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Abstract

In this paper, we present the best possible Toader mean bounds of arithmetic and quadratic means by
the one-parameter quadratic and contraharmonic means. As applications in engineering and technology, we
find new bounds for the complete elliptic integral of the second kind. c©2016 All rights reserved.
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1. Introduction

Let M(a, b) be a one-parameter symmetric bivariate mean, p ∈ [0, 1], q ∈ R and a, b > 0 with a 6= b. Then
the one-parameter mean M(a, b; p), q-th power mean Mq(a, b) [14, 15], harmonic mean H(a, b), geometric
mean G(a, b), arithmetic mean A(a, b), quadratic mean Q(a, b), contraharmonic mean C(a, b), Toader mean
T (a, b) [12], centroidal mean C(a, b) are respectively defined by

M(a, b; p) =M [pa+ (1− p)b, pb+ (1− p)a],

Mq(a, b) =

{ (
aq+bq

2

)1/q
, q 6= 0,√

ab, q = 0,

H(a, b) =
2ab

a+ b
, G(a, b) =

√
ab,

(1.1)
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A(a, b) =
a+ b

2
, Q(a, b) =

√
a2 + b2

2
, C(a, b) =

a2 + b2

a+ b
,

T (a, b) =
2

π

∫ π/2

0

√
a2cos2 θ + b2sin2 θdθ, C(a, b) =

2(a2 + ab+ b2)

3(a+ b)
.

(1.2)

It is well known that Mq(a, b) is continuous and strictly increasing with respect to q ∈ R for fixed a, b > 0
with a 6= b, and the inequalities

H(a, b) = M−1(a, b) < G(a, b) = M0(a, b) < A(a, b) = M1(a, b)

< T (a, b) < C(a, b) < Q(a, b) = M2(a, b) < C(a, b)

hold for all a, b > 0 with a 6= b.
The Toader mean T (a, b) is well known in mathematical literature for many years, it satisfies

T (a, b) = RE
(
a2, b2

)
,

where

RE(a, b) =
1

π

∫ ∞
0

[a(t+ b) + b(t+ a)]t

(t+ a)3/2(t+ b)3/2
dt

stands for the symmetric complete elliptic integral of the second kind [7, 8, 10], therefore it can’t be expressed
in terms of the elementary transcendental functions.

Let r ∈ (0, 1), K(r) =
π/2∫
0

(1 − r2 sin2 θ)−1/2dθ and E(r) =
π/2∫
0

(1 − r2 sin2 θ)1/2dθ be respectively the

complete elliptic integrals of the first and second kind. Then K(0+) = E(0+) = π/2, K(1−) = +∞,
E(1−) = 1, K(r) and E(r) satisfy the derivatives formulas [2]

dK(r)

dr
=
E(r)− (1− r2)K(r)

r(1− r2)
,
dE(r)

dr
=
E(r)−K(r)

r
,
d(K(r)− E(r))

dr
=

rE(r)

1− r2
,

the values K(
√

2/2) and E(
√

2/2) can be expressed as [4]

K

(√
2

2

)
=

Γ2
(
1
4

)
4
√
π

= 1.854 · · · , E

(√
2

2

)
=

4Γ2
(
3
4

)
+ Γ2

(
1
4

)
8
√
π

= 1.350 · · · ,

where Γ(x) =
∫∞
0 tx−1e−tdt is the Euler gamma function, and the Toader mean T (a, b) can be rewritten as

T (a, b) =


2a

π
E

√1−
(
b

a

)2
 , a > b,

2b

π
E

(√
1−

(a
b

)2)
, a < b.

(1.3)

Equation (1.3) shows that the identity E(r) = T (1,
√

1− r2) holds for all r ∈ (0, 1), therefore the Toader
mean T (a, b) has many applications in physics, mechanics and engineering technology. Recently, the Toader
mean T (a, b) has attracted the attention of many mathematicians and engineers. Vuorinen [13] conjectured
that the inequality

T (a, b) > M3/2(a, b)

holds for all a, b > 0 with a 6= b. This conjecture was proved by Qiu and Shen [11], and Barnard, Pearce
and Richards [3], respectively.

Alzer and Qiu [1] presented a best possible upper power mean bound for the Toader mean as follows:

T (a, b) < Mlog 2/(log π−log 2)(a, b)
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for all a, b > 0 with a 6= b.
Neuman [10], and Kazi and Neuman [7] proved that the inequalities

(a+ b)
√
ab− ab

AGM(a, b)
< T (a, b) <

4(a+ b)
√
ab+ (a− b)2

8AGM(a, b)
,

and

T (a, b) <
1

4

(√
(2 +

√
2)a2 + (2−

√
2)b2 +

√
(2 +

√
2)b2 + (2−

√
2)a2

)
hold for all a, b > 0 with a 6= b, where AGM(a, b) is the arithmetic-geometric mean of a and b.

Let α, β ∈ (1/2, 1). Then Hua and Qi [5] proved that the double inequality

C(a, b;α) < T (a, b) < C(a, b;β)

holds for all a, b > 0 with a 6= b if and only if α ≤ 1/2 +
√

3/4 and β ≥ 1/2 +
√

12/π − 3/2.
In [6, 9], the authors proved that the double inequalities

α1C(a, b) + (1− α1)H(a, b) <T (a, b) < β1C(a, b) + (1− β1)H(a, b),

α2[C(a, b)−H(a, b)] +A(a, b) <T (a, b) < β2[C(a, b)−H(a, b)] +A(a, b),

α3C(a, b) + (1− α3)A(a, b) <T (a, b) < β3C(a, b) + (1− β3)A(a, b),

α4

A(a, b)
+

1− α4

C(a, b)
<

1

T (a, b)
<

β4
A(a, b)

+
1− β4
C(a, b)

,

hold for all a, b > 0 with a 6= b if and only if α1 ≤ 5/8, β1 ≥ 2/π, α2 ≤ 1/8, β2 ≥ 2/π − 1/2, α3 ≤ 3/4,
β3 ≥ 12/π − 3, α4 ≤ π − 3 and β4 ≥ 1/4.

From (1.1) and (1.2) we clearly see that both the functions x→ Q(a, b;x) and x→ C(a, b;x) are strictly
increasing on [1/2, 1] and

Q(a, b; 1/2) = A(a, b) < T [A(a, b), Q(a, b)] < Q(a, b) = Q(a, b; 1), (1.4)

C(a, b; 1/2) = A(a, b) < T [A(a, b), Q(a, b)] < Q(a, b) < C(a, b) = C(a, b; 1) (1.5)

for all a, b > 0 with a 6= b.
Motivated by inequalities (1.4) and (1.5), it is natural to ask “what are the best possible parameters

λ1, µ1, λ2, µ2 ∈ (1/2, 1) such that the double inequalities

Q(a, b;λ1) < T [A(a, b), Q(a, b)] < Q(a, b;µ1),

C(a, b;λ2) < T [A(a, b), Q(a, b)] < C(a, b;µ2)

hold for all a, b > 0 with a 6= b?” The main purpose of this paper is to answer this question.

2. Lemmas

In order to prove our main results we need several lemmas, which we present in this section.

Lemma 2.1 ([2]). The double inequality

π

4
<
K(r)− E(r)

r2
<

π

4(1− r2)

holds for all r ∈ (0, 1).



H.-H. Chu, et al., J. Nonlinear Sci. Appl. 9 (2016), 3424–3432 3427

Lemma 2.2 ([2]). The function r → [E2(r) − (1 − r2)K2(r)]/r4 is strictly increasing from (0, 1) onto
(π2/32, 1).

Lemma 2.3 ([2]). Let a, b ∈ R with a < b, f, g : [a, b] → R be continuous on [a, b] and differentiable on
(a, b) and g′(x) 6= 0 on (a, b). If f ′(x)/g′(x) is increasing (decreasing) on (a, b), then so are the functions

f(x)− f(a)

g(x)− g(a)
,

f(x)− f(b)

g(x)− g(b)
.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.4. The function r → E(r)[K(r)− E(r)]/r2 is strictly increasing from (0,
√

2/2) onto
(π2/8, 2E(

√
2/2)[K(

√
2/2)− E(

√
2/2)]).

Proof. Let

φ(r) =
E(r)[K(r)− E(r)]

r2
. (2.1)

Then simple computations lead to

φ′(r) =
r

1− r2
E2(r)− (1− r2)K2(r)

r4
. (2.2)

It follows from Lemmas 2.1 and 2.2 together with (2.1) and (2.2) that

φ(0+) =
π2

8
, φ

(√
2

2

)
= 2E

(√
2

2

)[
K

(√
2

2

)
− E

(√
2

2

)]
(2.3)

and φ(r) is strictly increasing on (0,
√

2/2).

Lemma 2.5. The function r → [r2E(r) + (1 − r2)(K(r) − E(r))]/(r2
√

1− r2) is strictly increasing from
(0,
√

2/2) onto (3π/4,
√

2K(
√

2/2)).

Proof. Let

ϕ1(r) = r2E(r) + (1− r2)(K(r)− E(r)), ϕ2(r) = r2
√

1− r2, ϕ(r) =
ϕ1(r)

ϕ2(r)
. (2.4)

Then elaborated computations give

ϕ1(0
+) =ϕ2(0

+) = 0, (2.5)

ϕ

(√
2

2

)
=
√

2K

(√
2

2

)
, (2.6)

ϕ′1(r)

ϕ′2(r)
=3ψ(r), (2.7)

where

ψ(r) =

√
1− r2[2E(r)−K(r)]

2− 3r2
,

ψ(0+) =
π

4
, (2.8)

ψ′(r) =
ω(r)

r
√

1− r2(2− 3r2)2
, (2.9)
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where
ω(r) = 2[E(r)−K(r)] + r2[E(r) +K(r)],

ω(0+) = 0, (2.10)

ω′(r) =
r(2− 3r2)E(r)

1− r2
> 0 (2.11)

for r ∈ (0,
√

2/2).
It follows from (2.7) and (2.9)-(2.11) that φ′1(r)/φ

′
2(r) is strictly increasing on (0,

√
2/2). Then (2.4) and

(2.5) together with Lemma 2.3 lead to the conclusion that ϕ(r) is strictly increasing on (0,
√

2/2).
From (2.5), (2.7) and (2.8) we clearly see that

ϕ(0+) =
3π

4
. (2.12)

Therefore, Lemma 2.5 follows from (2.6) and (2.12) together with the monotonicity of ϕ(r) on the interval
(0,
√

2/2).

3. Main Results

Theorem 3.1. Let λ1, µ1 ∈ (1/2, 1). Then the double inequality

Q(a, b;λ1) < T [A(a, b), Q(a, b)] < Q(a, b;µ1)

holds for all a, b > 0 with a 6= b if and only if λ1 ≤ 1/2 +
√

2E2(
√

2/2)/π2 − 1/4 = 0.8459 · · · and µ1 ≥
1/2 +

√
2/4 = 0.8535 · · · .

Proof. Sine Q(a, b), T (a, b) and A(a, b) are symmetric and homogeneous of degree 1, without loss of gener-
ality, we assume that a > b > 0. Let r = (a− b)/

√
2(a2 + b2) ∈ (0,

√
2/2) and p ∈ (1/2, 1). Then (1.1)-(1.3)

lead to

T [A(a, b), Q(a, b)] =
2A(a, b)

π
√

1− r2
E(r), (3.1)

Q(a, b; p) =
A(a, b)√

1− r2
√

1− 4p(1− p)r2. (3.2)

It follows from (3.1), (3.2) and Lemma 2.4 that

Q(a, b; p)− T [A(a, b), Q(a, b)] =
A(a, b)

√
1− r2

[√
1− 4p(1− p)r2 + 2

πE(r)
]F (r), (3.3)

where

F (r) = 1− 4p(1− p)r2 − 4

π2
E2(r),

F (0+) = 0, (3.4)

F

(√
2

2

)
= 1− 2p(1− p)r2 − 4

π2
E2
(√

2

2

)
, (3.5)

F ′(r) = 8rf(r), (3.6)
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where

f(r) =
E(r)[K(r)− E(r)]

π2r2
− p(1− p), (3.7)

f(0+) =
1

8
− p(1− p), (3.8)

f

(√
2

2

)
=

2E
(√

2
2

) [
K
(√

2
2

)
− E

(√
2
2

)]
π2

− p(1− p). (3.9)

We divide the proof into four cases.

Case 1.1 p = p0 = 1/2 +
√

2E2(
√

2/2)/π2 − 1/4. Then (3.5), (3.8) and (3.9) lead to

F

(√
2

2

)
= 0, (3.10)

f(0+) =
2

π2
E2
(√

2

2

)
− 3

8
= −0.005331 · · · < 0, (3.11)

f

(√
2

2

)
=

2

π2
E

(√
2

2

)
K

(√
2

2

)
− 1

2
= 0.007455 · · · > 0. (3.12)

From Lemma 2.4, (3.6), (3.7), (3.11) and (3.12) we clearly see that there exists r0 ∈ (0,
√

2/2) such that
F (r) is strictly decreasing on (0, r0) and strictly increasing on (r0,

√
2/2). Therefore, T [A(a, b), Q(a, b)] >

Q(a, b; p0) follows from (3.3), (3.4) and (3.10) together with the piecewise monotonicity of F (r).
Case 1.2 p = p1 = 1/2 +

√
2/4. Then (3.8) becomes

f(0+) = 0. (3.13)

It follows from Lemma 2.4, (3.6), (3.7) and (3.13) that F (r) is strictly increasing on (0,
√

2/2). Therefore,
T [A(a, b), Q(a, b)] < Q(a, b; p1) follows easily from (3.3) and (3.4) together with the monotonicity of F (r).

Case 1.3 1/2 +
√

2E2(
√

2/2)/π2 − 1/4 < p = p2 < 1. Then (3.5) leads to

F

(√
2

2

)
> 0. (3.14)

Equation (3.3) and inequality (3.14) imply that there exists small enough δ1 ∈ (0,
√

2/2) such that
T [A(a, b), Q(a, b)] < Q(a, b; p2) for all a > b > 0 with (a− b)/

√
2(a2 + b2) ∈ (

√
2/2− δ1,

√
2/2).

Case 1.4 1/2 < p = p3 < 1/2 +
√

2/4. Then (3.8) leads to

f(0+) < 0. (3.15)

Equations (3.3), (3.4) and (3.6) together with inequality (3.15) leads to the conclusion that there
exists small enough δ2 ∈ (0,

√
2/2) such that T [A(a, b), Q(a, b)] > Q(a, b; p3) for all a > b > 0 with

(a− b)/
√

2(a2 + b2) ∈ (0, δ2).

Theorem 3.2. Let λ2, µ2 ∈ (1/2, 1). Then the double inequality

C(a, b;λ2) < T [A(a, b), Q(a, b)] < C(a, b;µ2)

holds for all a, b > 0 with a 6= b if and only if λ2 ≤ 1/2 +
√√

2E(
√

2/2)/(2π)− 1/4 = 0.7323 · · · and

µ2 ≥ 3/4.
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Proof. Without loss of generality, we assume that a > b > 0. Let r = (a− b)/
√

2(a2 + b2) ∈ (0,
√

2/2) and
q ∈ (1/2, 1). Then (1.1)-(1.3) lead to

C(a, b; q) =
A(a, b)

1− r2
[1− 4q(1− q)r2]. (3.16)

It follows from (3.1), (3.16) and Lemma 2.5 that

C(a, b; q)− T [A(a, b), Q(a, b)] =
A(a, b)

1− r2
G(r), (3.17)

where

G(r) = 1− 4q(1− q)r2 − 2

π

√
1− r2E(r),

G(0+) = 0, (3.18)

G

(√
2

2

)
= 1− 2q(1− q)−

√
2

π
E

(√
2

2

)
, (3.19)

G′(r) = 2rg(r), (3.20)

where

g(r) =
r2E(r) + (1− r2)[K(r)− E(r)]

πr2
√

1− r2
− 4q(1− q), (3.21)

g(0+) =
3

4
− 4q(1− q), (3.22)

g

(√
2

2

)
=

√
2

π
K

(√
2

2

)
− 4q(1− q). (3.23)

We divide the proof into four cases.

Case 2.1 q = q0 = 1/2 +
√√

2E(
√

2/2)/(2π)− 1/4. Then (3.19), (3.22) and (3.23) lead to

G

(√
2

2

)
= 0, (3.24)

g(0+) =
2
√

2E
(√

2
2

)
π

− 5

4
= −0.03399 · · · < 0, (3.25)

g

(√
2

2

)
=

√
2
[
2E
(√

2
2

)
+K

(√
2
2

)]
π

− 2 = 0.05063 · · · . (3.26)

From Lemma 2.5, (3.20), (3.21), (3.25) and (3.26) we clearly see that there exists r∗ ∈ (0,
√

2/2) such that
G(r) is strictly decreasing on (0, r∗) and strictly increasing on (r∗,

√
2/2). Therefore, T [A(a, b), Q(a, b)] >

C(a, b; q0) follows from (3.17), (3.18), (3.24) and the piecewise monotonicity of G(r).
Case 2.2 q = q1 = 3/4. Then (3.22) becomes

g(0+) = 0. (3.27)

It follows from Lemma 2.5, (3.20), (3.21) and (3.27) that G(r) is strictly increasing on (0,
√

2/2). There-
fore, T [A(a, b), Q(a, b)] < C(a, b; q1) follows from (3.17) and (3.18) together with the monotonicity of G(r).



H.-H. Chu, et al., J. Nonlinear Sci. Appl. 9 (2016), 3424–3432 3431

Case 2.3 1/2 +
√√

2E(
√

2/2)/(2π)− 1/4 < q = q2 < 1. Then (3.19) leads to

G

(√
2

2

)
> 0. (3.28)

Equation (3.17) and inequality (3.28) imply that there exists small enough δ3 ∈ (0,
√

2/2) such that
T [A(a, b), Q(a, b)] < C(a, b; q2) for all a > b > 0 with (a− b)/

√
2(a2 + b2) ∈ (

√
2/2− δ3,

√
2/2).

Case 2.4 1/2 < q = q3 < 3/4. Then (3.22) leads to

g(0+) < 0. (3.29)

Equations (3.17), (3.18) and (3.20) together with inequality (3.29) imply that there exists small enough
δ4 ∈ (0,

√
2/2) such that T [A(a, b), Q(a, b)] > C(a, b; q3) for all a > b > 0 with (a − b)/

√
2(a2 + b2) ∈

(0, δ4).

From Theorems 3.1 and 3.2 we get Corollary 3.3 immediately.

Corollary 3.3. Let λ1 = 1/2 +
√

2E2(
√

2/2)/π2 − 1/4, µ1 = 1/2 +
√

2/4, µ2 = 3/4 and λ2 = 1/2 +√√
2E(
√

2/2)/(2π)− 1/4. Then the double inequality

π

2
max

{√
1− 4λ1(1− λ1)r2,

1− 4λ2(1− λ2)r2√
1− r2

}
< E(r)

<
π

2
min

{√
1− 4µ1(1− µ1)r2,

1− 4µ2(1− µ2)r2√
1− r2

}
hold for all r ∈ (0,

√
2/2).
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