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1. Introduction

In 1882, Cebysev [2] proved that, if f/, ¢’ € Loo[a,b], then

1
T(f,9) < 15 = a)* [ Flloollglloo; (1.1)

where for two functions f, g : [a,b] — R, the functional

1 = [ s (1 [ sww) (7 [ ) (1.2

and | - ||o denotes the norm in Ly[a,b] defined as ||f||cc = ess sup |f(t)].
tela,b]

In 1935, Griiss [9] showed that
T(£,9)] < (@ ~ 6)( — ), (13)

*Corresponding author
Email addresses: 1z790821ks@126.com (Zhen Liu), wgyang0617@yahoo.com (Wengui Yang)

Received 2015-10-04



Z. Liu, W. Yang, J. Nonlinear Sci. Appl. 9 (2016), 3362-3375 3363

provided ¢, ®,1 and ¥ are real numbers satisfying the conditions,
6<f2) <D, Y= gla)< U (L4)

for all z € [a, b], where T(f, g) is as defined by (1.2).

During the past few years, many researchers have given considerable attention to the mentioned results.
Therefore, a lot of various generalizations, extensions and variants of these Inequalities and have
appeared in the literature, see [I], 3, 4. [7, 0L 13, 16 18 19] 20} 22, 24 25] 28| 29] and the references cited
therein.

In 2002, Dragomir [6] established that

S(f 9.0 < 2@ — 6)(w - w>( / bp(x)dx)2,

>~ =

where

b b b b
S(.9.0) = 5T(9.00) = [ plo)ds [ pla)f@gta)de~ [ p@)f@)ds [ po)g(a)de

and

b b b b
T(f.9.p.q) = / o(z)dz / p() f(2)g(x)dz + / p()dz / o(@) f(2)g()dz
b b b b
- / o(2) f(z)da / p(2)g(x)dz - / p(2)f (z)dz / g(2)g()dz.

In the case of f/, ¢’ € Loo(a,b), Dragomir [6] proved that

15(f,9.0)] < Hf’lloollg’lloo< / () / " sp(a)de — ( / bxp(m)dx>2).

If f is M-g-Lipschitzian on [a, b], i.e.,

[f(@) = F(y)l < Mlg(x) = g(y)l, M >0, @y ¢ a,b]. (1.5)
Dragomir [6] proved that

stranl < ( [ ’p(w)da / ' P ()p(z)de - (/ bg(x)p(w)dx)z).

If f is an L;-Lipschitzian function on [a,b] and g is an Ls-Lipschitzian function on [a,b], Dragomir [6]

obtained that , , \ ,
1S(f9,p)| < L1L2</ p(:):)dx/ zp(x)dx — </ xp(:n)dx) >

In order to generalize and spread the existing inequalities, we specify two ways to overcome the problems
which ensue from the general definition of g-integral. In [8[15], Gauchman and Marinkovié¢ et al. introduced
the definition of the restricted g-integral over [a,b] and the g-integral of the Riemann type, respectively. In
[8], Gauchman gave the g-analogues of the well-known inequalities in the integral calculus, such as Cheby-
shev, Griiss and Hermite-Hadamard for all the types of the g-integrals. In [15], Marinkovi¢ et al. obtained
some new g-Chebyshev, ¢-Griiss, g-Hermite-Hadamard type inequalities. By using the weighted g-integral
Montgomery identity for functions of one and two independent variables, Yang [26] and Liu and Yang [14]
established the weighted g-Cebysev-Griiss type inequalities. Recently, in [21], Tariboon and Ntouyas intro-
duced the quantum calculus on finite intervals, and they extended the Holder, Hermite-Hadamard, trapezoid,
Ostrowski, Cauchy-Bunyakovsky-Schwarz, Griiss, and Griiss-Cebysev integral inequalities to quantum cal-
culus on finite intervals in the paper [23]. In [5], by using the two parameters of deformation ¢; and ¢, the
authors established some new Chebyshev type quantum integral inequalities on finite intervals.

Motivated by the results mentioned above, we establish some new Griiss type quantum integral inequal-
ities on finite intervals. Furthermore, some related quantum integral inequalities are also obtained.



Z. Liu, W. Yang, J. Nonlinear Sci. Appl. 9 (2016), 3362-3375 3364

2. Preliminaries

Throughout this paper, let J := [a,b] C R, K := [¢,d] C R, Jy := (a,b) be interval and 0 < ¢,q1,q2 < 1
be a constant. We give the definition g-derivative of a function f : J — R at a point x € J on [a,b] as
follows.

Definition 2.1 ([2I]). Assume f:J — R is a continuous function and let x € J. Then the expression

f(x) = flgz + (1 —q)a)
(1-q)(z—a) ’

is called the g-derivative on J of function f at x.

qu(x) = T # a, aqu(a) = il_rf}l aqu(x) (2.1)

We say that f is ¢-differentiable on J provided ,D,f(z) exists for all z € J. Note that if a = 0 in (2.1)),
then oDy f = Dy f, where D, is the well-known g-derivative of the function f(x) defined by

qu(x) =

For more details, see [12].

Definition 2.2 ([21]). Assume f :J — R is a continuous function. Then the g-integral on J is defined by

/f it = (- @) —a) S g F(x + (1 ™) (2.2)

n=0

for x € J. Moreover, if ¢ € (a, ) then the definite g-integral on J is defined by

/Cx f(t)adgt = /ax F(t)adyt — /acf(t) dyt

—(1-q)@—a)Y ¢"f(d"v+(1—q"a) = (1—g)(c—a) Y _q"f(d"c+ (1—q")a).

Note that if a = 0, then ([2.2)) reduces to the classical ¢g-integral of a function f(z) defined by (see [12])
[ it = (=92 > ) € 0.00)
n=0

Lemma 2.3 ([21]). Assume f:J — R is a continuous function. Then we have

/ﬂﬂ aDgf(t)adgt = f(z) — f(c)  for c€ (a,x).

Lemma 2.4 ([5]). Assume f,g:J — R are two continuous functions and f(t) < g(t) for allt € J. Then

/a * Ft)adyt < / " g(D)adyt.

3. Griiss type quantum integral inequalities on finite intervals

In this section, we establish some new Griiss type quantum integral inequalities on finite intervals. We
always assume that all quantum integral inequalities are finite in this paper. For the sake of simplicity, we
always assume that

Iy (mf)(b /m Jadgt and  I7(mfg)(b /m t)adgt.
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Lemma 3.1. Let f and m be two continuous functions and f satisfying the condition (1.4]). Then we have

Igm(b)I§(mf)(b) — (Ig(mf)(b)* = (RIgm(b) — I (mf)(®)) (Ig(mf)(b) — dIim (b))

3.1
— Igm(b)Ig (m(® — f)(f = ¢))(b). o

Proof. Let f be continuous function satisfying the condition . For any p,7 € J, we have
(@ = F(p)(f(T) =) + (2 = f(7))(f(p) = ¢) = (2 = f(T)(f(T) = &) = (2 = f(p))(f(p) — @) (3.2)

= () + f2(p) — 2f (p) f (7).

Multiplying both sides of (3.2]) by m(p) and integrating the resulting inequality obtained with respect to p
from a to b, we have

(f(7) = @) (@Igm(b) — Ig(mf)(b)) + (@ — f (7)) (Ig (mf)(b) — pIgm(b)) — (7) = ¢)
x Igm(b) — I (m(® — f)(f — ¢))(b) = f2(1)I] (b)+I“(mf2)(b)—2f( )I“(mf)(b)

Multiplying both sides of (3.3|) by m(7) and integrating the resulting inequality obtained with respect to 7
from a to b, we obtain

(L2 (mf)(B) — SIZm(B)) (RL¢m(b) — I (mf)(B)) + (BIem(b) — I (mf)(B)) (2 (mf)(b) — SIfm(b))
— 12 (m(® — f)(f — 6)) O)Iim(b) — Lm(B)IS (m(® — £)(f - 6))(b)
— [2(mf2)(B)Em(b) + [em(b) I (mf2)(b) — 214(m f) (B S (mf)(b),

which implies (3.1) and proves the lemma. O

(3.3)

Theorem 3.2. Let f and g be be two continuous functions satisfying the condition (1.4)) and let m be a
nonnegative continuous function. Then we have

a a a a 1 a 2
|[Z5m(b) I (mfg)(b) — I (mf)(B)I5(mg)(B)] < (@ = §)(¥ — ) (Igm(b))". (3.4)
Proof. Let f and g be be two continuous functions satisfying the condition and let H (T, p) be defined

by
H(r,p) = (f(r) = f(p))(g(T) — 9(p)), T.p€J (3.5)

Multiplying both sides of (3.5) by m(7)m(p) and integrating the resulting identity with respect to 7 and p
from a to b, we can state that

/ / m(r Jadadyp = 21m(B)I3 (mF9)(b) — 214 (m ) (b)) (b). (3.6)

Thanks to the weighted Cauchy-Schwartz integral inequality for double integrals [27], we can write that

<//m H(r,p) dTadqp>2
(/ / i “adaTad qP)( / / m(r Q(P))Qaquadqp> (3.7)

- 4<Ié}m(b)lé}(mf (b) — (I%(mf)(D)) ) (Igmw)f;(mg (o) - (Ig<mg><b>)2).

Since (¢ — f(7))(f(7) — ¢) > 0 and (¥ — g(7))(g(7) — ¢») > 0, we have

Iym(b) I (m(® — f)(f — ¢))(b) = 0 (3.8)



Z. Liu, W. Yang, J. Nonlinear Sci. Appl. 9 (2016), 3362-3375 3366

and
Igm(D)Ig (m(¥ — g)(g — ¢)) (b) > 0. (3.9)
Thus, from , and Lemma we get
Igm(b)Ig (mf2)(b) — (I (mf)(b))* < (RIgm(b) — I§(mf)(B)) (Tg(mf)(B) — ¢Iym (b)) (3.10)
and
Iem(b)Ig (mf?)(b) — (I¢(mf)(b)" < (RIfm(b) — 1§ (mg) (b)) (I3 (mg)(b) — SIm(b)). (3.11)

Combining (3.6)), (3.7)), (3.10) and (3.11)), we deduce that

(1m(b) T2 (mfg)(b) — I8 (mf)(b) 12 (mg)(b))*
< (@Igm(b) — Ig(mf)(b)) x (I3 (mf)(b) — ¢Igm(b)) (PITm(b) (3.12)

—Ig(mg)(b))(f"(mg)(b) ¢Iym(b)).

Now using the elementary inequality 4zy < (z 4+ y)?, 2,y € R, we can state that

A(@Im(B) — I (m (D) (15 (mf)(B) — I¢m(B) < (Im(b)(® — 6))? (3.13)
and

A(@Im(b) — 12(mg) (b)) (12(mg)(b) — SLim(B)) < (Iem(b)(¥ —))>. (3.14)
From —, we obtain . This complete the proof of Theorem O

Lemma 3.3. Let f and g be two continuous functions and let m and n be two nonnegative continuous
functions. Then we have

2
(I;ﬁm(b)fgz (nfg)(d) + Ig,n(d)Ig, (mfg)(b) — Ig, (m[)(b)Ig,(ng)(d) — Ig,(nf)(d) g, (mg)(b)>
< <L‘§11m(b)152 (nf?)(d) + Ig,n(d)Ig, (mf?)(b) — 213, (mf)(b) I, (nf)(d)> (3.15)

x (Iglmw)f; (ng?)(d) + I%,n(d) T2 (mg?)(b) — 21, <mg><b>ff;<ng><d>).

Proof. Multiplying both sides of (3.5) by m(7)n(p) and integrating the resulting identity with respect to 7
from a to b and p from c to d, we can get

/ / () () H (7, padgs Tedgyp = T8 MBI, (nfg)(d) + I n(d) I (m fq)(b)
— 1% (mf) (DI, (ng)(d) — I, (nf) ()2, (mg) (b).

Then, thanks to the weighted Cauchy-Schwartz integral inequality for double integrals and (3.16]), we can
obtain (3.15)). 0

(3.16)

Lemma 3.4. Let f,m and n be three continuous functions and f satisfying the condition (L.4). Then the
following equations hold

I8 m(b) IS, (nf*)(d) + IE,n(d)I2 (mf?)(b) — 218 (mf)(b) IS, (nf)(d)
=(®IZm(b) — I} (mf)(b)) (I8, (nf)(d) — pIE,n(d)) + (I3, (mf)(b) — @15 m(b)) (RI5,n(d) (3.17)
— It (nf)(d)) — I8 m®d)IS, (n(® — £)(f — ¢))(d) — I,n(d) IS (m(® — f)(f — ¢))(b)-
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Proof. Multiplying both sides of (3.3) by n(7) and integrating the resulting inequality obtained with respect
to 7 from c to d, we have

(23, (nf)(d) — pIg,n(d)) (@15, m(b) — Iy, (mf) (b )) (‘PIC n(d) — I, (nf)(d)) (I, (mf) (b) — @15, m(b))

— 14, (n(® = )(f = ¢))(d)Ig,m(b) — Ig, (m(® = f)(f = ¢)) ()
=Ig,(nf?)(d)Ig m(b) + Ig,n(d)Ig (mf* )( )—2IC (nf)(d)Ig (m[)(b),
which gives and proves the lemma. O

Theorem 3.5. Let f and g be two continuous functions satisfying the condition (1.4) and let m and n be
two monnegative continuous functions. Then we have

(1m0 15 (0 £0)(0) + T ) () 0) — 1, ()O3, ) @) ~ e 0 AT ()0 ) 2
< ((q»z:;lmw) — I8 (mf)(0) (IS, () (d) — 61, n(d)
(1, (n)0) = o1 m(0) (Bnla) ~ T 07) (@) ) (318)
(v mo) ~ 13 (m)0) (1 00)) ~ 015010)
(1 m) ) — 015 m(6) (VIgn(d) ~ Iy () (D) )

Proof. Since (® — f(7))(f(7) — ¢) > 0 and (¥ — g(7))(g(7) — 1) > 0, we have

— Igm(®)Ig, (n(® ~ f)(f — ¢))(d) — I,n(d)Ig, (m(® — [)(f ~ ¢))(b) <0 (3.19)
and

— Igm(b) I, (n(¥ — g)(g — ¥))(d) — Ig,n(d)Ig, (m(¥ — g)(g — 1/1))( ) <0. (3.20)
Applying Lemma E to f and ¢, and using Lemma and the formulas and (| -, we obtain
(13.18]). O

Theorem 3.6. Let f and g be two continuous functions satisfying the condition (L.4]) and let m and n be
two monnegative continuous functions. Then we have

|15, m(b) I, (nfg)(d) + Ig,n(d)Ig, (mfg)(b) — Ig, (m[f)(b) g, (ng)(d) — I, (nf)(d)Ig, (mg) (D)]

(3.21)
<12 m(b) IS n(d)(® — @) (¥ — ).
Proof. From the condition , we have
f(r) = flp)l <=9, [9(r) —glp) < ¥ -,
which implies that
[H (7, p)| = [£(1) = f(P)llg(T) = g(p)| < (® = @) (¥ — ). (3.22)

Combining and (3.22), we obtain that
| Ig, m(b)Ig, (nfg)(d) + Ig,n(d)Ig (mfg)(b) — Ig, (mf)(b)1g,(ng)(d) — Ig,(nf)(d)Ig, (mg)(b)|
< [ [ @ o < [ [ oGt rdo@ - o) 0
= Igm (b)fé; n(d)(® — ¢)(¥ — 1),
which implies (3.21). This ends the proof. O
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Theorem 3.7. Let f and g be two continuous functions satisfying the condition (1.5) and let m and n be
two monnegative continuous functions. Then we have

|73, o (nfg)(d) + Ig,n(d) I, (m fg)(b) — I, (mf)(b)I5, (ng)(d) — I, (nf)(d) I3, (mg) ()|

a c 2 c a 2 a c (323)
< (T2 (B (ng?)(d) + I n(d) T2 (mg?) (B) — 212 (mg) (B)IE, (ng) ().
Proof. From the condition , we have
[f(7) = f(p)| < Mg(T) — g(p)|,
which implies that
[H(7,p)| = (1) = F(p)llg(r) — g(p)| < M (g(7) — g(p))". (3.24)

Combining and (3.24), we get that
|13, 0 (f9)(d) + Ig,n(d)Ig (mfg)(b) — I, (mf)(b)Ig, (ng)(d) — Ig,(nf)(d)Ig (mg)(b)|
/ / m(T)n(p)|H (7, p)ladg, Tedg,p < M/ / m(r)n(p)(9(7) = 9(p))” ady Tedgsp
=M (Ig,m(b)Ig,(ng®)(d) + Ig,n(d)Ig (mg?)(b) — 217, (mg) (b)Ig, (ng)(d)),
which implies (3.23). This ends the proof. O

Theorem 3.8. Let f and g be two continuous functions satisfying the Lipschitzian condition with the
constants L1 and Lo and let m and n be two nonnegative continuous functions. Then we have

I3, o (nfg)(d) + Ig,n(d) I3, (m fg) (b) — Ig, (mf)(b) 15, (ng)(d) — Ig, (nf)(d)Ig, (mg) (b)|

a c (42 c a (42 a c (325)
g Ly Ly (15 m(b) IS, (#°n(t)) (d) + Ig,n(d)Ig (t*m(t))(b) — 217 (tm(t))(b)I¢, (tn(t))(d)).
Proof. From the conditions of Theorem we have
[f() = f()l < Lalm = pl, 1g9(7) = g(p)| < La|T = pl,
which implies that
[H (7, p)| = (1) = F(p)llg(T) = g(p)| < L1La(T — p)*. (3.26)

Combining (3.16]) and ( , we get that
| Zg, m(b)Ig, (nfg)(d) + Ig,n(d)Ig (mfg)(b) — Ig, (mf)(b)Ig,(ng)(d) — I, (nf)(d)Ig, (mg)(b)|

/ / m(7)n(p)|H (T, p)ladg, Tedg,p < L1L2/ / m(T (P)(T_P)Qadqchdqap
L Ly(Ifm <b>I;2<t2 n(t))(d) + 5 n(d) I (1)) (b) — 212 (tm(t) (B)IS, (tn(1))(d),
which implies . This ends the proof. O

Corollary 3.9. Let f and g be two continuous differentiable functions and let m and n be two nonnegative
continuous functions. Then we have

|15, o (nfg)(d) + Ig,n(d)Ig (mfg)(b) — It (m[f)(b)I5, (ng)(d) — I, (nf)(d)Ig (mg)(b)|
< H‘D(hf”OOHDQQ.g”OO( m(b) I, (£*n(t))(d) + I§2n(d)fa (tm(t))(b) — 2Ig (tm(t)) (D)1, (tn(t))(d)).
Proof. We have f(7) — f(p) = fp Dy, f(t)adgt and g(1) — f Dg,g(t)adg,t. That is, |f(7) — f(p)] <

| Dgy fllool™ = pls 19(7) — g(p)| < | Dgoglloc|T — pl, Top € J, and the result follows from Theorem [3.8] This
ends the proof. O
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4. Some related quantum integral inequalities on finite intervals

In this section, we obtain some new quantum integral inequalities on finite intervals in the case where the
functions are bounded by continuous functions and are not necessary monotone and synchronous functions.

Theorem 4.1. Let f be a continuous function and let m and n be two nonnegative continuous functions.
Furthermore, we assume that

(H1) There exist two continuous functions w1 and pa such that ¢1(t) < f(t) < @a(t).
Then the following inequality holds true:

Lg, (mep2)(d) g, (nf)(0) + Lg, (mf)(d) g, (np1)(b) = Ig, (mp2)(d)Ig, (nepr)(b) + Ig, (m[f)(d)Ig, (nf)(b).  (4.1)

Proof. From the condition (H7), we have

(p2(r) = F(7) (£(p) — #1(p)) >0,

which implies that

©2(7) f(p) + f(T)e1(p) = w2(T)e1(p) + f(7)f(p). (4.2)

Multiplying both sides of (4.2]) by m(7) and integrating the resulting inequality obtained with respect to 7
from ¢ to d, we have

15, (mp2)(d) f(p) + Ig, (mf)(d)p1(p) > Iy, (mp2)(d)pi1(p) + Ig, (mf)(d) f(p). (4.3)

Multiplying both sides of (4.3)) by n(p) and integrating the resulting inequality obtained with respect to p
from a to b, we obtain

15, (mep2) (d)Ig, (nf)(b) + 1g, (mf)(d) I, (nepr) (b) = Ig, (mp2)(d)1g, (ne1)(b) + Ig, (m.f)(d)1g, (nf)(b),
which yields (4.1). This ends the proof. O
As special cases of Theorem we obtain the following results.

Corollary 4.2. Let f be a continuous function satisfying the condition (1.4) and let m and n be two
nonnegative continuous functions. Then the following inequality holds true:

Iz, m(d) I, (nf)(b) + @Iy, (m[f)(d)Ig n(b) = ¢PIg,m(d)Ig n(b) + Ig, (m[f)(d)Ig (nf)(b).

Corollary 4.3. Let f be a continuous function and let m and n be two nonnegative continuous functions.
Furthermore, assume that there ezists a continuous function ¢ and a constant ® > 0 such that p(t) — & <
f(t) < @(t) + ®. Then the following inequality holds true:

15, (me)(d)Ig, (nf)(b) + Iy, (mf)(d)Ig, (np)(b) + @I, m(d)Ig (nf)(b)
+ @IS, (me) (d) 13 n(b) + ©*15,m(d)Ig n(b)
> I, (mp)(d)Ig, (np)(b) + I, (mf)(d) 15, (nf)(b) + @Iy, m(d) 1§ (nf)(b) + RIg, (mp)(d) I n(b).

Theorem 4.4. Let f be a continuous function, let m and n be two nonnegative continuous functions and
let 61,02 > 0 satisfying 1/61 + 1/02 = 1. Furthermore, assume that (Hy) holds. Then we have

-1 (mlee = £)) (D) n(d) + T m()Ig, (0(F = 90)") (@ + I (i) 0) I, () (@

+ Lo (mf) (), (nf(d) = Ig (mpa) (0) I, (nf)(d) + Ig, (m [f)(b)Ig, (ne1)(d)-

(4.4)
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Proof. According to the well-known Young inequality [17]

1o 1 4 11
— —y> Ve,y >0, 01,00 >0, —+ —=1

and setting = = po(7) — f(7) and y = f(p) — p1(p), we can obtain

1
01

1
B2

0>

(p2(r) = £ + o= (F(0) = 21(0)™ = (pa(7) = F(7) (F(p) = 21(p)),

which yields the following inequality

1

5 (20— 1) +

é(f(p) —01(0))” + ea(M)1(p) + F()(p) = 02(T) f(p) + f(D)er(p).  (45)

Multiplying both sides of (4.5)) by m(7) and integrating the resulting inequality obtained with respect to 7
from a to b, we have
1
01

S TamO)(F(0) = o1(0) " + T (miea) 01 p) + I, () ()10
> I3 (me) (01 (0) + I (m (D))

Multiplying both sides of (4.6) by n(p) and integrating the resulting inequality obtained with respect to p
from c to d, we obtain

I8 (m(p2 — £)) (b) + (4.6)

1
01

Ig, (m(2 — )™) (0) Ig,n(d) + lefé‘lm(b)fé (n(f = ¢1)")(d) + Ig, (mep2) (b)I, (n01) (d)

+1g, (mf)(0) 15, (nf(d) = I, (me2) (b)Ig, (nf)(d) + Ig, (mf)(b)1g, (ne1)(d),
which yields (4.4). This ends the proof. O
Let 6y = 0 =2, o1 = ¢ and @y = ® in Theorem we have the following corollary.

Corollary 4.5. Let f be a continuous function satisfying the condition (1.4) and let m and n be two
nonnegative continuous functions. Then the following inequality holds true:

(¢ + ®)* 15 m(b)Ig,n(d) + 215, (mf)(D)Ig, (nf)(d) + I3, (mf*) (0)Ig,n(d) + I, m(b)Ig, (nf?)(d)
>2(¢ + @) (I2 (mf ) (b)I5,n(d) + I m(b)IE, (nf)(d)).

Theorem 4.6. Let f be a continuous function, let m and n be two nonnegative continuous functions and
let 01,09 > 0 satisfying 61 + 02 = 1. Furthermore, assume that (Hy) holds. Then we have

0115, (o) () g () + 025, () (0) L5, (nf)(d) 20015, (mf) (6) L5ym(d) + 021, (m) (D)1, (n01) ()
+ 15, (m(2 = N O)Ig, (n(f — ¢1)*) (d).

Proof. From the well-known Weighted AM-GM inequality [17]

(4.7)

01$+92y2x91y92 Vr,y >0, 61,600 >0, 6;+60>,=1

and setting = = po(7) — f(7) and y = f(p) — p1(p), we can obtain

02

01 (02(7) — F(7)) + 02(F(p) — 01(p)) > (s22(r) = £(1))" (£(p) — 21(p)) ™,

which yields the following inequality

O102(7) + 02 (p) = 01£(7) + 02601 (p) + (02(r) — F(1)) " (F(0) — 21(0)) ™. (4.8)
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Multiplying both sides of (4.8) by m(7) and integrating the resulting inequality obtained with respect to 7
from a to b, we have

0112, (mep2) (b) + 0212 (m) (b) f(p) =00 1% (mf)(b) + 6212 (m) (b)p1 (p)
+ 12 (2 — 1)) B) (f(p) — ¢1(p)) ™.

Multiplying both sides of (4.9) by n(p) and integrating the resulting inequality obtained with respect to p
from c to d, we obtain

(4.9)

012, (mip2) (D) IS () + Ba12 (m)(B)IS, (nF)(d) 20118 (m f) (D), n(d) + 212 () (B)IE, (g ) (d)
+Ig, (m(pz2 — ))™) 0) 15, (n(f — 1)) (d),
which yields (4.7). This ends the proof. O
Let 61 =62 =1/2, p1 = ¢ and w2 = ® in Theorem [4.6, we have the following corollary.

Corollary 4.7. Let f be a continuous function satisfying the condition (1.4) and let m and n be two
nonnegative continuous functions. Then the following inequality holds true:

IZm(B)IE,n(d) + I8, (m) (WIS, (0 ) (d) 2T (mf) )T n(d) + GI2, (m) (W) I, n(d)
+ 217 (mA/® — f) (D) I, (n\/ f — &) (d).
Lemma 4.8 ([I1]). Assume that a >0, 02 > 61 >0 and 62 # 0. Then

01 01 %a%_ag—el

a?2 S gk

91

k% for any k> 0.

2

Theorem 4.9. Let f be a continuous function, let m be a monnegative continuous function and let 65 >
01 > 0 and 05 # 1. Furthermore, assume that (Hy) holds. Then for any k > 0, we have

= 0, . 25 01 .25 0301 1.0

(a) I (m(p2 — f)%2)(b) + ik 7 Ig(mf)(b) < ghk % I (mep2)(b) + 255 k% Igm(b),
o1 9, , f2=%1 0, , 22-61 0,—0, 1 2L

(b) Ig(m(f —1)% ) (b) + Gghk % Ig(mp1)(b) < gtk % Ig(mf)(b) + 25 k% Igm(b).

Proof. By condition (H;) and Lemma for 65 > 61 > 0 and 0, # 1, it follows that

0, 0, 020 0y — 64

(pa(r) — F)E < LK% (pa(r) — () + 22 i (110)
2 2

for any k > 0. Multiplying both sides of (4.10) by m(7) and integrating the resulting inequality obtained
with respect to 7 from a to b, one has inequality (a). Inequality (b) is proved by setting a = f(7) — ¢1(7)
in Lemma [4.8 0

Let 4 =1/2, 0, =k =1, p1 = ¢ and ¢ = ® in Theorem we have the following corollary.

Corollary 4.10. Let f be a continuous function satisfying the condition (1.4]) and let m be a nonnegative
continuous function. Then for any k > 0, the following two inequalities hold true:

(a) 2Ig(m\/<1) — f)(b) + Ig(mf)(b) <(P+ 1)Igm(b),
(b) 215 (m/F—¢)(b) + (¢ — 1) Igm(b) < Ig(mf)(b).

Theorem 4.11. Let f and g be two continuous functions and let m and n be two nonnegative continuous
functions. Furthermore, suppose that (Hy) holds and

(Hg) There exist two continuous functions p1 and pa such that pi(t) < f(t) < pa(t).
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Then the following four inequalities hold true:

(a) Ig,(mp2)(d)Ig (ng)(b) + Ig, (mf)(d)Ig, (np1)(b) = Ig, (mpa)(d)Ig, (np1)(b) + Ig, (m f)(d)Ig, (ng)(b),
(b) Ig,(mp2)(d)Ig, (nf)(b) + I, (mg)(d)Ig (ne1)(b) = Ig, (mp2)(d)Ig (ne1)(b) + Ig, (mg)(d)Ig, (nf)(b),
(¢) I, (me2)(d)Ig, (np2)(b) + Ig, (m[f)(d)Ig, (ng)(b) = Ig,(mepa)(d)Ig (ng)(b) + Ig, (m[f)(d)Ig, (npz2)(b),
(d) Ig,(mepr)(d) g (np1)(b) + Ig,(mf)(d)Ig (ng)(b) = Ig, (me1)(d)Ig, (ng)(b) + Ig,(mf)(d)Ig (np1)(b).

Proof. From the conditions (H;) and (Hsz), we have

(02(s) = f()) (9(t) = pa(t)) = 0,

which implies that
P2(8)g(t) + f(s)p1(t) = pa(s)pr(t) + f(s)g(t). (4.11)

Multiplying both sides of (4.11]) by m(7) and integrating the resulting inequality obtained with respect to
s from c to d, we have

15, (mep2)(d)g(t) + Ig,(mf)(d) p1(t) = 1g, (mep2)(d)p1(t) + Ig, (mf)(d)g(t). (4.12)

Multiplying both sides of (4.12) by n(p) and integrating the resulting inequality obtained with respect to ¢
from a to b, we obtain

Igy (mep2)(d) g, (ng)(b) + Ig,(mf)(d)Ig (np1)(b) = Ig, (mep2)(d) g, (np1)(b) + Ig,(mf)(d)Ig (ng)(b),

which yields (a). To prove (b)-(d), we use the following inequalities:

() (p2(s) = 9()) (f(t) = ¢1(t)) =0,
(€) (2(s) = f(5)) (g(t) — p2(1)) <0,
(d) (p1(s) = f(s)) (9(t) = pr()) <O
This ends the proof. O

As special cases of Theorem [4.11] we obtain the following result.

Corollary 4.12. Let f and g be two continuous functions satisfying the condition (1.4) and let m and n be
two nonnegative continuous functions. Then the following four inequalities hold true:

(a) ®IEM(d)IE (ng)(b) + WIS, (mf)(d)IEn(B) = $®IE,m(d) % n(b) + IS (mf) ()12 (ng) (b),
(b) WIEm(d)I2 (nf)(b) + 612, (mg) (d) & n(b) > GWIEm(d)IAn(b) + I¢, (mg) (A)IE, (nf)(b),
(¢) ®UIEm(d)IEn(b) + IS, (mf) () I2, (ng)(b) > BIE,m(d)I2 (ng)(B) + WIS, (mf) (d) I8 n(b),
(d) $Ie,m(d)IEn(b) + I5, (mf) (A)IE (ng) (b) > SI5m(d)I2 (ng)(8) + I, (mf)(d) T4 n(b).

Theorem 4.13. Let f and g be two continuous functions, let m and n be two nonnegative continuous
functions and let 01,62 > 0 satisfying 1/01+1/02 = 1. Furthermore, assume that (Hy) and (Hz) hold. Then
the following four inequalities hold true:

(@) 5T (s = 1)) O)Ign(d) + - Tm(B) I, (002 = 9)%) ) = I, (m(ipa = D) ), (nlp2 = 9)) )
) 5T (mla = 1)) (O, (o2 = 9)°) (@) + 51, (e — )OI (nlp2 — 9)") (@
> 15, (m(p2 = £)(p2 = 9) (0I5, (n(p2 = f)(p2 — 9)) (d),
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(©) G-I (m(f = 0" YO In(d) + 5T m(B), (g = p1)*) (d) = T (m(f = 02)) O, (nlg = ) (@,

(@) 5T (= 20" YOI, (nlg = )™ (d) + 515, (m(f = 2)") (DI, (nlg — p)") @)

> Ig, (m(f = ¢1)(g — 1)) (0)1g, (n(f — ¢1)(g = p1))(d).
Proof. The inequalities (a)-(d) can be proved by choosing of the parameters in the Young inequality [I7]:
(a) @z =a(s) = f(s), y=pa(t) —g(),
(b) @ = (p2(s) = f(s))(p2(t) — g(t), v = (p2(s) — g(s))(p2(t) — (1)),
(c) z=f(s) —pi(s), y=g(t)—m(),
(d) z=(f(s) —1(s))(g(t) = p1(t)), v =(g(s) = p1(s))(f(t) — ¢1(t)).
This ends the proof. O

Theorem 4.14. Let f and g be two continuous functions, let m and n be two nonnegative continuous
functions and let 01,05 > 0 satisfying 01 + 02 = 1. Furthermore, assume that (H1) and (Hz) hold. Then the
following four inequalities hold true:

(a) 0115 (m(p2 — [))(b)Ig,n(d) + 0215, m(b)I5, (n(p2 — 9))(d) > Ig, (m(p2 — f )(b)IC( (p2 — 9)%2)(d),
(b) 0I5, (m(pa — ) (BO)IG, (n(p2 — 9))(d) + 0215 (m soz— ) (b) E(n p2—9))(d)

> I8 (me2 — £)" (p2 — 9)) DS, (n(p2 — 9)* (g2 — £)) (d),
() Iy, (m(f — 1)) (b)Ig,n(d) + O2Ig, m(D)I7, (n(g — m))(d)zl (m(f @1)91)(5)10( (g — p1)™)(d),
(d) 013 (m(f — 1)) (b)I5, (n(g — p1))(d) + 0217, (m(f — 1)) (b) I, (n(g — p1))(d)

> 12 (m(f — 1) (g — p1)?) OIS, (nlg — p1)" (f — 1)’ )()

Proof. The inequalities (a)-(d) can be proved by choosing of the parameters in the weighted AM-GM in-
equality:

(a) = pa(s) = f(s), y=p2(t) —g(t),
(b) @ = (p2(s) = f(5))(p2(t) = (1)), v = (p2(s) — g(5))(p2(t) — f(1)),
(c) z=f(s) —w1(s), y=g(t)—pi(t),
(d) @ =(f(s) = 1(s))(g(t) = pr(t), y = (g(s) — p1(5))(f(t) — p1(t))-
This ends the proof. 0

Theorem 4.15. Let f and g be two continuous functions, let m and g be two nonnegative continuous
functions and let 82 > 61 > 0 and 02 # 1. Furthermore, assume that (Hi) and (H2) hold. Then for any
k > 0, we have

(@ I (ntea = % (r = %) 0+ g5 (10 n)0) + i mpa0) )
< Gk (T mpam)) + 1 mfa)®)) + 2Pk I,
2

O) 13 (e = B O 02— 9)%)(@ + Gk = (15, ()OI 00p2)d) + 1 (men) O (n9) (@)

02 — 01

P2 = 00155 19 ()12, n(d),
2

< Ot (Ia (mi2) (D)1, (mpa) (d) + 12 (m ) (B, <ng><d>> n
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01 01 01 f2-91

(©) I*(m(f — )% (g — p1) ) (0) + Dk <I§(mp1f)(b)+I;‘(ms019)(b)>

< 25 (Itmap)®) + (o)) ) + 2Dk Iy,
(@) 13, (07 — o)) O)I5, (nlg — p1) ) (@) + L (féﬁ (mf)(D)IG, (np1)(d) + I8, (mipr) (I, <ng><d>>

E (1 me) 015, 0mon) (@) + 13 (m OV (n9)(@) ) + 2K 1m0 15 (),

Proof. The inequalities (a)-(d) can be proved by choosing of the parameters in Lemma
(a) a=(p2(s) = f(5))(p2(s) —g(s)), (b) a= (pa(s) — f(s))(p2(t) — g(t)),
(c) a=(f(s) —w1(s))(g(s) = p1(s)), (d) a=(f(s)—e1(s))(g(t) — p1(t)).
This ends the proof. O

5. Concluding remark

In this paper, by using the theory of quantum calculus on finite intervals, we obtain some new Griiss type
quantum integral inequalities and some related quantum integral inequalities. Moreover, they are expected
to find some applications for establishing uniqueness of solutions in quantum difference equations boundary
value problems and in impulsive quantum difference equations. Furthermore, by setting suitable parameter
values in our main results, we get some known results obtained by a number of authors.
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