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Abstract

This paper is concerned with the existence of almost periodic and pseudo almost solutions for a nonlinear
integro-differential equation with neutral delay, which arise in epidemic problems. By using almost periodic
functions theory and fixed point theory, we obtain the results. Two examples are given to illustrate our
results. In addition, an application to nonautonomous differential equations is also given. c©2016 All rights
reserved.
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1. Introduction and preliminaries

In 1990, Fink and Gatica [12] firstly studied the existence of positive almost periodic solution to the
following delay integral equation

x(t) =

∫ t

t−τ
f(s, x(s))ds, t ∈ R, (1.1)

which is a model for the spread of some infectious disease (cf. [15, 17]). Since then, the existence of positive
almost periodic type solution to equation (1.1) and its variants has been of great interest for many authors
(see, e.g., [1–6, 8–11, 14, 16] and references therein).

In 1997, Ait Dads and Ezzinbi [4] considered the existence of positive almost periodic solutions for the
following neutral integral equation

x(t) = γx(t− τ) + (1− γ)

∫ t

t−τ
f(s, x(s))ds, (1.2)
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and, in 2009, Ait Dads, Cieutat and Lhachimi [1] discussed the existence of positive pseudo almost periodic
solution to the following more general infinite delay integral equation

x(t) =

∫ t

−∞
a(t, t− s)f(s, x(s))ds, (1.3)

which unifies equation (1.1) and equation (1.2). Afterwards, in 2001, Ding, Chen and N’Guérékata [8] inves-
tigated the existence of positive pseudo almost periodic solution to the following neutral integral equation:

x(t) = α(t)x(t− β) +

∫ t

−∞
a(t, t− s)f(s, x(s))ds+ h(t, x(t)).

Very recently, by using Perov’s fixed point theorem, Bellour and Ait Dads [5] studied the existence and
uniqueness of periodic solutions for the following nonlinear integro-differential equation with neutral delay:

x(t) = γx(t− σ(t)) + (1− γ)

∫ t

t−σ(t)
f(s, x(s), x′(s))ds, t ∈ R. (1.4)

As noted in [5], Eq. (1.4) includes many important integral and functional equations that arise in
biomathematics.

Stimulated by the above works, in this paper, we aim to make further study on this topic, i.e., we will
investigate the existence of almost periodic and pseudo almost solutions for the following integro-differential
equation with neutral delay:

x(t) = α(t)x(t− σ(t)) +

∫ t

−∞
β(t, t− s)f(s, x(s), x′(s))ds, t ∈ R. (1.5)

Throughout the rest of this paper, we denote by R the set of real numbers, by R+ the set of nonnegative
real numbers, by X a Banach space, by Ω a subset of Rn. Moreover, C(R) (respectively C(R×Ω)) denotes
the space of real-valued bounded continuous functions f(t) (res. f(t, x)) from R (res. R×Ω) to R with norm
‖f‖ = supt∈R |f(t)| (res. ‖f‖ = supt∈R,x∈Ω |f(t)|); Cn(R) denotes the space of all functions which have a

continuous n− th derivative on R, with the norm ‖f‖n =
∑n

i=0 supt∈R |f (i)(t)|, where f (i) denote the i− th
derivative of f and f (0) = f, f (1) = f ′.

Next, let us recall some basic notations and properties about almost periodic functions and pseudo
almost periodic functions. For more details, we refer the reader to [18].

Definition 1.1. A continuous function f : R → X is called almost periodic if for every ε > 0 there exists
l(ε) > 0 such that every interval I of length l(ε) contains a number τ with the property that

‖f(t+ τ)− f(t)‖ < ε for all t ∈ R.

We denote by AP (X) the set of all such functions.

Definition 1.2. A continuous function f : R × Ω → X is called almost periodic in t uniformly for x ∈ Ω
if for every ε > 0 and for every compact subset K ⊂ Ω there exists l(ε) > 0 such that every interval I of
length l(ε) contains a number τ with the property that

‖f(t+ τ, x)− f(t, x)‖ < ε for all t ∈ R, x ∈ K.

We denote by AP (R× Ω, X) the set of all such functions.

Let

PAP0(X) =

{
f ∈ BC(R, X) : lim

r→+∞

1

2r

∫ r

−r
‖f(t)‖dt = 0

}
.
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Similarly, PAP0(R×Ω, X) denotes the collection of all jointly continuous functions f : R×Ω→ R such
that for every compact subset K ⊂ Ω, f is bounded on R×K, and

lim
r→+∞

1

2r

∫ r

−r
‖f(t, x)‖dt = 0 uniformly for x ∈ K.

Definition 1.3. A function f : R → X (respectively f : R × Ω → X) is called pseudo almost periodic
(respectively pseudo almost periodic in t uniformly with respect to x ∈ Ω) if

f = g + φ,

where g ∈ AP (R) (respectively g ∈ AP (R × Ω,R)) and φ ∈ PAP0(R) (respectively φ ∈ PAP0(R × Ω,R)).
We denote by PAP (X) (respectively PAP (R× Ω, X)) the set of all such functions.

Lemma 1.4. Let E ∈ {AP (R), PAP (R)}. Then, the following hold true:

(a) f, g ∈ E implies that f + g ∈ E;

(b) f, g ∈ E implies that f · g ∈ E;

(c) f ∈ E implies that f(· − c) ∈ E for any constant c ∈ R;

(d) E is a Banach space equipped with the supremum norm.

Lemma 1.5. Let x, σ ∈ AP (R). Then x(· − σ(·)) ∈ AP (R).

Suppose that H(t) ∈ Ω for all t ∈ R. Define H × ι : R→ Ω× R by

H × ι(t) = (t, h1(t), h2(t) · · ·hn(t)), t ∈ R.

Lemma 1.6. Let f ∈ AP (R×Ω,R), H ∈ AP (R)n with H(t) ∈ Ω for all t ∈ R. Then f ◦ (H × ι) ∈ AP (R).

Lemma 1.7. Let f ∈ PAP (Ω × R,R) be continuous on every compact subset K ⊂ Ω uniformly for t ∈ R
and H ∈ PAP (R)n with H(t) ∈ Ω for all t ∈ R. Then f ◦ (H × ι) ∈ PAP (R).

Now, let us recall the notion of Cn−almost periodicity (for more details, we refer the reader to [6] and
[9]).

Definition 1.8. A continuous function f ∈ Cn(R,R) is called Cn−almost periodic if for every ε > 0 there
exists l(ε) > 0 such that every interval I of length l(ε) contains a number τ with the property that

‖f(t+ τ)− f(t)‖n < ε for all t ∈ R.

We denote by APn(R) the set of all such functions.

Remark 1.9. By [6], APn(R) turns out to be a Banach space equipped with the norm ‖·‖n = sup
t∈R

n∑
i=0
|f (i)(t)|.

2. Almost periodic case

In this section, we study the existence and uniqueness of almost periodic solution for Eq. (1.5). For
convenience, we will work on the following norm:

‖f‖1 = ‖f‖+ ‖f ′‖.

In fact, the two norms are equivalent.

Lemma 2.1. (AP 1(R), ‖ · ‖1) is a Banach space.
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Proof. By Remark 1.9, we know that AP 1(R) turns out to be a Banach space equipped with the norm
‖f‖1 = sup

t∈R
(|f(t)|+ |f ′(t)|). Noting that

sup
t∈R

(|f(t)|+ |f ′(t)|) ≤ sup
t∈R
|f(t)|+ sup

t∈R
|f ′(t)| ≤ 2 sup

t∈R
(|f(t)|+ |f ′(t)|).

We have ‖ · ‖1 ≤ ‖ · ‖1 ≤ 2‖ · ‖1.

Lemma 2.2 ([1]). Let β : R× R+ → R such that t→ β(t, ·) is in AP (L1(R+)), f ∈ AP (R), and

F (t) =

∫ t

−∞
β(t, t− s)f(s)ds, t ∈ R.

Then F ∈ AP (R).

We list some assumptions:

(H1) α, σ ∈ AP 1(R), f ∈ AP (R × R2,R), and β : R × R+ → R satisfies β(·, 0) ∈ AP (R) and t → β(t, ·) is
in AP (L1(R+)).

(H2) β ∈ C1(R×R+,R) and there exist γ, γ1, γ2 ∈ L1(R+)∩C(R+) such that for all t ∈ R and a.e. s ∈ R+,
there holds

|β(t, s)| ≤ γ(s), |β1(t, s)| ≤ γ1(s), |β2(t, s)| ≤ γ2(s),

where β1(t, s) = ∂β(t,s)
∂t and β2(t, s) = ∂β(t,s)

∂s . Moreover, t→ βi(t, ·), i = 1, 2, are both in AP (L1(R+)).

(H3) There exist Lf > 0 such that

|f(t, u, v)| − |f(t, u′, v′)| ≤ Lf (|u− u′|+ |v − v′|), t, u, u′, v, v′ ∈ R.

Theorem 2.3. Assume that (H1)-(H3) hold, and

‖α‖+ ‖α′‖+ ‖α‖ · ‖1− σ′‖+ [γ(0) + ‖γ‖L1(R+) + ‖γ1‖L1(R+) + ‖γ2‖L1(R+)]Lf < 1.

Then Eq. (1.5) has a unique almost periodic solution.

Proof. Define T : AP 1(R)→ C(R) by

Tx(t) = α(t)x(t− σ(t)) +

∫ t

−∞
β(t, t− s)f(s, x(s), x′(s))ds, t ∈ R.

We claim that T maps AP 1(R) to C1(R), in fact, by (H2), one can obtain

(Tx)′(t) = α′(t)x(t− σ(t)) + α(t)(1− σ′(t))x′(t− σ(t)) + β(t, 0)f(t, x(t), x′(t))

+

∫ t

−∞
β1(t, t− s)f(s, x(s), x′(s))ds+

∫ t

−∞
β2(t, t− s)f(s, x(s), x′(s))ds.

Let x ∈ AP 1(R). By Lemma 1.5, we obtain

x(· − σ(·)), x′(· − σ(·)) ∈ AP (R).

Note that f ∈ AP 1(R× R2,R), by Lemma 1.6, we know that

f(·, x(·), x′(·)) ∈ AP (R).
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Combining with Lemma 2.2, we obtain

t→
∫ t

−∞
β(t, t− s)f(s, x(s), x′(s))ds

is in AP (R). Then, it follows from Lemma 1.4 that Tx ∈ AP (R).
Again by Lemma 1.4 and (H1), we have

t→ α′(t)x(t− σ(t)) + α(t)(1− σ′(t))x′(t− σ(t)) + β(t, 0)f(t, x(t), x′(t))

belongs to AP (R). Noting that t → βi(t, ·), i = 1, 2, are both in AP (L1(R+)), again by Lemma 2.2, we
conclude that

t→
∫ t

−∞
βi(t, t− s)f(s, x(s), x′(s))ds, i = 1, 2,

are both in AP (R). Thus, (Tx)′ ∈ AP (R). In conclusion, Tx ∈ AP 1(R), which means T (AP 1(R)) ⊂
AP 1(R).

For all x, y ∈ AP 1(R), we have

‖Tx− Ty‖1 = ‖Tx− Ty‖+ ‖(Tx)′ − (Ty)′‖

≤ ‖α‖ · ‖x− y‖+ sup
t∈R

∫ t

−∞
γ(t− s)Lf‖x− y‖1 + ‖α′‖ · ‖x− y‖+ ‖α‖ · ‖1− σ′‖ · ‖x′ − y′‖

+ γ(0)Lf‖x− y‖1 + sup
t∈R

∫ t

−∞
γ1(t− s)Lf‖x− y‖1 + sup

t∈R

∫ t

−∞
γ2(t− s)Lf‖x− y‖1

≤ (‖α‖+ ‖α′‖) · ‖x− y‖+ ‖α‖ · ‖1− σ′‖ · ‖x′ − y′‖+ γ(0)Lf‖x− y‖1
+ [‖γ‖L1(R+) + ‖γ1‖L1(R+) + ‖γ2‖L1(R+)]Lf‖x− y‖1

≤
(
‖α‖+ ‖α′‖+ ‖α‖ · ‖1− σ′‖+ [γ(0) + ‖γ‖L1(R+) + ‖γ1‖L1(R+) + ‖γ2‖L1(R+)]Lf

)
‖x− y‖1.

By the assumptions, ‖α‖+ ‖α′‖+ ‖α‖ · ‖1− σ′‖+ [γ(0) + ‖γ‖L1(R+) + ‖γ1‖L1(R+) + ‖γ2‖L1(R+)]Lf < 1.
Then, we deduce that Eq. (1.5) has a unique almost periodic solution.

Example 2.4. Let α(t) ≡ 1
6 , σ(t) = 1 + sin t, β(t, s) = e−s

2
( sin t+sinπt)

2 , and

f(t, x, y) =
1 + cos2

√
2t+ cos2 t

3
· (sin x

18
cos

y

18
+ 1).

It is easy to see that (H1) and (H2) hold with

γ(s) = e−s
2
, γ1(s) = (

1 + π

2
)e−s

2
, γ2(s) = 2se−s

2
.

Moreover, we have

|f(t, x1, y1)− f(t, x2, y2)| ≤ | sin x1

18
cos

y1

18
− sin

x2

18
cos

y1

18
|+ | sin x2

18
cos

y1

18
− sin

x2

18
cos

y2

18
|

≤ |x1 − x2|+ |y1 − y2|
18

,

which means that (H3) holds with Lf = 1
18 . By a direct calculation, we have

‖α‖ =
1

6
, ‖α′‖ = 0, ‖1− σ′‖ = 2, γ(0) = 1,

and

‖γ‖L1(R+) =

√
π

2
, ‖γ1‖L1(R+) =

1 + π

4

√
π, ‖γ2‖L1(R+) = 1,
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which yields

‖α‖+ ‖α′‖+ ‖α‖ · ‖1− σ′‖+ [γ(0) + ‖γ‖L1(R+) + ‖γ1‖L1(R+) + ‖γ2‖L1(R+)]Lf < 1.

Then, by Theorem 2.3, the following integral equation

x(t) =
1

6
x(t− 1− sin t) +

∫ t

−∞

(1 + cos2
√

2s+ cos2 s)(sin t+ sinπt)

6
e−(t−s)2 ·

[
sin

x(s)

18
cos

x′(s)

18
+ 1

]
ds

has a unique almost periodic solution.

3. Pseudo almost periodic case

In this section, we study the existence and uniqueness of pseudo almost periodic solution for Eq. (1.5).
Set

PAP 1(R) = {f ∈ PAP (R) : f ′ ∈ PAP (R)},

and
B∗ = {ϕ ∈ PAP 1(R) : ϕ(t) and ϕ′(t) are uniformly continuous on R}.

It is easy to see that for every ϕ ∈ PAP 1(R), ϕ is uniformly continuous on R since ϕ′ is bounded. In
addition, we also equip B∗ with the norm ‖f‖1 = ‖f‖ + ‖f ′‖. For more details about PAP 1(R), we refer
the reader to [7].

Before stating the main result, we need recall some lemmas.

Lemma 3.1 ([1]). Let β : R×R+ → R such that t→ β(t, ·) is in PAP (L1(R+)) and there exists b ∈ L1(R+)
such that |βap(t, s)| ≤ b(s) for all t ∈ R and a.e. s ∈ R+, where t→ βap(t, ·) is the almost periodic component
of t→ β(t, ·). Then f ∈ AP (R) implies that F ∈ AP (R), where

F (t) =

∫ t

−∞
β(t, t− s)f(s)ds, t ∈ R.

Remark 3.2. In Lemma 3.1, if there exists b ∈ L1(R+) such that |β(t, s)| ≤ b(s) for all t ∈ R and a.e. s ∈ R+,
the conclusion is also true. In fact, noting that

{βap(t, ·) : t ∈ R} ⊂ {β(t, ·) : t ∈ R}L
1(R+)

.

Thus, for every t ∈ R, there exists {tn} ⊂ R such that

β(tn, ·)→ βap(t, ·) in L1(R+),

which yields that there is a subsequence {tk} ⊂ {tn} such that

β(tk, s)→ βap(t, s) a.e. s ∈ R+.

Then, we conclude that |βap(t, s)| ≤ b(s) for all t ∈ R and a.e. s ∈ R+.

Lemma 3.3. B∗ is also a Banach space with the norm ‖ · ‖1.

Proof. Firstly, PAP 1(R) is a Banach space under the norm ‖ · ‖1 (cf. [7]). Secondly, it is not difficult to
show that B∗ is closed in PAP 1(R). This completes the proof.

Lemma 3.4 ([13]). Let ϕ ∈ PAP (R) be uniformly continuous on R and σ ∈ PAP (R). Then ϕ(· − σ(·)) ∈
PAP (R).
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Theorem 3.5. Let (H2)–(H3) and

(H1′) α, σ ∈ B∗, f ∈ PAP (R × R2,R) satisfies that f(·, x, y) is uniformly continuous on R uniformly for
(x, y) in any compact subset of R2, and β : R × R+ → R satisfies β(·, 0) ∈ B∗, and t → β(t, ·) is in
PAP (L1(R+)). Moreover, t → βi(t, ·), i = 1, 2, are both in PAP (L1(R+)) and uniformly continuous
on R.

hold. Then, Eq. (1.5) has a unique pseudo almost solution in B∗ provided that

‖α‖+ ‖α′‖+ ‖α‖ · ‖1− σ′‖+ [γ(0) + ‖γ‖L1(R+) + ‖γ1‖L1(R+) + ‖γ2‖L1(R+)]Lf < 1.

Proof. Similar to the proof of Theorem 2.3, we define T : B∗ → C(R) by

Tx(t) = α(t)x(t− σ(t)) +

∫ t

−∞
β(t, t− s)f(s, x(s), x′(s))ds, t ∈ R.

Next, let us show T (B∗) ⊂ B∗. Fix x ∈ B∗. By Lemma 3.4, we have

x(· − σ(·)), x′(· − σ(·)) ∈ PAP (R).

By Lemma 1.7, t→ f(t, x(t), x′(t)) belongs to PAP (R). Then, it follows from Lemma 3.1 that

t→
∫ t

−∞
β(t, t− s)f(s, x(s), x′(s))ds

belongs to PAP (R), and thus Tx ∈ PAP (R).
Recalling that

(Tx)′(t) = α′(t)x(t− σ(t)) + α(t)(1− σ′(t))x′(t− σ(t)) + β(t, 0)f(t, x(t), x′(t))

+

∫ t

−∞
β1(t, t− s)f(s, x(s), x′(s))ds+

∫ t

−∞
β2(t, t− s)f(s, x(s), x′(s))ds.

Then, similar to the above proof, it is not difficult to show that (Tx)′ ∈ PAP (R).
It remains to show that (Tx)′ is uniformly continuous on R. Since x, σ are uniformly continuous on R,

it is not difficult to show that x(·−σ(·) and x′(·−σ(·)) are uniformly continuous on R. Noting that x ∈ B∗,
f(·, x, y) is uniformly continuous on R uniformly for (x, y) in any compact subset of R2, and

|f(t, x(t), x′(t)− f(s, x(s), x′(s)| ≤ |f(t, x(t), x′(t)− f(s, x(t), x′(t)|
+ Lf (|x(t)− x(s)|+ |x′(t)− x′(s)|).

We conclude that f(t, x(t), x′(t)) is uniformly continuous on R. Combining the above proof with (H1′),
α′(t)x(t− σ(t)) + α(t)(1− σ′(t))x′(t− σ(t)) + β(t, 0)f(t, x(t), x′(t)) is uniformly continuous on R.

We claim that
∫ t
−∞ β1(t, t− s)f(s, x(s), x′(s))ds is also uniformly continuous on R. In fact, we have∣∣∣∣∫ t1

−∞
β1(t1, t1 − s)f(s, x(s), x′(s))ds−

∫ t2

−∞
β1(t2, t2 − s)f(s, x(s), x′(s))ds

∣∣∣∣
=

∣∣∣∣∫ +∞

0
β1(t1, s)f(t1 − s, x(t1 − s), x′(t1 − s))ds−

∫ +∞

0
β1(t2, s)f(t2 − s, x(t2 − s), x′(t2 − s))ds

∣∣∣∣
≤
∫ +∞

0
γ1(s) · |f(t1 − s, x(t1 − s), x′(t1 − s))− f(t2 − s, x(t2 − s), x′(t2 − s))|ds

+

∫ +∞

0
|β1(t1, s)− β1(t2, s)| · ‖f(·, x(·), x′(·))‖

=

∫ +∞

0
γ1(s) · |f(t1 − s, x(t1 − s), x′(t1 − s))− f(t2 − s, x(t2 − s), x′(t2 − s))|ds

+ ‖β1(t1, ·)− β1(t2, ·)‖L1(R+) · ‖f(·, x(·), x′(·))‖.
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Then the conclusion follows from the uniform continuity of t → β1(t, ·) and f(t, x(t), x′(t)). Similarly,
one can show that

∫ t
−∞ β2(t, t− s)f(s, x(s), x′(s))ds is uniformly continuous on R. Thus, (Tx)′ is uniformly

continuous on R, and Tx ∈ B∗.
The rest of proof is similar to that of Theorem 2.3. This completes the proof.

Next, by modifying Example 2.4, we give a simple example, which does not aim at generality.

Example 3.6. Let α(t) ≡ 1
6 , σ(t) = 1 + sin t, β(t, s) =

e−s2 (sin t+sinπt+ 1
1+t2

)

3 and

f(t, x, y) =
1 + cos2

√
2t+ cos2 t+ e−t

2

4
· (sin x

18
cos

y

18
+ 1).

Then, it is not difficult to show that (H1′), (H2) and (H3) hold.

4. Application to differential equations

In this section, stimulated by the idea in [1], we investigate the existence of almost periodic solutions for
the following nonautonomous differential equation:

x′(t) = −a(t)x(t) + f(t, x(t), x′(t)), t ∈ R, (4.1)

where a ∈ AP (R) with ã = inf
t∈R

a(t) > 0, and f satisfies (H3). We have the following results about the

existence of almost periodic solutions for Eq. (4.1):

Theorem 4.1. Eq. (4.1) admits a unique almost periodic solution provided that f ∈ AP (R × R2,R) and
(1 + ã+ 3‖a‖)Lf < ã.

Proof. Since ã = inf
t∈R

a(t) > 0, Eq. (4.1) admits a unique almost periodic solution if and only if the following

integral equation

x(t) =

∫ t

−∞
e−

∫ t
s a(r)drf(s, x(s), x′(s))ds, t ∈ R, (4.2)

has a unique almost periodic solution. It is easy to see that Eq. (4.2) is special case of Eq. (1.5) with

α(t) ≡ 0 and β(t, s) = e−
∫ t
t−s a(r)dr. We will check that all the assumptions of Theorem 2.3 hold. For (H1),

since β(t, 0) ≡ 1, it remains to prove t→ β(t, ·) is in AP (L1(R+)). In view of

‖β(t+ p, ·)− β(t, ·)‖L1(R+) =

∫ +∞

0
|β(t+ p, s)− β(t, s)|ds

=

∫ +∞

0

∣∣∣e− ∫ t+p
t+p−s a(r)dr − e−

∫ t
t−s a(r)dr

∣∣∣ ds
=

∫ +∞

M

∣∣∣e− ∫ t+p
t+p−s a(r)dr − e−

∫ t
t−s a(r)dr

∣∣∣ ds+

∫ M

0

∣∣∣e− ∫ t+p
t+p−s a(r)dr − e−

∫ t
t−s a(r)dr

∣∣∣ ds
≤
∫ +∞

M
2e−ãsds+

∫ M

0
2e−ãs

∣∣∣e− ∫ t
t−s[a(r+p)−a(r)]dr − 1

∣∣∣ ds
≤ 2e−ãM

ã
+ 2M sup

s∈[0,M ]

∣∣∣e− ∫ t
t−s[a(r+p)−a(r)]dr − 1

∣∣∣
≤ 2e−ãM

ã
+ 2Me2M‖a‖M · sup

r∈R
|a(r + p)− a(r)|,

where M > 0 and p ∈ R are two arbitrary constant. Combining this with a ∈ AP (R) and choosing
sufficiently large M > 0, one can show that t→ β(t, ·) is in AP (L1(R+)). In addition, it is easy to see that
for all t, s ∈ R, there holds

|β(t, s)| ≤ e−ãs, |β1(t, s)| ≤ 2‖a‖e−ãs, |β2(t, s)| ≤ ‖a‖e−ãs.
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Moreover, it is not difficult to show that t→ βi(t, ·), i = 1, 2, are both in AP (L1(R+)). Then, we conclude
that (H2) holds. Noting that α(t) ≡ 0, it remains to check [γ(0)+‖γ‖L1(R+)+‖γ1‖L1(R+)+‖γ2‖L1(R+)]Lf < 1.
By a direct calculation, we get

γ(0) = 1, ‖γ‖L1(R+) =
1

ã
, ‖γ1‖L1(R+) =

2‖a‖
ã

, ‖γ2‖L1(R+) =
‖a‖
ã
.

By the assumptions, we have
(1 + ã+ 3‖a‖)Lf < ã,

i.e.,

[γ(0) + ‖γ‖L1(R+) + ‖γ1‖L1(R+) + ‖γ2‖L1(R+)]Lf =

[
1 +

1

ã
+

3‖a‖
ã

]
Lf < 1.

So, all the assumptions of Theorem 2.3 hold. This completes the proof.
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