 − xm, t(1− k)km−n−1

))
.

(3.5)
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It follows from (3.4) and (3.5) that

P(xn − xm, t) ≥ T m−n
([
T 4n

(
δ0

(
t(1− k)

kn

))]
, · · · ,

[
T 4m−1

(
δ0

(
t(1− k)

kn

))])
= T 4m−4n

(
δ0

(
t(1− k)

kn

))
.

By hypothesis, since T is a t-norm of H-type, there exists 0 < η < 1 such that T p(a) > 1 − ε for all
a ∈ (1− η, 1] and p ≥ 1. Since

lim
n→∞

δ0

(
t(1− k)

kn

)
= 1,

there exists n0 such that
P(xn − xm, t) > 1− ε, ∀m > n > n0.

Therefore, {xn} is a Cauchy sequence. Similarly, {yn} and {zn} are Cauchy sequences. We can continue as
in [1] to complete the proof.

Theorem 3.2. Let (X,P, T ) be an L-fuzzy normed space such that T is of H-type, v be a partial order
on X. Let F : X ×X ×X → X and g : X → X be two mappings such that F has the mixed g-monotone
property and

P(F (x, y, z)− F (u, v, w), kt) ≥L T 3 (P(gx− gu, t),P(gy − gv, t),P(gz − gw, t))

for which gx v gu, gy w gv and gz v gw, where 0 < k < 1. Assume that g(X) is complete, F (X3) ⊂ g(X)
and g is continuous. Suppose either

(a) F is continuous or

(b) X has the sequential g-monotone property.

If there exist x0, y0, z0 ∈ X such that gx0 v F (x0, y0, z0), gy0 w F (y0, x0, y0) and gz0 v F (z0, y0, x0), then
F and g have a tripled coincidence point.

Proof. As in Theorem 2.2 in [1].

4. A note on “On the tripled fixed point and tripled coincidence point theorems in fuzzy
normed spaces”

Recently, R. Saadati, et al. in [20] have studied, improved and extended results presented by Abbas et
al. to L-fuzzy normed spaces (see [1]).

In order to state our final comments, we give the main results given in [20]:

Theorem 4.1 ([20], Theorem 5.2). Let (X,P, T ) be an L-fuzzy normed space, v be a partial order on X.
Let F : X ×X ×X → X and g : X → X be two mappings such that F has the mixed g-monotone property
and

P(F (x, y, z)− F (u, v, w), kt) ≥L T 3 (P(gx− gu, t),P(gy − gv, t),P(gz − gw, t))
for which gx v gu, gy w gv and gz v gw, where 0 < k < 1. Assume that g(X) is complete, F (X3) ⊂ g(X)
and g is continuous. Suppose either

(a) F is continuous or

(b) X has the sequential monotone property.

If there exist x0, y0, z0 ∈ X such that gx0 v F (x0, y0, z0), gy0 w F (y0, x0, y0) and gz0 v F (z0, y0, x0), then
F and g have a tripled coincidence point.

The proof given by the authors is decisively based on Lemma 2.9. However, Lemma 2.9 is incorrectly
enunciated in [20]. They omitted that the t-norm has to be of H-type. As a consequence, all results in the
mentioned paper were not correctly proved. Moreover, we can find another mistake in the Theorem 4.1,
because it is necessary that X has the sequential g-monotone property. But it is only a misprint.
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