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Abstract
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1. Introduction

Consider the following discrete fourth-order boundary value problem
∆4u(t− 2) + η∆2u(t− 1)− ξu(t)
= λf(t, u(t)) + µg(t, u(t)) + h(u(t)), t ∈ [a+ 1, b+ 1]Z,
u(a) = ∆2u(a− 1) = 0, u(b+ 2) = ∆2u(b+ 1) = 0,

(1.1)

where ∆ denotes the forward difference operator defined by ∆u(k) = u(k+1)−u(k), ∆nu(t) = ∆(∆n−1u(t)),
a, b are two fixed integers, [a+1, b+1]Z is the discrete interval {a+1, a+2, · · · , b+1}. f, g : [a+1, b+1]Z×R→
R are two continuous functions, h : R → R is a strictly monotone Lipschitz continuous function with
Lipschitzian constant L ≥ 0 and h(0) = 0. η, ξ, λ, µ are four real parameters and satisfy

η < 8 sin2 π

2(b− a+ 2)
, η2 + 4ξ ≥ 0, ξ + 4η sin2 π

2(b− a+ 2)
< 16 sin4 π

2(b− a+ 2)
, λ > 0, µ ≥ 0,
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where η, ξ are given in [8].
In recent years, much attention has been paid to fourth-order difference equations which are derived

from various discrete elastic beam problems. A great deal of work has been done in the research of the
existence and multiplicity of solutions for discrete fourth-order boundary value problems by using classical
methods, such as the fixed point theory and fixed point index theory [1, 2, 3, 9, 10, 15, 19], the critical point
theory [7, 8, 11, 16], Krein-Rutman Theorem and bifurcation theory [12, 13, 14, 18] and references therein
for details.

In 2009, by using the Guo-Krasnosel’skii’s fixed point theorem and Leggett-Williams Theorem, Anderson,
et al. [1] considered the existence, multiplicity and nonexistence of nontrivial solutions to the following
problem {

∆4u(t− 2)− η∆2u(t− 1) = λf(t, u(t)), t ∈ [a+ 1, b− 1]Z,
u(a) = ∆2u(a− 1) = 0, u(b) = ∆2u(b− 1) = 0.

(1.2)

Moreover, the clever use of a symmetric Green’s function relaxes the nonnegative assumption on the nonlinear
term f .

Later, on this basis, depending on the critical point theory and monotone operator theory, He and Su
[8] investigated the following problem{

∆4u(t− 2) + η∆2u(t− 1)− ξu(t) = λf(t, u(t)), t ∈ [a+ 1, b+ 1]Z,
u(a) = ∆2u(a− 1) = 0, u(b+ 2) = ∆2u(b+ 1) = 0,

(1.3)

which is the special case of (1.1), i.e., when µ = 0 and h(u(t)) = 0. They gave the sufficient conditions for
the existence and nonexistence of nontrivial solutions when λ lies in some suitable intervals and η, ξ satisfy
certain conditions, respectively.

Motivated by the above results, we will discuss the existence of three and infinitely many solutions of
the fourth-order discrete with multiple parameters boundary value problems (1.1) by choosing the suitable
η, ξ, λ and µ. The main tools that we use are two critical point theorems due to Bonanno and Marano [6]
and Bonanno and Bisci [4], which are two more precise versions of Theorem 3.2 in [5] and Theorem 2.5 in
[17]. In details, using the critical point theory, Theorem 2.6 in [6], we obtain the existence of three nontrivial
solutions of (1.1) in Theorem 3.1 by establishing precise interval for λ and µ and this theorem extends the
Theorem 4.7 in [8]. In Theorem 3.1, we require on the primitive of the function f both a growth more
than quadratic in a suitable interval and a growth less than quadratic at infinity and f is nonnegative on
a interval, moreover on g an asymptotic condition is requested. Furthermore, using Bonanno and Bisci’s
theorem, Theorem 2.1 in [4], requiring that the nonlinear term f has a suitable oscillating behavior at
infinity, in Theorem 4.1, we establish the existence of a precise interval Λ such that for every λ and every
continuous function g which satisfies a certain growth at infinity, and choosing µ sufficiently small, the
problem (1.1) admits an unbounded sequence of weak solutions.

The rest of this paper is arranged as follows. In Section 2, we will construct the suitable Banach space
and appropriate functionals corresponding to (1.1) and give our basic tools. Moreover, we will show some
other preliminaries. In Section 3, under suitable hypotheses, we prove that problem (1.1) admits three
nontrivial solutions. In Section 4, we show the conclusion of infinitely many solutions for problem (1.1). In
Section 5, an example will be given to demonstrate our main results in Section 3 and Section 4 under the
corresponding conditions, respectively.

2. Variational Framework and Main Tools

First, we are going to give the Green’s function and the corresponding variation framework associated
with (1.1). We introduce some basic notations. Let

E :=
{
u = {u(t)}b+1

t=a+1 : u(t) ∈ R
}
.
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Then E is a b− a+ 1-dimensional Hilbert space under the following inner product and norm

(u, υ) =

b+1∑
t=a+1

u(t)υ(t), ‖u‖ =

(
b+1∑
t=a+1

|u(t)|2
) 1

2

, u, v ∈ E.

We can obtain the following inequality

max
t∈[a+1,b+1]Z

|u(t)| ≤ ‖u‖. (2.1)

From [8], we have

∆4(t− 2) + η∆2u(t− 1)− ξu(t) = (−∆2L+ r1)(−∆2L+ r2)u(t) = (−∆2L+ r2)(−∆2L+ r1)u(t),

where u = {u(t)}b+3
t=a−1, Lu(t) = u(t − 1), t ∈ [a + 1, b + 1]Z and r1, r2 are roots of the polynomial

P (r) = r2 + ηr − ξ. And by the assumptions on η, ξ, we see that r1 ≥ r2 > −4 sin2 π
2(b−a+2) .

Lemma 2.1 ([8], Lemma 2.1). Let υ ∈ E and i ∈ {1, 2} be fixed. Then the problem{
−∆2u(t− 1) + riu(t) = υ(t), t ∈ [a+ 1, b+ 1]Z,
u(a) = 0, u(b+ 2) = 0

has a unique solution

u(t) =
b+1∑

k=a+1

Gi(t, k)υ(k), t ∈ [a, b+ 2]Z,

where Gi(t, k) is given by

Gi(t, k) =
1

ρ(1, 0)ρ(b+ 2, a)

{
ρ(t, a)ρ(b+ 2, k), a ≤ t ≤ k ≤ b+ 1,

ρ(k, a)ρ(b+ 2, t), a+ 1 ≤ k ≤ t ≤ b+ 2,

with

(i) ρ(t, k) = sinϕ(t− k), ϕ := arctan

√
−ri(ri+4)

2+ri
, when −4 sin2 π

2(b−a+2) < ri < 0;

(ii) ρ(t, k) = t− k, when ri = 0;

(iii) ρ(t, k) = ιt−k − ιk−t, ι :=
ri+2+

√
ri(ri+4)

2 , when ri > 0.

Lemma 2.2 ([8], Lemma 2.2). Let ω ∈ E be fixed. Then the linear discrete fourth-order boundary value
problem {

∆4u(t− 2) + η∆2u(t− 1)− ξu(t) = ω(t), t ∈ [a+ 1, b+ 1]Z,
u(a) = ∆2u(a− 1) = 0, u(b+ 2) = ∆2u(b+ 1) = 0

has a unique solution u = {u(t)}b+3
t=a−1 with

u(t) =
b+1∑

k=a+1

(
b+1∑

s=a+1

G1(t, s)G2(s, k)

)
ω(k)

=

b+1∑
k=a+1

(
b+1∑

s=a+1

G2(t, s)G1(s, k)

)
ω(k), t ∈ [a+ 1, b+ 1]Z,

and
u(a− 1) = −u(a+ 1), u(a) = 0, u(b+ 2) = 0, u(b+ 3) = −u(b+ 1).
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Lemma 2.3 ([8], Lemma 2.3). K : E → E is a linear continuous operator, furthermore K is symmetric,
i.e., (Ku, υ) = (u,Kυ) for all u, υ ∈ E.

Lemma 2.4 ([8], Lemma 2.4). The eigenvalues of K are 1
ε1
, 1
ε2
, · · · , 1

εb−a+1
, which have the corresponding

normal orthonormal eigenfunctions e1, e2, · · · , eb−a+1, where ek={ek(t)}b+1
t=a+1, ek(t) =

√
2

b−a+2 sin t−a
b−a+2kπ,

t ∈ [a+ 1, b+ 1]Z, k = 1, 2, · · · , b− a+ 1. In addition, the algebraic multiplicity of each eigenvalue 1
εk

of the
linear operator K is equal to 1.

By the above Lemma 2.1 and Lemma 2.2, we have Gi(t, k) > 0 and Gi(t, k) = Gi(k, t) for all t, k ∈
[a+ 1, b+ 1]Z, i = 1, 2. Let

G(t, k) =

b+1∑
s=a+1

G1(t, s)G2(s, k), t, k ∈ [a+ 1, b+ 1]Z

and G(t, k) = G(k, t) for all t, k ∈ [a+ 1, b+ 1]Z.
Define operators K, T , Aλ : E → E, respectively, by

Ku(t) =
b+1∑

k=a+1

G(t, k)u(k), Tu(t) = f(t, u(t)) +
µ

λ
g(t, u(t)) +

1

λ
h(u(t)), u ∈ E, t ∈ [a+ 1, b+ 1]Z;

Aλ = λKT.

Since the continuity of f , g, h and that E is a b− a+ 1-dimensional Hilbert space imply that Aλ: E → E
is completely continuous.

Remark 2.5. From Lemma 2.2, we easily know that the fixed point u = {u(t)}b+1
t=a+1 ∈ E of the Aλ exactly is

the solution u = {u(t)}b+3
t=a−1 of (1.1), where u(a−1) = −u(a+1), u(a) = 0, u(b+2) = 0, u(b+3) = −u(b+1).

Again from Lemma 2.3 and Lemma 2.4, we obtain that Ku(t) = 1
εu(t), u ∈ E, t ∈ [a+ 1, b+ 1]Z, where

1
ε = 1

εk
, and

εk = 2 cos
2kπ

b− a+ 2
+ (2η − 8) cos

kπ

b− a+ 2
+ 6− 2η − ξ, k ∈ [1, b− a+ 1]Z

is given in [8] and
0 < ε1 < · · · < εb−a+1. (2.2)

Moreover, the operator K has unique inverse operator by K−1u = εu, u ∈ E, where ε = εk, k ∈ [1, b−a+1]Z.
Then, for u ∈ E, we define the functionals Φ,Ψ : E → R by

Φ(u) =
1

2
(K−1u, u)−

b+1∑
t=a+1

H(u(t)), Ψ(u) =
b+1∑
t=a+1

[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
,

where

F (t, x) =

∫ x

0
f(t, s)ds, G(t, x) =

∫ x

0
g(t, s)ds, H(x) =

∫ x

0
h(s)ds

for every t ∈ [a+ 1, b+ 1]Z and x ∈ R.
Put Iλ(u) = Φ(u)−λΨ(u). Obviously, for every λ > 0, Iλ is continuously Frêchet differentiable function,

whose differential at the point u ∈ E is

I ′λ(u) = Φ′(u)− λΨ′(u) = K−1u−
b+1∑
t=a+1

h(u(t))− λ
b+1∑
t=a+1

[
f(t, u(t)) +

µ

λ
g(t, u(t))

]
= K−1u− λTu.
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Remark 2.6. Since the operator equation u = Aλu is equivalent to the operator equation K−1u = λTu.
Then, we know that every critical point of the functional Iλ(u) in E is a solution of (1.1). Therefore, it will
be enough only to find the critical point of the functional Iλ in E.

Now, let us give the main tools we will use.

Theorem 2.7 ([6], Theorem 2.6). Let X be a reflexive real Banach space, Φ : X → R a coercive, continuously
Gâteaux differentiable and sequentially weakly lower semi-continuous functional whose Gâteaux derivative
admits a continuous inverse on X∗, Ψ : X → R a continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact and satisfies Φ(0) = Ψ(0) = 0. Assume that there exist r > 0 and x̄ ∈ X,
with r < Φ(x̄), such that

(i)
supΦ(x)≤r Ψ(x)

r < Ψ(x̄)
Φ(x̄) ;

(ii) for each λ ∈ Λr :=
(

Φ(x̄)
Ψ(x̄) ,

r
supΦ(x)≤r Ψ(x)

)
, the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr, the functional Φ− λΨ has at least three distinct critical points in X.

Theorem 2.8 ([4], Theorem 2.1). Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two Gâteaux
differentiable functionals such that Φ is sequentially weakly lower semi-continuous, strongly continuous and
coercive, and Ψ is sequentially weakly upper semi-continuous. For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1((−∞,r))

supν∈Φ−1((−∞,r)) Ψ(ν)−Ψ(u)

r − Φ(u)
,

and
γ := lim inf

r→+∞
ϕ(r), δ := lim inf

r→(infX Φ)+
ϕ(r).

Then, we have

(a) For every r > infX Φ and every λ ∈ (0, (1/ϕ(r))), the restriction of the functional Iλ = Φ − λΨ
to Φ−1((−∞, r)) admits a global minimum, which is a critical point (local minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈ (0, 1/γ), the following alternative holds: either

(b1) Iλ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minimum) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈ (0, 1/δ), the following alternative holds: either

(c1) there is a global minimum of Φ which is a local minimum of Iλ, or

(c2) there is a sequence of pairwise distinct critical points (local minimum) of Iλ which converges to
a global minimum of Φ.

3. Existence of three solutions of (1.1)

(A1) Suppose that f, g : [a+ 1, b+ 1]Z × R→ R are two continuous functions;

(A2) h : R→ R is a strictly monotone Lipschitz continuous function with Lipschitzian constant L satisfying
0 ≤ L < ε1

2 , i.e.,
|h(t1)− h(t2)| ≤ L|t1 − t2|

for every t1, t2 ∈ R and h(0) = 0.
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Set

F c =

b+1∑
t=a+1

max
|x|≤c

F (t, x), Gc =

b+1∑
t=a+1

max
|x|≤c

G(t, x) ∀c > 0,

Fd =

b+1∑
t=a+1

F (t, d), Gd =

b+1∑
t=a+1

G(t, d) ∀d > 0,

σ1 =

∣∣∣∣c2(ε1 − L)− 2λF c

2Gc

∣∣∣∣ ,
σ2 =

∣∣∣∣(εb−a+1 + L)(b− a+ 1)d2 − 2λFd
2 min{0, Gd}

∣∣∣∣ ,
σ3 =

ε1

max

{
0, 4 lim sup|x|→+∞

∑b+1
t=a+1G(t,x)

|x|2

} ,
σ = min {σ1, σ2, σ3} .

(3.1)

Suppose (A1), (A2) hold, we have the following theorem.

Theorem 3.1. Assume that there exist two positive constants c, d with c2 < (b− a+ 1)d2, such that

(H1) f(t, x) ≥ 0 for each (t, x) ∈ [a + 1, b + 1]Z × [−S, S] and f(t, x) 6≡ 0 on [a + 1, b + 1]Z × [0, S], where
S = max{c, d};

(H2) F c

c2
< (ε1−L)Fd

(εb−a+1+L)(b−a+1)d2 ;

(H3) lim sup|x|→+∞

∑b+1
t=a+1 F (t,x)

|x|2 < F c(ε1−2L)
2c2(ε1−L)

;

(H4) lim sup|x|→+∞

∑b+1
t=a+1 G(t,x)

|x|2 < +∞.

Then, for every λ ∈ Λ :=
(

(εb−a+1+L)(b−a+1)d2

2Fd
, (ε1−L)c2

2F c

)
and each µ ∈ [0, σ), the problem (1.1) has at least

three solutions.

Proof. First, since condition (H2), we can affirm that Λ is nonempty. Then, let us prove that functionals
Φ and Ψ satisfy the conditions of Theorem 2.7. According to the definitions of the Φ, we easily know that
Φ and Ψ are both continuously Gâteaux differentiable functional. Moreover, since K−1 has a inverse and h
is strictly monotone, we get that the Gâteaux derivative of Φ admits a continuous inverse on E∗. Now, we
claim that the Gâteaux derivative of Ψ is compact. In fact, let Ω be a bounded subset of E, i.e., there is a
constant M1 > 0 such that ‖u‖ ≤ M1, for all u ∈ Ω. Combining with the continuity of f , g for u ∈ Ω, we
have

|Ψ′(u)| ≤
b+1∑
t=a+1

∣∣∣f(t, u(t)) +
µ

λ
g(t, u(t))

∣∣∣
≤ (b− a+ 1)

(
max

t∈[a+1,b+1]Z,−M1≤u≤M1

f(t, u) +
µ

λ
max

t∈[a+1,b+1]Z,−M1≤u≤M1

g(t, u)

)
,

which implies that Ψ′(u) is uniformly bounded.
From the continuity of f , g, then, f , g are uniformly continuous for (t, u) ∈ [a+ 1, b+ 1]Z × [−M1,M1].

Thus, for ∀ε > 0, there exists δ > 0 for (t1, u), (t2, u) ∈ [a+ 1, b+ 1]Z× [−M1,M1] and |t1− t2| < δ, we have

|f(t1, u)− f(t2, u)| < ε, |g(t1, u)− g(t2, u)| < ε.
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Then, for ∀u ∈ E, we obtain

∣∣Ψ′(u(t1))−Ψ′(u(t2))
∣∣ ≤ b+1∑

t=a+1

(
|f(t1, u)− f(t2, u)|+ µ

λ
|g(t1, u)− g(t2, u)|

)
≤ (b− a+ 1)(1 +

µ

λ
)ε.

Namely, Ψ′(u) is equicontinuous. According to the Arzela-Ascoli Theorem, we easily show that the Gâteaux
derivative of Ψ is compact. And Φ, Ψ satisfy Φ(0) = Ψ(0) = 0. Thus, we have Φ− λΨ ∈ C1(E,R) and the
critical points of Φ − λΨ are exactly the solutions of problem (1.1) for λ ∈ Λ. Moreover, we can see Ψ is
continuous, so Ψ is sequentially weakly upper semi-continuous. And We can assert that Φ is sequentially
weakly lower semi-continuous. As a matter of fact, owing to

∑b+1
t=a+1H(u(t)) is continuous, we putting

M(u) =
∑b+1

t=a+1H(u(t)) for u ∈ E. For any un ∈ E with un → u weakly in E. Since the inner product is
sequentially weakly lower semi-continuous in Banach Space. Then, we have

lim inf
n→∞

Φ(un) = lim inf
n→∞

(K−1un, un)

2
− lim
n→∞

M(un) ≥ (K−1u, u)

2
−M(u) = Φ(u).

Next, we show that Φ is coercive. Consider that (A2) and combining (2.2), we have

Φ(u) =
(K−1u, u)

2
−

b+1∑
t=a+1

H(u(t)) ≥ ε1

2
‖u‖2 −

b+1∑
t=a+1

|H(u(t))|

≥ ε1

2
‖u‖2 −

b+1∑
t=a+1

(∫ u(t)

0
|h(x)− h(0)|dx

)
≥ ε1

2
‖u‖2 −

b+1∑
t=a+1

L

∫ u(t)

0
|x|dx

≥ ε1

2
‖u‖2 − L

2

b+1∑
t=a+1

|u(t)|2 =
ε1 − L

2
‖u‖2,

(3.2)

which owing to (A2) with the fact that L < ε1
2 , we clearly observe that L < ε1. Therefore, the functionals

Φ and Ψ, as required in Theorem 2.7, are verified.
In addition, using the same method, we obtain

Φ(u) =
(K−1u, u)

2
−

b+1∑
t=a+1

H(u(t)) ≤ εb−a+1

2
‖u‖2 +

b+1∑
t=a+1

|H(u(t))| ≤ εb−a+1 + L

2
‖u‖2.

Set

r =
ε1 − L

2
c2.

Then, from (2.1), (3.2), we have

sup
Φ(u)≤r

Ψ(u) = sup
Φ(u)≤r

b+1∑
t=a+1

[
F (t, u(t)) +

µ

λ
G(t, u(t))

]

≤
b+1∑
t=a+1

max
|x|≤c

F (t, x) +
µ

λ

b+1∑
t=a+1

max
|x|≤c

G(t, x)

= F c +
µ

λ
Gc,

which implies
supΦ(u)≤r Ψ(u)

r
≤ 2

c2(ε1 − L)

(
F c +

µ

λ
Gc
)
.
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If Gc ≤ 0, by the fact that

λ <
(ε1 − L)c2

2F c
,

we obtain
supΦ(u)≤r Ψ(u)

r
≤ 2F c

(ε1 − L)c2
<

1

λ
. (3.3)

If Gc > 0, by (3.1) and the facts µ < σ and λ ∈ Λ, we get

supΦ(u)≤r Ψ(u)

r
<

2F c

(ε1 − L)c2
+

2Gc

(ε1 − L)c2

∣∣∣ (ε1−L)c2−2λF c

2Gc

∣∣∣
λ

=
1

λ
. (3.4)

Choosing ū = d, we assert that Φ(ū) > r. In fact, we consider the condition (A2), combining c2 < (b−a+1)d2,
we obtain

Φ(ū) =
(K−1ū, ū)

2
−

b+1∑
t=a+1

H(ū(t)) ≥ ε1

2
‖ū‖2 −

b+1∑
t=a+1

|H(ū(t))|

≥ ε1

2
(b− a+ 1)d2 −

b+1∑
t=a+1

(∫ d

0
|h(x)− h(0)|dx

)

≥ ε1

2
(b− a+ 1)d2 −

b+1∑
t=a+1

L

∫ d

0
|x|dx

=
ε1 − L

2
(b− a+ 1)d2 >

ε1 − L
2

c2 = r.

Moreover, we have

Ψ(ū)

Φ(ū)
=

∑b+1
t=a+1[F (t, d) + (µ/λ)G(t, d)]

(K−1ū,ū)
2 −

∑b+1
t=a+1H(d)

≥
∑b+1

t=a+1[F (t, d) + (µ/λ)G(t, d)]
εb−a+1+L

2 (b− a+ 1)d2

=
2Fd

(εb−a+1 + L)(b− a+ 1)d2
+

2µGd
λ(εb−a+1 + L)(b− a+ 1)d2

.

If Gd ≥ 0, it follows that
Ψ(ū)

Φ(ū)
≥ 2Fd

(εb−a+1 + L)(b− a+ 1)d2
>

1

λ
. (3.5)

If Gd < 0, owing to µ < σ and λ ∈ Λ, we also get

Ψ(ū)

Φ(ū)
>

2Fd
(εb−a+1 + L)(b− a+ 1)d2

+

∣∣∣ (εb−a+1+L)(b−a+1)d2−2λFd

2Gd

∣∣∣
λ(εb−a+1 + L)(b− a+ 1)d2

2Gd =
1

λ
. (3.6)

Therefore, from (3.3), (3.4), (3.5) and (3.6), the condition (i) of Theorem 2.7 holds.
Now, we prove that the functional Φ− λΨ is coercive. The proof we will divide into two cases.
Case 1. When

lim sup
|x|→+∞

∑b+1
t=a+1 F (t, x)

|x|2
> 0.

From (H3), there exists α > 0 such that

lim sup
|x|→+∞

∑b+1
t=a+1 F (t, x)

|x|2
< α <

F c(ε1 − 2L)

2c2(ε1 − L)
.
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Then, for each (t, x) ∈ [a+ 1, b+ 1]Z × R, there exists a positive constant βα such that

b+1∑
t=a+1

F (t, x) ≤ α|x|2 + βα.

Combining (2.1) with the fact that λ < (ε1−L)c2

2F c , we get, for each u ∈ E

λ

b+1∑
t=a+1

F (t, u(t)) ≤ λα|u(t)|2 + λβα ≤
(ε1 − L)c2α

2F c
‖u‖2 +

(ε1 − L)c2

2F c
βα. (3.7)

Moreover, due to µ < σ, we have

lim sup
|x|→+∞

∑b+1
t=a+1G(t, x)

|x|2
<
ε1

4µ
.

Furthermore, for every (t, x) ∈ [a+ 1, b+ 1]Z × R, there exists a positive constant δµ such that

b+1∑
t=a+1

G(t, x) ≤ ε1

4µ
|x|2 + δµ.

By (2.1), for every u ∈ E, it follows that

b+1∑
t=a+1

G(t, u(t)) ≤ ε1

4µ
|u(t)|2 + δµ ≤

ε1

4µ
‖u‖2 + δµ. (3.8)

Then, by (3.7) and (3.8), we obtain

Φ(u)− λΨ(u) =
1

2
(K−1u, u)−

b+1∑
t=a+1

H(u(t))− λ
b+1∑
t=a+1

[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
≥ ε1 − L

2
‖u‖2 − (ε1 − L)c2α

2F c
‖u‖2 − (ε1 − L)c2βα

2F c
− ε1

4
‖u‖2 − µδµ

=
F c(ε1 − 2L)− 2(ε1 − L)c2α

4F c
‖u‖2 − (ε1 − L)c2βα

2F c
− µδµ.

Case 2. When

lim sup
|x|→+∞

∑b+1
t=a+1 F (t, x)

|x|2
≤ 0.

Then, there is a positive constant ϑ such that
∑b+1

t=a+1 F (t, x) ≤ ϑ for (t, x) ∈ [a+ 1, b+ 1]Z × R, then

λ

b+1∑
t=a+1

F (t, x) ≤ (ε1 − L)c2ϑ

2F c
.

We also get

Φ(u)− λΨ(u) ≥ ε1 − 2L

4
‖u‖2 − (ε1 − L)c2ϑ

2F c
− µδµ.

Therefore, by the fact that L < ε1
2 , Φ− λΨ is coercive. The condition (ii) of Theorem 2.7 holds. Moreover,

we have

λ ∈

(
Φ(ū)

Ψ(ū)
,

r

supΦ(u)≤r Ψ(u)

)
.

Hence, the functional Φ− λΨ has at least three critical points.
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4. Existence of infinitely many solutions of (1.1)

(A3) Suppose that f is continuous function and for every continuous function g, whose potential G(t, x) =∫ x
0 g(t, s)ds is non-negative function for each (t, x) ∈ [a+ 1, b+ 1]Z × R.

(A4) h : R → R satisfies the assumption (A2) in Section 3. However, in this section, the Lipschitzian
constant L only needs to satisfy 0 ≤ L < ε1.

Set

G∞ := lim inf
s→+∞

∑b+1
t=a+1 sup|x|≤sG(t, x)

s2
, F∞ := lim inf

s→+∞

∑b+1
t=a+1 sup|x|≤s F (t, x)

s2
,

F∞ := lim sup
|x|→+∞

∑b+1
t=a+1 F (t, x)

|x|2
, κ :=

ε1 − L
ε1 + L

,

λ1 :=
ε1 + L

2F∞
, λ2 :=

ε1 − L
2F∞ + L

, µg,λ := λ
L

2G∞
.

Theorem 4.1. Assume that (A3) and (A4) hold and

(H5) G∞ < +∞;

(H6) F∞ + L
2 < κF∞ and F∞ ≥ −L

2 .

Then, for any λ ∈ Λ := (λ1, λ2) and each µ ∈ [0, µg,λ), problem (1.1) admits an unbounded sequence of
solutions.

Proof. We will apply Theorem 2.8 (b) to our problem. First, since condition (H6), we clearly observe that
the interval (λ1, λ2) is non-empty. So we can fix λ̄ in (λ1, λ2) and let g be a continuous function satisfying
condition (H5). Due to λ̄ > λ1 > 0, we have µg,λ̄ ≥ 0. Then, we fix again µ̄ ∈ [0, µg,λ̄) as in the conclusion.

We will divide the proof into three steps.
Step 1. Let us verify that the functionals Φ and Ψ satisfy the conditions of Theorem 2.8. From Section

3, the functionals Φ and Ψ, as required in Theorem 2.8, are easily verified. Thus, we have Iλ̄ = Φ − λ̄Ψ ∈
C1(E,R) and the critical points of Iλ̄ are exactly the solutions of problem (1.1) for the fixed λ̄ ∈ (λ1, λ2).

Step 2. We prove γ < +∞ and (λ1, λ2) ⊆ (0, 1/γ). Let {sn} be a real sequence for all n ∈ N and
sn → +∞ as n→∞. Then we have

lim
n→∞

∑b+1
t=a+1 sup|x|≤sn

[
F (t, x) + (µ̄/λ̄)G(t, x)

]
s2
n

= lim inf
s→+∞

∑b+1
t=a+1 sup|x|≤s

[
F (t, x) + (µ̄/λ̄)G(t, x)

]
s2

. (4.1)

Set

rn =
ε1 − L

2
s2
n

for all n ∈ N. Moreover, by (2.1), we get maxt∈[a+1,b+1]Z |u(t)| ≤ sn, if Φ(u) < rn. Then, by the fact
Φ(0) = Ψ(0) = 0, we have

ϕ(rn) = inf
u∈Φ−1((−∞,rn))

supν∈Φ−1((−∞,rn)) Ψ(ν)−Ψ(u)
ε1−L

2 s2
n − Φ(u)

≤
supu∈Φ−1((−∞,rn)) Ψ(u)−Ψ(0)

ε1−L
2 s2

n − Φ(0)

=
supu∈Φ−1((−∞,rn))

∑b+1
t=a+1

[
F (t, u(t)) + (µ̄/λ̄)G(t, u(t))

]
ε1−L

2 s2
n

≤ 2

ε1 − L

[∑b+1
t=a+1 sup|x|≤sn F (t, x)

s2
n

+
µ̄

λ̄

∑b+1
t=a+1 sup|x|≤sn G(t, x)

s2
n

]
.
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Therefore, from the assumptions (H5) and (H6), and by the definition of γ, as well as combining (4.1),
we have

γ = lim inf
n→+∞

ϕ(rn) ≤ lim
n→∞

ϕ(rn) ≤ 2

ε1 − L
(
F∞ + (µ̄/λ̄)G∞

)
<∞. (4.2)

Hence, by Inequality (4.2), and since µ̄ ∈ [0, µg,λ̄), we obviously get

1

γ
≥ ε1 − L

2
(
F∞ + (µ̄/λ̄)G∞

) ≥ ε1 − L
2
(
F∞ + (µg,λ̄/λ̄)G∞

) = λ2. (4.3)

Since G(t, x) is non-negative and λ̄ > 0, µ̄ ≥ 0 , we obtain

lim sup
|x|→+∞

∑b+1
t=a+1

[
F (t, x) + (µ̄/λ̄)G(t, x)

]
|x|2

≥ lim sup
|x|→+∞

∑b+1
t=a+1 F (t, x)

|x|2
. (4.4)

Therefore, from (4.4), we have

λ1 =
ε1 + L

2F∞
≥ ε1 + L

2 lim sup|x|→+∞

∑b+1
t=a+1[F (t,x)+(µ̄/λ̄)G(t,x)]

|x|2

. (4.5)

Hence, by (4.3) and (4.5), we have

λ̄ ∈ (λ1, λ2) ⊆

 ε1 + L

2 lim sup|x|→+∞

∑b+1
t=a+1[F (t,x)+(µ̄/λ̄)G(t,x)]

|x|2

,
ε1 − L

2
(
F∞ + (µ̄/λ̄)G∞

)
 ⊆ (0,

1

γ

)
.

Step 3. We will prove that the restrict functional Iλ̄ = Φ− λ̄Ψ is unbounded. Since λ̄ > λ1, then

1

λ̄
<

1

λ1
=

2

ε1 + L
F∞

≤ 2

ε1 + L
lim sup
|x|→+∞

∑b+1
t=a+1

[
F (t, x) + (µ̄/λ̄)G(t, x)

]
|x|2

.

Now, we can consider a real sequence {dne1} and a positive constant θ, such that ‖dne1‖ = dn → +∞
as n→∞ and

1

λ̄
< θ <

2

ε1 + L

∑b+1
t=a+1

[
F (t, dne1(t)) + (µ̄/λ̄)G(t, dne1(t))

]
‖dne1‖2

=
2

ε1 + L

∑b+1
t=a+1

[
F (t, dne1(t)) + (µ̄/λ̄)G(t, dne1(t))

]
d2
n

,

where e1 is given in Lemma 2.4, e1(t) > 0 for each t ∈ [a+ 1, b+ 1] and ‖e1‖ = 1. Furthermore,

ε1 + L

2
θλ̄ < λ̄

∑b+1
t=a+1

[
F (t, dne1(t)) + (µ̄/λ̄)G(t, dne1(t))

]
d2
n

(4.6)

for all n ∈ N large enough. Set

wn(t) := dne1(t), t ∈ [a+ 1, b+ 1]Z. (4.7)

Obviously, wn ∈ E.
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Furthermore, from (A2), as well as ‖e1‖ = 1, using the same method, we obtain

Φ(wn) =
(K−1(dne1), dne1)

2
−

b+1∑
t=a+1

H(dne1(t))

≤ ε1

2
d2
n +

b+1∑
t=a+1

|H(dne1(t))|

≤ ε1

2
d2
n +

b+1∑
t=a+1

∫ dne1(t)

0
|h(x)− h(0)|dx

≤ ε1

2
d2
n +

L

2
d2
n‖e1‖2 =

ε1 + L

2
d2
n.

(4.8)

Then, from (4.6) and (4.8), we obtain for all n ∈ N large enough,

Iλ̄(wn) = (Φ− λ̄Ψ)(wn) = Φ(wn)− λ̄Ψ(wn)

≤ ε1 + L

2
d2
n − λ̄

b+1∑
t=a+1

F (t, dne1(t))− µ̄
b+1∑
t=a+1

G(t, dne1(t))

=

(
ε1 + L

2
− λ̄

∑b+1
t=a+1

[
F (t, dne1(t)) + (µ̄/λ̄)G(t, dne1(t))

]
d2
n

)
d2
n

<
ε1 + L

2
(1− θλ̄)d2

n.

Thus, Φ − λ̄Ψ is unbounded from below and it has no global minimum. Hence, using Theorem 2.8, we
verify that there is a sequence {un} ⊂ E of critical points of Iλ̄ = Φ − λ̄Ψ such that limn→∞ ‖un‖ = +∞.
Then, since Φ is coercive, we obtain limn→+∞Φ(un) = +∞. Therefore, we establish the Theorem 4.1
holds.

Corollary 4.2. Assume that (H5) and (H6) hold, and F∞ = 0, F∞ = +∞ and G∞ > 0. Then, for every
λ ∈ (0, ε1−LL ), and for each µ ∈ [0, λL

2G∞
), the problem (1.1) possesses infinitely many weak solutions in E.

In particular, when F∞ = −L
2 and G∞ = 0 in Corollary 4.2. Thus, for each λ > 0 and µ ≥ 0, the result

of Theorem 4.1 holds again.

Corollary 4.3. Assume that (H5) and (H6) hold, and L = 0. Then, for each λ ∈ ( ε1
2F∞ ,

ε1
2F∞

) and µ = 0,
we have the following problem{

∆4u(t− 2) + η∆2(u(t− 1))− ξu(t) = λf(t, u(t)) + h(u(t)), t ∈ [a+ 1, b+ 1]Z,
u(a) = ∆2u(a− 1) = 0, u(b+ 2) = ∆2u(b+ 1) = 0,

(4.9)

then, the result of Theorem 4.1 holds again.

5. Example

Example 5.1. Let η = ξ = 0, a = 0 and b = 5. Consider the following discrete fourth-order problem{
∆4u(t− 2) = λf(t, u(t)) + µg(t, u(t)) + h(u(t)), t ∈ [1, 6]Z,
u(0) = ∆2u(−1), u(7) = ∆2u(6)

(5.1)

for every t ∈ [1, 6]Z and x ∈ R, where

f(t, x) = 2x2(2− x

2
), g(t, x) =

tx

21
, h(x) = arctan 0.002x.
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Taking into account that L = 0.002. By simple computation, we get ε1 = 16 sin4 π
14 and ε6 = 16 sin4 3π

7 .
Now, we take c = 1

212 and d = 4. Clearly, f(t, x) ≥ 0 for t ∈ [1, 6]Z, x ∈ [−d, d] and f(t, x) 6≡ 0 for
(t, x) ∈ [1, 6]Z × [0, d]. Then

F c

c2
= c(8− 3

2
c) =

1

29
− 3

225
,

Fd(ε1 − L)

6d2(ε6 + L)
= 0.0034.

The condition (H2) of Theorem 3.1 holds. Obviously,

lim sup
|x|→+∞

∑6
t=1 F (t, x)

|x|2
= lim sup
|x|→+∞

x(8− 3

2
x) = −∞ <

F c(ε1 − 2L)

2c2(ε1 − L)
.

Thus, the condition (H3) of Theorem 3.1 holds. Moreover,

lim sup
|x|→+∞

∑6
t=1G(t, x)

|x|2
=

1

2
< +∞

satisfies the condition (H4) of Theorem 3.1. Moreover, we get σ1 = 0.0372− 0.0039λ and σ3 = 0.0196. We
take σ = min {σ1, σ3}, then for λ ∈ Λ := (5.4213, 9.5306) and µ ∈ [0, σ), we get the problem (5.1) has at
least three solutions.

In Example 5.1, if we put

f(t, x) =
1

2
tx+

5

9
tx sin(

π

6
− ln |x|),

by direct computation, we obtain κ = 0.903, and g satisfy the hypothesis (A3), G∞ = 1
2 , as well as

lim inf
s→+∞

∑6
t=1 sup|x|≤s F (t, x)

s2
+
L

2
= 5.25− 7

3

√
5 + 0.001,

lim sup
|x|→+∞

∑6
t=1 F (t, x)

|x|2
= 5.25 +

7

3

√
5.

Then, the conditions of Theorem 4.1 holds. Hence, for each λ ∈ (0.002, 0.555) and for every µ ∈
[0, 0.002λ), we obtain that problem (5.1) possesses an unbounded sequence of solutions.
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