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Abstract

The purpose of this article is to investigate fixed point problems of a nonexpansive mapping, solutions of
quasi variational inclusion problem, and solutions of a generalized equilibrium problem based on a splitting
method. Our convergence theorems are established under mild restrictions imposed on the control sequences.
The main results improve and extend the recent corresponding results. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Monotone variational inequalities have played a significant and fundamental role in the development of
new and innovative techniques for solving complex and complicated problems arising in pure and applied
sciences. Variational inequalities have recently been extended and generalized in various directions using
novel and innovative techniques; see, for example, [1, 4, 7, 10, 11, 19–22] and the references therein. A
useful and important generalization is called the general variational inclusion involving the sum of two
nonlinear operators A and B. Recently, much attention has been given to develop iterative algorithms
for solving the variational inclusions. Resolvent methods and its variants forms including the resolvent
equations represent important tools for finding the approximate solution of variational inclusions. The main
idea in this technique is to establish the equivalence between the variational inclusions and the fixed-point
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problem by using the concept of resolvent operator. It is known that such techniques require an evaluation
of the resolvent operator of the type (I − r(A+B))−1. The main difficulty with such problems is that the
resolvent operator may be hard to invert. This difficulty has been overcome by using the resolvent operators
(I − rA)−1 and (I − rB)−1 separately rather than (I − r(A+B))−1. Such a technique is called the splitting
method. These methods for solving variational inclusions have been studied extensively, see, for example,
[1, 3, 6, 9, 14–17, 20, 24] and the references therein.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty closed
convex subset of H and let A : C → H be a mapping. Recall that A is said to be monotone iff

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

A is said to be strongly monotone iff there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C.

For such a case, we also call A is an α-strongly monotone mapping. A is said to be inverse-strongly
monotone iff there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

For such a case, we also call A is an α-inverse-strongly monotone mapping. We remark here that every
α-inverse-strongly monotone mapping is strongly monotone and 1

α -Lipschitz continuous.
Let F be a bifunction of C ×C into R, where R denotes the set of real numbers and let M : C → H be

a monotone operator. We consider the following generalized equilibrium problem:

Find x ∈ C such that F (x, y) + 〈y − x,Mx〉 ≥ 0,∀y ∈ C. (1.1)

In this paper, the set of such an x ∈ C is denoted by Sol(F,M).

If M = 0, then generalized equilibrium problem (1.1) is reduced to the following equilibrium problem in
the terminology of Blum and Oettli [4]:

Find x ∈ C such that F (x, y) ≥ 0,∀y ∈ C. (1.2)

In this paper, the set of such an x ∈ C is denoted by Sol(F ).

If F = 0, then generalized equilibrium problem (1.1) is reduced to the following variational inequality:

Find x ∈ C such that 〈y − x,Mx〉 ≥ 0,∀y ∈ C. (1.3)

In this paper, the set of such an x ∈ C is denoted by V I(C,A).

To study the equilibrium problems, we assume that F satisfies the following conditions:

(R1) F (x, x) = 0 for all x ∈ C;

(R2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(R3) for each x, y, z ∈ C, lim supt↓0 F (tz + (1− t)x, y) ≤ F (x, y);

(R4) for each x ∈ C, y 7→ F (x, y) is convex and lower semi-continuous.

The equilibrium problems provide us a unified framework to study many problems arise in engineering
areas. The equilibrium problems are general which include saddle point problems, variational inequality
problems and complementarity problem as special cases. Recently, convergence theorems of solutions to the
equilibrium problems were established; see [2, 8, 12, 13] and the references therein.
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Recall that a set-valued mapping B : H → 2H is said to be monotone iff for all x, y ∈ H, f ∈ Bx and
g ∈ By imply 〈x− y, f − g〉 ≥ 0. A monotone mapping B : H → 2H is maximal iff the graph G(B) of B is
not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping
B is maximal iff, for any (x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0 for all (y, g) ∈ G(B) implies f ∈ Bx. Let A be
a monotone mapping of C into H and NCv the normal cone to C at v ∈ C, that is,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C},

and define a mapping T on C by

Tv =

{
Av +NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal monotone and 0 ∈ Tv iff 〈Av, u − v〉 ≥ 0 for all u ∈ C; see [22] and the references
therein.

Let I denotes the identity operator on H and B : H → 2H be a maximal monotone operator. Then we
can define, for each r > 0, a nonexpansive single valued mapping JBr : H → H by JBr = (I + rB)−1. It is
called the resolvent of B.

Let S be a mapping on C. Fix(S) stands for the fixed point set of S. Recall that S is said to be firmly
nonexpansive iff

‖Sx− Sy‖2 ≤ 〈Sx− Sy, x− y〉, ∀x, y ∈ C.

S is said to be nonexpansive iff

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Let I denote the identity operator on H and B : H → 2H be a maximal monotone operator. Then we
can define, for each r > 0, a nonexpansive single valued mapping JBr : H → H by JBr = (I + rB)−1. It is
called the resolvent of B. We know that B−10 = Fix(JBr ) for all r > 0 and JBr is firmly nonexpansive.

Moreover, we need the following lemmas to prove our main results.

Lemma 1.1 ([2]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be
a mapping and let B : H ⇒ H be a maximal monotone operator. Then Fix(Jr(I − rA)) = (A+B)−1(0).

Lemma 1.2 ([18]). Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the following relation:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0,

where n0 is some nonnegative integer,
∑∞

n=1 bn <∞ and
∑∞

n=1 cn <∞. Then the limit limn→∞ an exists.

Lemma 1.3 ([4]). Let C be a nonempty closed convex subset of a real Hilbert space H and let F : C×C → R
be a bifunction satisfying (R1)-(R4). Then, for any r > 0 and x ∈ H, there exists z ∈ C such that
rF (z, y) + 〈y − z, z − x〉 ≥ 0, ∀y ∈ C. Further, define

Trx = {z ∈ C : rF (z, y) + 〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all r > 0 and x ∈ H. Then, the following hold:

(a) Tr is single-valued firmly nonexpansive;

(b) Fix(Tr) = Sol(F ) is closed and convex.

Lemma 1.4 ([5]). Let C be a nonempty closed and convex subset of H and S : C → C a nonexpansive
mapping. If {xn} is a sequence in C such that xn ⇀ x, and limn→∞ ‖xn − Sxn‖ = 0, then x = Sx.
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Lemma 1.5 ([23]). Let 0 < p ≤ tn ≤ q < 1 for all n ≥ 1. Suppose that {xn}, and {yn} are sequences in H
such that

lim sup
n→∞

‖xn‖ ≤ d, lim sup
n→∞

‖yn‖ ≤ d,

and
lim
n→∞

‖tnxn + (1− tn)yn‖ = d,

hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

2. Main results

Theorem 2.1. Let C be a nonempty closed convex subset of H and let F be a bifunction from C × C to
R which satisfies (A1)–(A4). Let A : C → H be an α-inverse-strongly monotone mapping, M : C → H a
κ-inverse-strongly monotone mapping and B : H ⇒ H a maximal monotone mapping such that its domain
in C. Let S : C → C be a nonexpansive mapping. Assume that Fix(S) ∩ Sol(F,M) ∩ (A + B)−1(0) is
nonempty. Let {rn} and {tn} be positive real number sequences. Let {αn} be a real number sequences in
(0, 1). Let {xn} be a sequence generated in the following process: x1 ∈ C and{

tnF (zn, z) + tn〈Mxn, z − zn〉+ 〈z − zn, zn − xn〉 ≥ 0, ∀z ∈ C,
xn+1 = αnSxn + (1− αn)Jrn

(
zn − rnAzn + en

)
, n ≥ 1,

where {en} is a bounded sequence in H such that
∑∞

n=1 ‖en‖ <∞. Assume that the control sequences satisfy
the following restrictions: 0 < α ≤ αn ≤ α′ < 1, 0 < t ≤ tn ≤ t′ < 2κ, 0 < r ≤ rn ≤ r′ < 2α, where α, α′,
t, t′, r and r′ are real constants. Then {xn} converges weakly to some point in Fix(S) ∩ Sol(F,M) ∩ (A+
B)−1(0).

Proof. From the restrictions on {rn} and {tn}, we have

‖(I − rnA)x− (I − rnA)y‖2 ≤ ‖x− y‖2 − rn(2α− rn)‖Ax−Ay‖2,

and
‖(I − tnM)x− (I − tnM)y‖2 ≤ ‖x− y‖2 − tn(2κ− tn)‖Mx−My‖2.

Let p ∈ Fix(S) ∩ Sol(F,M) ∩ (A + B)−1(0) be fixed arbitrarily. It follows from (1.1) and (1.3) that
p = Ttn(p− tnMp) = Jrn

(
p− rnAp). Putting yn = Jrn

(
zn − rnAzn + en

)
, we have

‖xn+1 − p‖ ≤ αn‖Sxn − p‖+ (1− αn)‖yn − p‖
≤ αn‖xn − p‖+ (1− αn)‖Jrn

(
zn − rnAzn + en)− Jrn

(
p− rnAp)‖

≤ αn‖xn − p‖+ (1− αn)‖
(
zn − rnAzn + en)−

(
p− rnAp)‖

≤ αn‖xn − p‖+ (1− αn)‖zn − p‖+ (1− αn)‖en‖
≤ ‖xn − p‖+ (1− αn)‖Ttn(xn − tnMxn)− Ttn(p− tnMp)‖+ ‖en‖
≤ ‖xn − p‖+ en.

This implies from Lemma 1.2 that the limit limn→∞ ‖xn − p‖ exists. Hence, we have {xn} is bounded,
so are {yn} and {zn}. Since A is inverse-strongly monotone, we find that

‖yn − p‖2 ≤ ‖(zn − rnAzn)− (p− rnAp) + en‖2

≤ ‖(zn − p)− rn(Azn −Ap)‖2 + ‖en‖(‖en‖+ 2‖en‖‖zn − p‖)
≤ ‖zn − p‖2 − rn(2α− rn)‖Azn −Ap‖2 + ‖en‖(‖en‖+ 2‖en‖‖zn − p‖)
≤ ‖xn − p‖2 − tn(2κ− tn)‖Mxn −Mp‖2 − rn(2α− rn)‖Azn −Ap‖2

+ ‖en‖(‖en‖+ 2‖en‖‖zn − p‖).
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Hence, we have

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖yn − p‖2

≤ ‖xn − p‖2 − (1− αn)tn(2κ− tn)‖Mxn −Mp‖2

− (1− αn)rn(2α− rn)‖Azn −Ap‖2 + ‖en‖(‖en‖+ 2‖en‖‖zn − p‖)).

It follows that

(1− αn)tn(2κ− tn)‖Mxn −Mp‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 − (1− αn)rn(2α− rn)‖Azn −Ap‖2

+ ‖en‖(‖en‖+ 2‖en‖‖zn − p‖)),

and
(1− αn)rn(2α− rn)‖Azn −Ap‖2 ≤ ‖xn − p‖2 − (1− αn)tn(2κ− tn)‖Mxn −Mp‖2

− ‖xn+1 − p‖2 + ‖en‖(‖en‖+ 2‖en‖‖zn − p‖)).

Using the restrictions on {rn} and {tn}, we find

lim
n→∞

‖Azn −Ap‖ = lim
n→∞

‖Mxn −Mp‖ = 0. (2.1)

Since Jrn is firmly nonexpansive, we find that

‖yn − p‖2 ≤ 〈
(
zn − rnAzn + en)−

(
p− rnAp), yn − p〉

=
1

2

(
‖
(
zn − rnAzn + en)−

(
p− rnAp)‖2 + ‖yn − p‖2

− ‖
(
(zn − rnAzn + en)−

(
p− rnAp)

)
− (yn − p)‖2

≤ 1

2

(
‖zn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖) + ‖yn − p‖2

− ‖zn − yn − rn(Azn −Ap) + en‖2
)

≤ 1

2

(
‖zn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖) + ‖yn − p‖2 − ‖yn − zn‖2

− ‖rn(Azn −Ap)− en‖2 + 2‖zn − yn‖‖rn(Azn −Ap)− en‖
)
,

that is,
‖yn − p‖2 ≤ ‖zn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)− ‖zn − yn‖2

+ 2rn‖zn − yn‖‖Azn −Ap‖+ 2‖zn − yn‖‖en‖.
(2.2)

It follows from (2.2) that

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖yn − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖zn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)
− (1− αn)‖zn − yn‖2 + 2rn(1− αn)‖zn − yn‖‖Azn −Ap‖+ 2‖zn − yn‖‖en‖
≤ ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)
− (1− αn)‖zn − yn‖2 + 2rn(1− αn)‖zn − yn‖‖Azn −Ap‖+ 2‖zn − yn‖‖en‖,

that is,
(1− αn)‖zn − yn‖2 ≤ ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)

− ‖xn+1 − p‖2 + 2rn‖zn − yn‖‖Azn −Ap‖+ 2‖zn − yn‖‖en‖.

Using (2.1), one finds that
lim
n→∞

‖yn − zn‖ = 0. (2.3)
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On the other hand, one has

‖zn − p‖2 ≤ 〈
(
xn − tnMxn)−

(
p− tnAp), zn − p〉

=
1

2

(
‖
(
xn − tnMxn)−

(
p− tnAp)‖2 + ‖zn − p‖2

− ‖
(
(xn − tnMxn)−

(
p− rnAp)

)
− (zn − p)‖2

≤ 1

2

(
‖xn − p‖2 + ‖zn − p‖2 − ‖xn − zn − tn(Mxn −Mp)‖2

)
≤ 1

2

(
‖xn − p‖2 + ‖zn − p‖2 − ‖xn − zn‖2

− ‖tn(Mxn −Mp)‖2 + 2tn‖xn − zn‖‖Mxn −Mp‖
)
,

that is,
‖zn − p‖2 ≤ ‖xn − p‖2 − ‖xn − zn‖2 + 2tn‖xn − zn‖‖Mxn −Mp‖.

It follows that

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖zn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)
+ 2rn(1− αn)‖zn − yn‖‖Azn −Ap‖+ 2‖zn − yn‖‖en‖
≤ ‖xn − p‖2 − (1− αn)‖xn − zn‖2 + 2tn‖xn − zn‖‖Mxn −Mp‖

+ ‖en‖(‖en‖+ 2‖zn − p‖) + 2rn‖zn − yn‖‖Azn −Ap‖+ 2‖zn − yn‖‖en‖.

This in turn implies from (2.1) that

lim
n→∞

‖xn − zn‖ = 0. (2.4)

Since {xn} is bounded, we may assume that a subsequence {xni} of {xn} converges weakly to ξ. It
follows that the subsequence {zni} of {zn} converges weakly to ξ. Notice that

zn − yn + en
rn

−Azn ∈ Byn.

Let µ ∈ Bν. Since B is monotone, we find that〈
zn − yn + en

rn
−Azn − µ, yn − ν

〉
≥ 0.

It follows from (2.3) that 〈−Aξ − µ, ξ − ν〉 ≥ 0. This implies that −Aξ ∈ Bx̄, that is, ξ ∈ (A+B)−1(0).

Now, we are in a position to show that ξ ∈ Fix(S). Since limn→∞ ‖xn− p‖ exists, we put limn→∞ ‖xn−
p‖ = d > 0. It follows that limn→∞ ‖(1−αn)(yn−p)+αn(Sxn−p)‖ = d. Notice both lim supn→∞ ‖Sxn−p‖ ≤
d and lim supn→∞ ‖yn − p‖ ≤ d. It follows from Lemma 1.5 that

lim
n→∞

‖Sxn − yn‖ = 0. (2.5)

In view of (2.3), (2.4), and (2.5), we find that limn→∞ ‖xn − Sxn‖ = 0. Using Lemma 1.4, we have
ξ ∈ Fix(S).

Now, we are in a position to show that ξ ∈ Sol(F,M). Notice that

tnF (zn, z) + tn〈Mxn, z − zn〉+ 〈z − zn, zn − xn〉 ≥ 0, ∀z ∈ C.

By use of condition (R2), we see that

〈Mxn, z − zn〉+ 〈z − zn,
zn − xn
tn

〉 ≥ F (z, zn), ∀z ∈ C. (2.6)
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For t with 0 < t ≤ 1, and z ∈ C, let zt = tz + (1− t)ξ. Since y ∈ C, and ξ ∈ C, we have zt ∈ C. Using
(2.6), we find that

〈zt − zn,Mzt〉 ≥ 〈zt − zn,Mzt〉 − 〈Mxn, zt − zn〉 − 〈zt − zn,
zn − xn
tn

〉+ F (zt, zn)

≥ 〈zt − zn,Mzt −Mzn〉+ 〈zt − zn,Mzn −Mxn〉 − 〈zt − zn,
zn − xn
tn

〉+ F (zt, zn)

≥ 〈zt − zn,Mzn −Mxn〉 − 〈zt − zn,
zn − xn
tn

〉+ F (zt, zn).

Since {zni} converges weakly to ξ, we find that

〈zt − ξ,Mzt〉 ≥ F (zt, ξ),

which implies that
0 =F (zt, zt) ≤ tF (zt, y) + (1− t)F (zt, ξ)

≤ tF (zt, z) + (1− t)〈zt − ξ,Mzt〉
= tF (zt, z) + (1− t)t〈z − ξ,Mzt〉,

that is, 0 ≤ F (zt, z) + (1 − t)〈z − ξ,Mzt〉. Letting t → 0, we have 0 ≤ F (ξ, z) + 〈z − ξ,Mξ〉. This implies
that ξ ∈ Sol(F,M).

Finally, we show that {xn} weakly converges to ξ. Let {xnj} be another subsequence of {xn} converging
weakly to ξ′, where ξ′ 6= ξ. In the same way, we can show that ξ′ ∈ (A + B)−1(0) ∩ Sol(F,M) ∩ Fix(S).
Since space H has the Opial’s condition, we obtain that

d = lim inf
i→∞

‖xni − ξ‖ < lim inf
i→∞

‖xni − ξ′‖

= lim inf
j→∞

‖xj − ξ′‖ < lim inf
j→∞

‖xj − ξ‖ = d.

This is a contradiction. Hence ξ = ξ′. This proves that {xn} converges weakly to ξ ∈ Fix(S) ∩
EP (F,M) ∩ (A+B)−1(0). This completes the proof.

From Theorem 2.1, the following results are not hard to derive.

Corollary 2.2. Let C be a nonempty closed convex subset of H and let F be a bifunction from C ×C to R
which satisfies (A1)–(A4). Let A : C → H be an α-inverse-strongly monotone mapping, and B : H ⇒ H a
maximal monotone mapping such that its domain in C. Let S : C → C be a nonexpansive mapping. Assume
that Fix(S) ∩ Sol(F ) ∩ (A + B)−1(0) is nonempty. Let {rn} and {tn} be positive real number sequences.
Let {αn} be a real number sequences in (0, 1). Let {xn} be a sequence generated in the following process:
x1 ∈ C and {

tnF (zn, z) + 〈z − zn, zn − xn〉 ≥ 0, ∀z ∈ C,
xn+1 = αnSxn + (1− αn)Jrn

(
zn − rnAzn + en

)
, n ≥ 1,

where {en} is a bounded sequence in H such that
∑∞

n=1 ‖en‖ <∞. Assume that the control sequences satisfy
the following restrictions: 0 < α ≤ αn ≤ α′ < 1, 0 < t ≤ tn, 0 < r ≤ rn ≤ r′ < 2α, where α, α′, t, r, and r′

are real constants. Then {xn} converges weakly to some point in Fix(S) ∩ Sol(F ) ∩ (A+B)−1(0).

Corollary 2.3. Let C be a nonempty closed convex subset of H, A : C → H be an α-inverse-strongly
monotone mapping, and B : H ⇒ H a maximal monotone mapping such that its domain in C. Let
S : C → C be a nonexpansive mapping. Assume that Fix(S) ∩ (A + B)−1(0) is nonempty. Let {rn} be
a positive real number sequence. Let {αn} be a real number sequences in (0, 1). Let {xn} be a sequence
generated in the following process: x1 ∈ C and

xn+1 = αnSxn + (1− αn)Jrn
(
zn − rnAzn + en

)
, n ≥ 1,
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where {en} is a bounded sequence in H such that
∑∞

n=1 ‖en‖ <∞. Assume that the control sequences satisfy
the following restrictions: 0 < α ≤ αn ≤ α′ < 1, 0 < r ≤ rn ≤ r′ < 2α, where α, α′, r and r′ are real
constants. Then {xn} converges weakly to some point in Fix(S) ∩ (A+B)−1(0).

Let iC be a function defined by

iC(x) =

{
0, x ∈ C,
∞, x /∈ C.

It is easy to see that iC is a proper lower and semicontinuous convex function onH, and the subdifferential
∂iC of iC is maximal monotone. Define the resolvent Jr := (I + r∂iC)−1 of the subdifferential operator ∂iC .
Letting x = Jry, we find that y ∈ x+ r∂iCx⇐⇒ x = ProjCy, where NCx := {e ∈ H : 〈e, v − x〉,∀v ∈ C}.

Putting B = ∂iC and M = 0 in Theorems 2.1, we find the following results immediately.

Corollary 2.4. Let C be a nonempty closed convex subset of H and let F be a bifunction from C ×C to R
which satisfies (A1)–(A4). Let A : C → H be an α-inverse-strongly monotone mapping, and B : H ⇒ H a
maximal monotone mapping such that its domain in C. Let S : C → C be a nonexpansive mapping. Assume
that Fix(S) ∩ Sol(F ) ∩ V I(C,A) is nonempty. Let {rn} and {tn} be positive real number sequences. Let
{αn} be a real number sequences in (0, 1). Let {xn} be a sequence generated in the following process: x1 ∈ C
and {

tnF (zn, z) + 〈z − zn, zn − xn〉 ≥ 0, ∀z ∈ C,
xn+1 = αnSxn + (1− αn)PC

(
zn − rnAzn + en

)
, n ≥ 1,

where {en} is a bounded sequence in H such that
∑∞

n=1 ‖en‖ <∞. Assume that the control sequences satisfy
the following restrictions: 0 < α ≤ αn ≤ α′ < 1, 0 < t ≤ tn, 0 < r ≤ rn ≤ r′ < 2α, where α, α′, t, r and r′

are real constants. Then {xn} converges weakly to some point in Fix(S) ∩ Sol(F ) ∩ V I(C,A).

Now, we are in a position to consider the problem of finding minimizers of proper lower semicontinuous
convex functions. For a proper lower semicontinuous convex function g : H → (−∞,∞], the subdifferential
mapping ∂g of g is defined by ∂g(x) = {x∗ ∈ H : g(x) + 〈y − x, x∗〉 ≤ g(y), ∀y ∈ H}, ∀x ∈ H. Rockafellar
[21] proved that ∂g is a maximal monotone operator. It is easy to verify that 0 ∈ ∂g(v) if and only if
g(v) = minx∈H g(x).

Theorem 2.5. Let g : H → (−∞,∞] be a proper convex and lower semicontinuous function. Let {rn}
be a positive real number sequence. Let {αn}, {βn}, and {γn} be real number sequences in (0, 1) such
that αn + βn + γn = 1. Let {xn} be a sequence generated in the following process: x1 ∈ C and xn+1 =

αnSxn + (1− αn) arg minz∈H{g(z) + ‖z−xn+en‖2
2rn

}, n ≥ 1, where {en} is a bounded sequence in H such that∑∞
n=1 ‖en‖ <∞ and {fn} is bounded sequence in C. Assume that the control sequences satisfy restrictions:

0 < β ≤ βn ≤ β′ < 1,
∑∞

n=1 γn < ∞, and 0 < r ≤ rn ≤ r′ < 2α, where β, β′, r and r′ are real constants.
Then {xn} converges weakly to some point in (∂g)−1(0).

Proof. Since g : H → (−∞,∞] is a proper convex and lower semicontinuous function, we see that subdiffer-
ential ∂g of g is maximal monotone. Putting F (x, y) = M = A = 0, tn = 1, we have yn = Jrn(xn + en). It

follows that yn = arg minz∈H{g(z) + ‖z−xn−en‖2
2rn

} is equivalent to 0 ∈ ∂g(yn) + 1
rn

(yn − xn − en). It follows
that xn + en ∈ yn + rn∂g(yn). By use of Theorem 2.1, we find the desired conclusion immediately.

References

[1] R. P. Agarwal, R. U. Verma, The over-relaxed η-proximal point algorithm and nonlinear variational inclusion
problems, Nonlinear Funct. Anal. Appl., 15 (2010), 63–77. 1

[2] B. A. Bin Dehaish, A. Latif, H. O. Bakodah, X. Qin, A regularization projection algorithm for various problems
with nonlinear mappings in Hilbert spaces, J. Inequal. Appl., 2015 (2015), 14 pages. 1, 1.1

[3] B. A. Bin Dehaish, X. Qin, A. Latif, H. O. Bakodah, Weak and strong convergence of algorithms for the sum of
two accretive operators with applications, J. Nonlinear Convex Anal., 16 (2015), 1321–1336. 1



Y. Hao, Z. Liu, S. Y. Cho, J. Nonlinear Sci. Appl. 9 (2016), 3939–3947 3947

[4] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63
(1994), 123–145. 1, 1, 1.3

[5] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA, 54 (1965),
1041–1044. 1.4

[6] S.-S. Chang, Existence and approximation of solutions of set-valued variational inclusions in Banach spaces,
Nonlinear Anal., 47 (2001), 583–594. 1

[7] S.-S. Chang, J.-A. Liu, Y. J. Cho, On the iterative approximation problems of fixed points for asymptotically
nonexpansive type mappings in Banach spaces, Nonlinear Funct. Anal. Appl., 6 (2001), 257–270. 1

[8] S. Y. Cho, X. Qin, On the strong convergence of an iterative process for asymptotically strict pseudocontractions
and equilibrium problems, Appl. Math. Comput., 235 (2014), 430–438. 1

[9] S. Y. Cho, X. Qin, L. Wang, Strong convergence of a splitting algorithm for treating monotone operators, Fixed
Point Theory Appl., 2014 (2014), 15 pages. 1

[10] S. Y. Cho, X. Qin, S. M. Kang, Hybrid projection algorithms for treating common fixed points of a family of
demicontinuous pseudocontractions, Appl. Math. Lett., 25 (2012), 854–857. 1

[11] J. Eckstein, M. C. Ferris, Operator-splitting methods for monotone affine variational inequalities, with a parallel
application to optimal control, INFORMS J. Comput., 10 (1998), 218–235. 1

[12] J. K. Kim, Convergence theorems of iterative sequences for generalized equilibrium problems involving strictly
pseudocontractive mappings in Hilbert spaces, J. Comput. Anal. Appl., 18 (2015), 454–471. 1

[13] J. K. Kim, P. N. Anh, Y. M. Nam, Strong convergence of an extended extragradient method for equilibrium
problems and fixed point problems, J. Korean Math. Soc., 49 (2012), 187–200. 1

[14] M. Liu, S.-S. Chang, An iterative method for equilibrium problems and quasi-variational inclusion problems,
Nonlinear Funct. Anal. Appl., 14 (2009), 619–638. 1

[15] M. A. Noor, Three-step iterative algorithms for multivalued quasi variational inclusions, J. Math. Anal. Appl.,
225 (2001), 589–604.

[16] M. A. Noor, K. I. Noor, E. Al-said, Some resolvent methods for general variational inclusions, J. King Saud
Univ., 23 (2011), 53–61.

[17] M. A. Noor, T. M. Rassias, E. Al-Said, A forward-backward splitting algorithm for general mixed variational
inequalities, Nonlinear Funct. Anal. Appl., 6 (2001), 281–290. 1

[18] M. O. Osilike, S. C. Aniagbosor, G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary
Banach spaces, Panamer. Math. J., 12 (2002), 77–88. 1.2

[19] X. Qin, S. Y. Cho, L. Wang, Iterative algorithms with errors for zero points of m-accretive operators, Fixed Point
Theory Appl., 2014 (2014), 17 pages. 1

[20] X. Qin, S. Y. Cho, L. Wang, A regularization method for treating zero points of the sum of two monotone operators,
Fixed Point Theory Appl., 2014 (2014), 10 pages. 1

[21] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math., 33 (1970), 209–216.
2

[22] R. T. Rockfellar, Monotone operators and proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877–898.
1, 1

[23] J. Schu, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Austral.
Math. Soc., 43 (1991), 153–159. 1.5

[24] B. Xu, Iterative schemes for generalized implicit quasi variational inclusions, Nonlinear Funct. Anal. Appl., 7
(2002), 199–211. 1


	1 Introduction and Preliminaries
	2 Main results

