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Abstract

Our purpose in this paper is to consider a more generalized form of the Mittag-Leffler function. For this
newly defined function, we obtain certain composition formulas with pathway fractional integral operators.
We also point out some important special cases of the main results. c©2016 All rights reserved.
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1. Introduction

Mittag-Leffler functions are important for obtaining solutions of fractional differential and integral equa-
tions, and they are connected with an extensive variety of problem in diverse areas of mathematics and
mathematical physics. In addition, from exponential behavior, the deviations of physical phenomena could
also be represented by physical laws via Mittag-Leffler functions. Therefore, the uses of Mittag-Leffler
functions are constantly increasing, specially in physics. For more details about the recent works in the
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field of dynamical systems theory, stochastic systems, non-equilibrium statistical mechanics and quantum
mechanics, interesting readers can refer [3, 14, 16–18, 25] and the references cited therein.

Below, let N,R,C be the sets of positive integers, real numbers and complex numbers respectively, and
N0 := N ∪ {0}.
By means of power series, the Mittag-Leffler function Eα(z), defined by [10, 11]

Eα (z) =

∞∑
k=0

zk

Γ (αk + 1)
, (1.1)

where z ∈ C, Γ represents well known Gamma function and α ≥ 0.
The generalization of Eα(z), also known as Wiman function, is given by Wiman [26]:

Eα,β (z) =

∞∑
n=0

zn

Γ (αn+ β)
, (1.2)

where α, β, γ ∈ C, <(α) > 0 and <(β) > 0.
Further, in 1971, Prabhakar [15] proposed the more general function Eγα,β (z) as:

Eγα,β (z) =
∞∑
n=0

(γ)n
n!Γ (αn+ β)

zn, (1.3)

for which α, β, γ ∈ C, <(α) > 0, <(β) > 0, <(γ) > 0. The importance and great considerations of Mittag-
Leffler function have led many researchers in the theory of special functions for exploring the possible
generalizations and applications. Many more extensions or unifications for these functions are found in
large number of papers [6, 21–24]. A useful generalization of the Mittag-Leffler function called as k-Mittag-
Leffler function Eγk,α,β (z), introduced in [4], and it is given by

Eγk,α,β (z) =
∞∑
n=0

(γ)n,k
Γk (αn+ β)

zn

n!
, (1.4)

where α, β, γ ∈ C, k ∈ R, {< (α) ,< (β) ,< (γ)} > 0 and (γ)n,k is the k-Pochhammer symbol defined as:

(γ)n,k = γ (γ + k) (γ + 2k) · · · (γ + (n− 1) k) (γ ∈ C, k ∈ R, n ∈ N). (1.5)

Lately, a generalized form of k-Mittag-Leffler function was introduced and studied in [5] as:
Let α, β, γ ∈ C, k ∈ R, {< (α) ,< (β) ,< (γ)} > 0 and q ∈ (0, 1) ∪ N, then

GEγ,qk,α,β (z) =
∞∑
n=0

(γ)nq,k
Γk (αn+ β)

zn

n!
, (1.6)

where (γ)nq,k is defined as (1.5) and the generalized Pochhammer symbol is defined as (see [19]):

(γ)nq =
Γ (γ + nq)

Γ (γ)
= qqn

q∏
r=1

(
γ + r − 1

q

)
n

, if q ∈ N. (1.7)

In the integral representation, the generalized k-Gamma function is defined as:

Γk (z) =

∫ ∞
0

e
−tk
k tz−1dt, (k ∈ R, z ∈ C,< (z) > 0). (1.8)

By inspection we conclude the following relations:

Γk (x+ k) = xΓk (x) , (1.9)
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Γk (γ) = (k)
γ
k
−1 Γ

(γ
k

)
. (1.10)

The beta integral is defined by

B (α, β) =

∫ 1

0
tα−1 (1− t)β−1 dt (< (α) ,< (β) > 0), (1.11)

and its relationship to the familiar gamma function is

B (α, β) =
Γ (α) Γ (β)

Γ (α+ β)
. (1.12)

Here we aim at introducing a more generalized k-Mittag-Leffler function and we defined it as under:

Eγ,qk,α,β,δ (z) =
∞∑
n=0

(γ)nq,k
Γk (αn+ β)

zn

(δ)n
, (1.13)

provided α, β, γ, δ ∈ C, k ∈ R, {< (α) ,< (β)} > 0, δ 6= 0,−1,−2, · · · and nq is a positive integer. Particular
cases:

(i) For δ = 1, then (1.13) reduces to the generalized k-Mittag-Leffler function (1.6) (see [5]).

(ii) Again, if δ = q = 1 then (1.13) reduces to Eγk,α,β (z) (see [4]).

Recently, by using the pathway idea of Mathai [7] and developed further by Mathai and Haubold [8, 9], Nair
[12] introduced a pathway fractional integral operator and it is given as follows:

Suppose f (x) ∈ L (a, b) , η ∈ C,< (η) > 0, a > 0 and the pathway parameter σ < 1 as (cf. [2]), then

(
P

(η,σ)
0+ f

)
(x) = xη

[
x

a(1−σ)

]∫
0

[
1− a (1− σ) t

x

] η
(1−σ)

f (t) dt. (1.14)

For given real scalar σ and scalar random variables, the pathway model is denoted by the following probability
density function (p.d.f.), namely

f (x) = c |x|υ−1
[
1− a (1− σ) |x|ξ

] λ
(1−σ)

, (1.15)

provided that −∞ < x < ∞, ξ > 0, λ ≥ 0,
[
1− a (1− σ) |x|ξ

]
> 0, and υ > 0. Here c and σ, respectively

denotes the normalizing constant and the pathway parameter.
Further, the normalizing constants for real σ, are the following:

c1 =
1

2

ξ [a (1− σ)]
υ
ξ Γ
(
υ
ξ + λ

1−σ + 1
)

Γ
(
υ
ξ

)
Γ
(

λ
1−σ + 1

) , for σ < 1, (1.16)

c2 =
1

2

ξ [a (σ − 1)]
υ
ξ Γ
(

λ
σ−1

)
Γ
(
υ
ξ

)
Γ
(

λ
σ−1 −

υ
ξ

) , for
1

σ − 1
− υ

ξ
> 0, σ > 1, (1.17)

c3 =
1

2

(aλ)
υ
ξ

Γ
(
υ
ξ

) , σ → 1. (1.18)

It is noted that for σ < 1, we have
[
1− a (1− σ) |x|ξ

]
> 0 and (1.15) can be considered as member of

the extended generalized type-1 beta family. Also, the extended type-1 beta density, the triangular density,
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the uniform density and many other p.d.f. are particular cases of the pathway density function in (1.15),
for σ < 1.

For instance, σ > 1, writing (1− σ) = − (σ − 1) in (1.14) gives

(
P

(η,σ)
0+ f

)
(x) = xη

[
x

−a(1−σ)

]∫
0

[
1 +

a (σ − 1) t

x

] η
−(σ−1)

f (t) dt, (1.19)

and

f (x) = c |x|υ−1
[
1 + a (σ − 1) |x|ξ

]− λ
(σ−1)

, (1.20)

provided that −∞ < x <∞, ξ > 0, λ ≥ 0, and σ > 1 which represents the extended generalized type-2 beta
model for real x. Further, the type-2 beta density, the F density, the Student-t density, the Cauchy density
and many more are special cases of the density function (1.20).

Moreover, the operator (1.14) includes Laplace integral transform, when σ → 1−, and the the Riemann-
Liouville fractional integral operator, when σ = 0, a = 1 and η replacing by η − 1. For more details on the
pathway model and its particular cases, the reader is referred to the recent papers of Mathai and Haubold
[8, 9] and Nair [12].

It is observed that the pathway fractional integral operator (1.14), can lead to other interesting examples
of fractional calculus operators, related to some probability density functions and applications in statistics.
This has led number of workers in the theory of fractional calculus for exploring the possible generalization of
the known results. For example, the composition of the integral transform operator (1.14) with the product
of generalized Bessel function of the first kind is given in [2]. Recently Nisar et al. studied the pathway
fractional integral operator associated with Struve function of first kind [13]. The results provided in [2] are
extensions of the results given by Agarwal and Purohit [1] and Nair [12]. The main objective of this work
is to obtain the composition formula of pathway integral transform operator due to Nair, with the more
generalized k-Mittag-Leffler function introduced above in (1.13).

2. Pathway fractional integration of generalized k-Mittag-Leffler function.

Below, we derive the pathway image formulas involving the generalized k-Mittag-Leffler function from
(1.13). The main results of this section are obtained by using the concept of changing the order of integral
and summation. The following theorems are presented as our main results.

Theorem 2.1. Let ρ, β, γ, δ, η ∈ C, k ∈ R, {< (ρ) ,< (β) ,< (η)} > 0,<
(

η
1−σ

)
> −1, σ < 1, k, w ∈ R,

δ 6= 0,−1,−2, · · · and q > 0. Then the following image formula holds true:

P
(η,σ)
0+

[
t
β
k
−1Eγ,qk,ρ,β,δ

(
wt

ρ
k

)]
(x) =

Γ
(

1 + η
1−σ

)
xη+

β
k k(1+ η

1−σ )

[a (1− σ)]
β
k

Eγ,q
k,ρ,β+k(1+ η

1−σ ),δ

[
w

(
x

a (1− σ)

) ρ
k

]
. (2.1)

Proof. By applying (1.13) and (1.14), we have

P
(η,σ)
0+

[
t
β
k
−1Eγ,qk,ρ,β,δ

(
wt

ρ
k

)]
= xη

∫ [
x

a(1−σ)

]

0

t
β
k
−1
[
1− a (1− σ) t

x

] η
1−σ

Eγ,qk,ρ,β,δ

(
wt

ρ
k

)
dt.

We denote, for convenience, the right hand integral of the above term by I1, then

I1 = xη
∫ [

x
a(1−σ)

]

0

t
β
k
−1
[
1− a (1− σ) t

x

] η
1−σ

∞∑
n=0

(γ)nq,k
Γk (ρn+ β)

(
wt

ρ
k

)n
(δ)n

,
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and interchange the order of integration and summation to get

I1 = xη
∞∑
n=0

(γ)nq,k
Γk (ρn+ β)

(w)n

(δ)n

∫ [
x

a(1−σ)

]

0

[
1− a (1− σ) t

x

] η
1−σ

t
β
k
+ ρ
n
−1dt.

Now, by evaluating the inner integral using beta function formula (1.12) , we get

I1 = xη
∞∑
n=0

(γ)nq,k
Γk (ρn+ β)

wn

(δ)n

(
x

a (1− σ)

) ρ
k
n+β

k Γ
(

1 + η
1−σ

)
Γ
(
ρ
kn+ β

k

)
Γ
(
ρ
kn+ β

k + 1 + η
1−σ

) .

Using (1.9), we obtain

I1 =
xη+

β
k

[a (1− σ)]
β
k

∞∑
n=0

(γ)nq,k

(
w
(

x
a(1−σ)

) ρ
k

)n
Γ
(
ρ
kn+ β

k

)
k
ρ
k
n+β

k
−1 (δ)n

Γ
(

1 + η
1−σ

)
Γ
(
ρ
kn+ β

k

)
Γ
(
ρ
kn+ β

k + 1 + η
1−σ

)

=
xx

η+
β
k Γ
(

1 + η
1−σ

)
[a (1− σ)]

β
k

∞∑
n=0

(γ)nq,k

(
w
(

x
a(1−σ)

) ρ
k

)n
Γ
(
ρ
kn+ β

k + 1 + η
1−σ

)
k
ρ
k
n+β

k
−1 (δ)n

.

Again, on applying (1.9), we get

I1 =
xη+

β
k k(1+ η

1−σ )Γ
(

1 + η
1−σ

)
[a (1− σ)]

β
k

Eγ,q
k,ρ,β+k(1+ η

1−σ ),δ

[
w

(
x

a (1− σ)

) ρ
k

]
,

which yields the desired proof of Theorem 2.1.

Corollary 2.2. If we put δ = 1, then Theorem 2.1 leads to the known image formula given in [20]:

P
(η,σ)
0+

[
t
β
k
−1Eγ,qk,ρ,β,1

(
wt

ρ
k

)]
(x) = xη+

β
k k(1+ η

1−σ )
Γ
(

1 + η
1−σ

)
[a (1− σ)]

β
k

Eγ,q
k,ρ,β+k(1+ η

1−σ )

[
w

(
x

a (1− σ)

) ρ
k

]
.

Corollary 2.3. If we put δ = q = 1 in Theorem 2.1, then we get the following known result contains
k−Mittag-Leffler function defined in (1.4) (see[4]):

P
(η,σ)
0+

[
t
β
k
−1Eγ,1k,ρ,β,1

(
wt

ρ
k

)]
(x) = xη+

β
k k(1+ η

1−σ )
Γ
(

1 + η
1−σ

)
[a (1− σ)]

β
k

Eγ
k,ρ,β+k(1+ η

1−σ )

[
w

(
x

a (1− σ)

) ρ
k

]
.

Corollary 2.4. For δ = q = k = 1 in Theorem 2.1, we get the following known image formula of Nair [12]:

P
(η,σ)
0+

[
tβ−1Eγ,1k,ρ,1,1 (wtρ)

]
(x) = xη+β

Γ
(

1 + η
1−σ

)
[a (1− σ)]β

Eγ
ρ,β+1+ η

1−σ

[
(wx)ρ

(a (1− σ))ρ

]
.

Now we establish the following theorem, by considering the case σ > 1 and using the equation (1.19).

Theorem 2.5. Suppose ρ, β, γ, δ, η ∈ C, k ∈ R, {< (ρ) ,< (β) ,< (η)} > 0,<
(

1− η
σ−1

)
> 0, σ > 1, k, w ∈ R,

δ 6= 0,−1,−2, · · · and q > 0. Then the pathway fractional integral representation of (1.13) is given by

P
(η,σ)
0+

[
t
β
k
−1Eγ,qk,ρ,β,δ

(
wt

ρ
k

)]
(x) =

Γ
(

1− η
σ−1

)
xη+

β
k k(1− η

1−σ )

[−a (1− σ)]
β
k

Eγ,q
k,ρ,β+k(1− η

σ−1),δ

[
w

(
x

−a (1− σ)

) ρ
k

]
.
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Proof. By applying (1.13) and (1.19), we have

P
(η,σ)
0+

[
t
β
k
−1Eγ,qk,ρ,β,δ

(
wt

ρ
k

)]
(x) = xη

∫ [
x

−a(1−σ)

]

0

t
β
k
−1
[
1 +

a (σ − 1) t

x

] η
−(σ−1)

Eγ,qk,ρ,β,δ

(
wt

ρ
k

)
dt.

Again we denote, for convenience, the right hand integral of the above term by I2, then

I2 = xη
∫ [

x
−a(ρ−1)

]

0

t
β
k
−1
[
1 +

a (σ − 1) t

x

] η
−(σ−1)

∞∑
n=0

(γ)nq,k
Γk (ρn+ β)

(
wt

ρ
k

)n
(δ)n

.

Now, on interchanging the order of integration and summation, we have

I2 = xη
∞∑
n=0

(γ)nq,k
Γk (ρn+ β)

wn

(δ)n

∫ [
x

−a(ρ−1)

]

0

[
1 +

a (σ − 1) t

x

] η
−(σ−1)

t
β
k
+ ρ
k
n−1dt.

By putting −a(σ−1)tx = u, we use the beta function formula (1.12) and the relation (1.9) to evaluate the
above inner integral, and get

I2 =
xη+

β
k

[−a (1− σ)]
β
k

∞∑
n=0

(γ)nq,k

[
w
(

x
−a(σ−1)

) ρ
k

]n
Γ
(
ρ
kn+ β

k

)
k
ρ
k
n+β

k
−1 (δ)n

Γ
(

1− η
1−σ

)
Γ
(
ρ
kn+ β

k

)
Γ
(
ρ
kn+ β

k + 1− η
ρ−1

)

= xη+
β
k

Γ
(

1− η
σ−1

)
[−a (σ − 1)]

β
k

∞∑
n=0

(γ)nq,k w

[(
x

−a(σ−1)

) ρ
k

]n
Γ
(
ρ
kn+ β

k + 1− η
σ−1

)
k
ρ
k
n+β

k
−1 (δ)n

.

Again, on applying (1.9), we arrive at the following desired result:

I2 =
xη+

β
k k(1− η

σ−1)Γ
(

1− η
σ−1

)
[−a (σ − 1)]

β
k

Eγ,q
k,ρ,β+k(1− η

σ−1),δ

[
w

(
x

−a (σ − 1)

) ρ
k

]
.

Corollary 2.6. Let δ = 1, then Theorem 2.5 reduces to the following result given in [20]:

P
(η,σ)
0+

[
t
β
k
−1Eγ,qk,ρ,β,1

(
wt

ρ
k

)]
(x) =

xη+
β
k k(1− η

σ−1)Γ
(

1− η
σ−1

)
[−a (σ − 1)]

β
k

Eγ,q
k,ρ,β+k(1− η

σ−1)

[
w

(
x

−a (σ − 1)

) ρ
k

]
.

Corollary 2.7. If we put δ = q = 1 in Theorem 2.5, then we get the following known result contains
k−Mittag-Leffler function (due to [4]):

P
(η,σ)
0+

[
t
β
k
−1Eγ,1k,ρ,β,1

(
wt

ρ
k

)]
(x) =

xη+
β
k k(1− η

σ−1)Γ
(

1− η
σ−1

)
[−a (σ − 1)]

β
k

Eγ
k,ρ,β+k(1− η

σ−1)

[
w

(
x

−a (σ − 1)

) ρ
k

]

Corollary 2.8. If we set δ = q = k = 1, Theorem 2.5 leads to the well known image formula of [12]:

P
(η,σ)
0+

[
tβ−1Eγ,11,ρ,β (wtρ)

]
(x) =

xη+βΓ
(

1− η
σ−1

)
[−a (σ − 1)]β

Eγ
ρ,β+(1− η

σ−1)

[
w

(
x

−a (σ − 1)

)ρ]
.
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3. Conclusion

In this paper we introduced a more generalized special function called as k-Mittag-Leffler function. For
this unified Mittag-Leffler function, we have presented two pathway fractional integral formulas (PFIF). The
obtained result provides an extension of the known results, as mentioned earlier. Our paper is concluded
with the remark that, the function introduced and reported results are significant and can lead to yield
number of other integral (image) formulas involving various Mittag-Leffler type functions.
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