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Abstract

This paper studies a Filippov predator-prey system, where chemical control strategies are proposed
and analyzed. Initially, the exact sliding segment and its domains are addressed. Then the existence and
stability of the regular, virtual, pseudo-equilibria and tangent points are discussed. It shows that two
regular equilibria and a pseudo-equilibrium can coexist. By employing theoretical and numerical techniques
several kinds of bifurcations are investigated, such as sliding bifurcations related to the boundary node
(focus) bifurcations, touching bifurcations, sliding crossing bifurcation and buckling bifurcations (or sliding
switching). Furthermore, it makes comparison of the obtained results with previous studies for the Filippov
predator-prey system without control strategies. Some biological implications of our results with respect to
pest control are also given. c©2016 All rights reserved.
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1. Introduction

Non-smooth Filippov system models have been widely used in many fields of science and engineering
in recent years [3, 7–9, 12, 13, 20–22, 25, 27, 29–33]. Among other things, many types of codimension one
sliding bifurcations are extensively discussed in generic planar Filippov systems [4, 5, 10, 11, 19]. It is now
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recognized that the theory of Filippov systems provides a natural framework for the mathematical modeling
of many real-world phenomena.

In the 1930’s, Gause carried out three experiments in order to provide evidence for stable population
limit cycles in a microcosm experiment [15, 16]. Recently the classical Lotka-Volterra model was extended
by using a piecewise saturating function to replace the linear consumption rate for considering the observed
experimental results theoretically [17, 24]. For simplicity, denote H(Z) = x − ET with Z = (x, y)T ∈ R2

+,
where ET describes the critical prey population threshold, and the parameter ε can be defined as follows

ε =

{
0, H(Z) = x− ET < 0,

1, H(Z) = x− ET > 0.
(1.1)

Therefore, if the density of the prey population falls below the threshold ET , that is, H(Z) < 0, then ε = 0,
which indicates that the prey may avoid the predator via a habitat shift by moving to the refuge and the
density of the predator will decrease [2]; if the density of the prey population increases and exceeds the
threshold ET , that is, H(Z) > 0, then ε = 1, which indicates that the prey population may re-appear and
once again become accessible to predators [2, 16, 17, 24].

According to the above definition, the extended classical Lotka-Volterra model with a piecewise saturat-
ing function can be defined as the following Filippov system

dx(t)

dt
= rx(t)− εbx(t)y(t)

1 + bhx(t)
,

dy(t)

dt
=

εkbx(t)y(t)

1 + bhx(t)
− δy(t),

(1.2)

where x(t) and y(t) are the densities of the prey and predator populations at time t, respectively. r is the
intrinsic growth rate of the prey, b describes the search rate of a predator and h is the handling time, k denotes
the conversion rate, δ is the death rate of the predator. System (1.2) has been firstly investigated by Gause
et al. [16], then Křivan [17] has showed that system (1.2) could present six different qualitative dynamics,
latter Tang et al. [24] provided the exact conditions for the above six different qualitative dynamics.

Note that the solutions of system (1.2) may approach infinity under some conditions, which is unrealistic.
Therefore, Yang et al. [32] considered the effect of the carrying capacity on the prey population in system
(1.2), which can be described as follows

dx(t)

dt
= rx(t)

[
1− x(t)

K

]
− εbx(t)y(t)

1 + bhx(t)
,

dy(t)

dt
=
εkbx(t)y(t)

1 + bhx(t)
− δy(t),

(1.3)

where K denotes the carrying capacity of the prey, and all other parameters are the same as those in model
(1.2). It should be pointed out that the global dynamics of system (1.3) is not as complex as system (1.2)
presented. The effect of carrying capacity can stabilize the non-smooth Gause predator-prey system (1.3)
and cause the nonexistence of the infinity singularity point [32].

It is interesting to note that none of the models proposed above incorporate the control strategies into
the non-smooth Gause model [16, 17, 24, 32]. In reality, however, if the variable x(t) in system (1.3)
represents the pest population, then the pest population may cause harms to crops once the density of the
pest reaches and exceeds the economic threshold [23, 26]. Therefore, control strategies such as chemical
control, biological control or their combinations should be implemented when the density of the pest reaches
the economic threshold. Thus, in this paper, a novel Filippov predator-prey system with control strategies
is proposed, which can be defined as follows

dx(t)

dt
= rx(t)

[
1− x(t)

K

]
− bx(t)y(t)

1 + bhx(t)
− εq1x(t),

dy(t)

dt
=
εkbx(t)y(t)

1 + bhx(t)
− δy(t)− εq2y(t),

(1.4)
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where q1 and q2 describes the killing rates of the prey and predator due to control tactics, and 0 < q2 < q1 <
1. If the density of the prey population falls below the threshold ET , that is, H(Z) < 0, then ε = 0, which
indicates that the prey do not cause any harms to crops and no actions should be taken; if the density of
the prey population increases and exceeds the threshold ET , that is, H(Z) > 0, then ε = 1, which indicates
that the prey may cause harms to crops and the control tactics should be implemented in order to control
the density of prey under the threshold ET .

To investigate the dynamics of system (1.4), some useful definitions and lemmas about the non-smooth
Filippov dynamic systems will be presented in Section 2. In Section 3, the dynamics of the subsystems
are addressed, then the sliding domains are provided. Furthermore, the conditions for the existence of
several types of equilibria are given and the relations between the existence of regular equilibria and a
pseudo-equilibrium are also discussed. Moreover, the bifurcation set of the equilibria with respect to key
parameters are addressed, and then the sliding bifurcations related to boundary node (focus) bifurcations,
touching bifurcations, sliding crossing bifurcation and buckling bifurcations (or sliding switching) have been
investigated by employing theoretical and numerical techniques. Finally, the main results obtained for model
(1.4) with those obtained for model (1.3) are compared and the biological implications of the results are
discussed.

2. Preliminaries

Let

FS1(Z) =

(
rx(t)

[
1− x(t)

K

]
− bx(t)y(t)

1 + bhx(t)
,
kbx(t)y(t)

1 + bhx(t)
− δy(t)

)T

,

FS2(Z) =

(
rx(t)

[
1− x(t)

K

]
− bx(t)y(t)

1 + bhx(t)
− q1x(t),

kbx(t)y(t)

1 + bhx(t)
− δy(t)− q2y(t)

)T

,

then Filippov system (1.4) can be written as the following generalized Filippov system

Ż(t) =


dZ(t)

dt
= FS1(Z), Z ∈ S1,

dZ(t)

dt
= FS2(Z), Z ∈ S2,

(2.1)

where FS1 , FS2 : R2 → R2 are sufficiently smooth in R2 and H : R2 → R is a sufficiently smooth scalar
function of the system states, and

S1 = {Z ∈ R+
2 |H(Z) < 0}, S2 = {Z ∈ R+

2 |H(Z) > 0},

with H(Z) = x− ET and R2
+ = {Z = (x, y)T|x ≥ 0, y ≥ 0}.

Furthermore, the discontinuity boundary (or manifold) Σ which separates the two regions S1 and S2 is
described as Σ = {Z ∈ R2

+|H(Z) = 0}. From now on, we call Fillipov system (2.1) defined in region S1 as
system S1 and defined in region S2 as system S2.

For Filippov system (2.1), the dynamics can be determined not only by vector field FS1 alone or FS1

alone [1], but also by sliding dynamics of Filippov system (2.1). Therefore, in order to investigate Filippov
system (2.1) we need to determine the sliding mode dynamics or sliding solutions on Σ for Filippov system
(2.1), which can be realized by employing the well-known Filippov′s convex method [14] or Utkin′s equivalent
control method [28].

Let
σ(Z) =

〈
HZ(Z), FS1(Z)

〉〈
HZ(Z), FS2(Z)

〉
,

where 〈·〉 denotes the standard scalar product. Then the interior of the sliding mode domain can be defined
as

ΣS = {Z ∈ Σ|σ(Z) < 0}.

The sliding mode domain ΣS can be distinguished by the following regions [4, 5, 19]:
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(i) Escaping region: if 〈HZ(Z), FS1(Z)〉 < 0 and 〈HZ(Z), FS2(Z)〉 > 0;

(ii) Sliding region: if
〈
HZ(Z), FS1(Z)

〉
> 0 and

〈
HZ(Z), FS2(Z)

〉
< 0.

Now we introduce the definitions of several type of equilibria, which are very useful in the following parts
[4, 5, 10, 19].

Definition 2.1. A point Z∗ is called a regular equilibrium of system (2.1) if FS1(Z∗) = 0, H(Z∗) < 0
or FS2(Z∗) = 0, H(Z∗) > 0. A point Z∗ is called a virtual equilibrium of system (2.1) if FS1(Z∗) = 0,
H(Z∗) > 0 or FS2(Z∗) = 0, H(Z∗) < 0.

Definition 2.2. A point Z∗ is called a pseudo-equilibrium if it is an equilibrium of the sliding mode of
system (2.1), that is λFS1(Z∗) + (1− λ)FS2(Z∗) = 0 and 0 < λ < 1, where

λ =

〈
HZ(Z), FS2(Z)

〉〈
HZ(Z), FS2(Z)− FS1(Z)

〉 .
Defining the vector field of Filippov system (2.1) on the sliding mode ΣS as follows

dZ(t)

dt
= FS(Z), Z ∈ ΣS ,

where FS(Z) = λFS1(Z) + (1− λ)FS2(Z) with H(Z) = 0.

Definition 2.3. A point Z∗ is called a boundary equilibrium of system (2.1) if FS1(Z∗) = 0, H(Z∗) = 0 or
FS2(Z∗) = 0, H(Z∗) = 0.

Definition 2.4. A point Z∗ is called a tangency point of Filippov system (2.1) if Z∗ ∈ ΣS and FS1H(Z∗) = 0
or FS2H(Z∗) = 0.

3. Mathematical analysis of system (1.4)

3.1. Qualitative analysis of subsystems

If x < ET , then the following system plays a key role in analyzing the Filippov system (1.4)
dx(t)

dt
= rx(t)

[
1− x(t)

K

]
− bx(t)y(t)

1 + bhx(t)
,

dy(t)

dt
=
kbx(t)y(t)

1 + bhx(t)
− δy(t).

(3.1)

Obviously, the subsystem (3.1) have three equilibria such as (0, 0), (K, 0) and E∗1(x∗1, y
∗
1), and E∗1 is the

unique interior equilibrium of subsystem (3.1), where

x∗1 =
δ

b(k − δh)
, y∗1 =

rk[bK(k − δh)− δ]
b2(k − δh)2K

.

The global dynamic behavior of subsystem (3.1) has been studied in details by Chen and Jing [6], but for
readers interested in the technical aspects we give the details here. Obviously, the unique interior equilibrium
(x∗1, y

∗
1) is positive provided that k−δh > 0 and bK(k−δh)−δ > 0. Furthermore, assume that the subsystem

(3.1) always has a unique positive equilibrium E∗1 , that is inequalities k − δh > 0 and bK(k − δh) − δ > 0
hold true.

Meanwhile, the characteristic polynomial the subsystem (3.1) about the unique positive equilibrium E∗1
is

λ2 − pλ− q = 0,
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where

p =
rδ(k − hkbK + δh+ δbh2K)

(k − δh)Kbk
, q =

rδ(kbK − δ − δbhK)

bKk
,

then it is easy to see that q > 0 provided bK(k − δh)− δ > 0. By simple calculation, if

x∗1 <
Kbh− 1

2bh
,

then p < 0; if

x∗1 >
Kbh− 1

2bh
,

then p > 0.
Denote ∆ = p2 − 4q, if

x∗1 >
Kbh− 1

2bh
, ∆ < 0,

then E∗1 is a stable focus; if

x∗1 <
Kbh− 1

2bh
, ∆ < 0,

then E∗1 is an unstable focus; if

x∗1 >
Kbh− 1

2bh
, ∆ ≥ 0,

then E∗1 is a stable node; if

x∗1 <
Kbh− 1

2bh
, ∆ ≥ 0,

then E∗1 is an unstable node.
When x∗1 <

Kbh−1
2bh and ∆ < 0, then E∗1 is an unstable focus and we have the following Lemma.

Lemma 3.1. Assume that x∗1 ≤ Kbh−1
2bh and ∆ < 0, then E∗1 is an unstable focus and there exists a unique

globally asymptotically stable limit cycle in subsystem (3.1) in the first quadrant.

The proof of Lemma 3.1 was provided by many authors, for details see [18, 32].
If x > ET , then system (1.4) becomes

dx(t)

dt
= rx(t)

[
1− x(t)

K

]
− bx(t)y(t)

1 + bhx(t)
− q1x(t),

dy(t)

dt
=
kbx(t)y(t)

1 + bhx(t)
− δy(t)− q2y(t),

(3.2)

which has three equilibria such as (0, 0),
(
K(1− q1

r ), 0
)

and E∗2(x∗2, y
∗
2) with

x∗2 =
δ + q2

b[k − h(δ + q2)]
,

y∗2 =
k
{
brK[k − h(δ + q2)]− r(δ + q2)− q1Kbk + q1Kbδh+ q1q2Kbh

}
b2[k − h(δ + q2)]2K

.

Two isoclines of system (3.2) are

L3 : x = x∗2, L4 : y =
[r(1− x

K )− q1](1 + bhx)

b
.

The unique interior equilibrium (x∗2, y
∗
2) is positive provided

k − h(δ + q2) > 0,

brK[k − h(δ + q2)] + q1Kbδh+ q1q2Kbh > r(δ + q2) + q1Kbk.

Let r1 = r−q1 and δ1 = δ+q2, then the conditions for the stability of E∗2 of system (3.2) can be obtained
similarly based on the analysis of system (3.1), and we do not address it here for simplicity.
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3.2. Sliding segments and its domains

In view of the definitions provided in Section 2, the interior of the sliding mode domain can be defined
as

ΣS = {Z ∈ Σ|σ(Z) < 0}.

According to the definition of σ(Z), we have

σ(Z) =

{
rET

(
1− ET

K

)
− bETy

1 + bhET

}
·
{
rET

(
1− ET

K

)
− bETy

1 + bhET
− q1ET

}
,

solving the inequality σ(Z) < 0 yields
yc1 < y < yc2,

and

yc1 =
r
(
1− ET

K

)
(1 + bhET )

b
, yc2 =

[
r
(
1− ET

K

)
− q1

]
(1 + bhET )

b
.

Therefore, the sliding segment of Filippov system (2.1) can be defined as

ΣS = {(x, y)T ∈ R2
+|x = ET, yc2 < y < yc1}.

3.3. Sliding mode dynamics

The differential equation for sliding mode dynamics in the region ΣS can be determined by using Utkin′s
equivalent control method which is introduced in [28]. It follows from H = 0 that

dH

dt
= rET

(
1− ET

K

)
− bETy

1 + bhET
− εq1ET = 0,

and solving the equation with respect to ε yields

ε =
r
(
1− ET

K

)
− by

1+bhET

q1
.

According to the Utkin’s equivalent control method, the dynamics on the sliding mode ΣS can be determined
by the following equation

dy

dt
=

kbETy

1 + bhET
− δy − q2y

r
(
1− ET

K

)
− by

1+bhET

q1
= φ(y).

3.4. Existence of the equilibria

There may be four types of equilibria for system (2.1), that is, regular equilibrium (ER), virtual equilib-
rium (EV ), pseudo-equilibrium (Ep), and boundary equilibrium (EB). The tangent point is denoted as ET .
From the analyses of Subsection 3.3, the existence of all types of equilibria will be discussed briefly in the
following:

(1). If k > δh and b > δ
ET (k−δh) , then there exists a unique regular equilibrium for system S1, that is,

E1
R = E∗1 = (x∗1, y

∗
1). If k > δh and b < δ

ET (k−δh) , then E∗1 becomes a virtual equilibrium denoted by

E1
V .

(2). If k > (δ + q2)h, brK[k − h(δ + q2)] + q1Kbδh+ q1q2Kbh > r(δ + q2) + q1Kbk, and b < δ+q2
ET [k−h(δ+q2)] ,

then there exists a unique regular equilibrium for system S2, that is, E2
R = E∗2 . If k > (δ + q2)h and

b > δ+q2
ET [k−h(δ+q2)] , then E∗2 becomes a virtual equilibrium denoted by E2

V .

(3). If k > (δ + q2)h, brK[k − h(δ + q2)] + q1Kbδh + q1q2Kbh > r(δ + q2) + q1Kbk, and δ
ET (k−δh) < b <

δ+q2
ET [k−h(δ+q2)] , then E1

R and E2
R can coexist. Now we investigate the pseudo-equilibrium.
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Solving φ(y) = 0 with y ∈ [yc2, yc1], we get two pseudo-equilibria Ep = (ET, y1) and E1
p = (ET, 0) (here we

omit it for y = 0) where

y1 =

[
q1δ + q2r(1− ET

K )
]

(1 + bhET )− q1kbET
bq2

.

The tangent points of ΣS satisfy x = ET and

rET

(
1− ET

K

)
− bETy

1 + bhET
− εq1ET = 0.

Then there are two tangent points denoted as E1
T = (ET, yc1) for system S1 and E2

T = (ET, yc2) for system
S2, respectively.

The boundary equilibrium of Filippov system (2.1) satisfies equations

rx
(

1− x

K

)
− bxy

1 + bhx
− q1εx = 0,

kbxy

1 + bhx
− δy − q2εy = 0,

where x = ET . From the second equation, we get ET = δ
b(k−δh) or ET = δ+q2

b[k−h(δ+q2)] with y > 0. So the

boundary equilibria of system (2.1) are as follows

E1
B =

(
ET,

r
(
1− ET

K

)
(1 + bhET )

b

)
, or E2

B =

(
ET,

[
r
(
1− ET

K

)
− q1

]
(1 + bhET )

b

)
.

Lemma 3.2. The two regular equilibria E1
R, E2

R and the pseudo-equilibrium Ep can coexist in system (2.1).
Further, Ep is unstable in the sliding domain.

Proof. Ep is existed when y ∈ [yc2, yc1], that is,

yc2 ≤
[
q1δ + q2r(1− ET

K )
]

(1 + bhET )− q1kbET
bq2

≤ yc1,

where yc1 =
r(1−ET

K )(1+bhET )
b and yc2 =

[r(1−ET
K )−q1](1+bhET )

b . By direct calculation, we get δ
ET (k−δh) ≤

b ≤ δ+q2
ET [k−h(δ+q2)] , this inequality is equivalent to the conditions for the coexistence of two regular equilibria

E1
R and E2

R. In order to prove that Ep is unstable in the sliding domain, we only need to show that the
inequality φ′(y1) > 0 holds true,

φ′(y1) = y1
q2b

q1(1 + bhET )
> 0,

therefore, Ep is unstable in the sliding domain if it exists. This completes the proof.

According to the above analyses, if x∗1 < ET < x∗2, then there exist two regular equilibria (E∗1 , E∗2) and
a pseudo-equilibrium (EP ), EP is unstable. If ET < x∗1, then E∗1 becomes a virtual equilibrium, E∗2 is a
regular equilibrium. In this case, there exists no pseudo-equilibrium for system (2.1). If ET > x∗2, then
E∗1 becomes a regular equilibrium, E∗2 is a virtual equilibrium. Meanwhile, system (2.1) does not exist the
pseudo-equilibrium.

4. Sliding bifurcation analysis

4.1. Bifurcation set of equilibria

Based on the above analysis, the rich dynamics of Filippov system (2.1) mainly depend on the positions
between the threshold ET and the equilibria of subsystem S1 or S2. Therefore, it is necessary to investigate
the bifurcation set of equilibria and sliding mode of Filippov system (2.1). To do this, as the search rate b
of predator and the economic threshold ET are two key parameters for system (2.1), we choose b and ET
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Figure 1: The bifurcation diagram of Filippov system (2.1) with respect to search rate b and the economic threshold ET . All
other parameters are fixed as follows: r = 1, K = 50, δ = 0.1, k = 0.8, h = 2, q1 = 0.8, q2 = 0.1.

to address the richness of the possible equilibria and sliding modes that Filippov system (2.1) can exhibit.
Defining four lines with respect to b and ET as follows:

PL1 =

{
(b, ET )

∣∣∣b =
δ

K(k − δh)

}
,

PL2 =

{
(b, ET )

∣∣∣b =
r(δ + q2)

rK[k − h(δ + q2)] + q1Kδh+ q1q2Kh− q1Kk

}
,

PL3 =

{
(b, ET )

∣∣∣b =
δ

ET (k − δh)

}
,

PL4 =

{
(b, ET )

∣∣∣b =
δ + q2

ET [k − h(δ + q2)]

}
.

Four lines PL1 , PL2 , PL3 , and PL4 divide b − ET parameter space into six regions, and the existence
or coexistence of the virtual or regular equilibria are shown in each region. In particular, the boundary
equilibria E1

B and E2
B can only exist on the line PL3 and PL4 , respectively. Moreover, the existence of sliding

mode and coexistence of regular equilibrium with pseudo-equilibrium are indicated in the region bounded
by PL2 , PL3 , and PL4 . As an example, if we fix b = 0.3, then E1

V and E2
R coexist → E1

B exists → E1
R, E2

R

and EP coexist → E2
B exists → E1

R and E2
V coexist as ET increases (for details see Figure 1). It is found

that bifurcations can occur when ET varies, which will be addressed in detail in the following parts.

4.2. Local sliding bifurcations

In this subsection, we investigate two types of local sliding bifurcations such as boundary focus bifurcation
and boundary node bifurcation for Filippov system (2.1).

Boundary focus bifurcation for Filippov system (2.1) may occur when the regular equilibrium E1
R (a

focus), pseudo-equilibrium EP and the tangent point E1
T collide together simultaneously once parameter

ET passes through a critical value [10, 19].
If we choose ET = 0.4167, then the virtual equilibrium E1

V , the invisible tangent point E1
T and the

pseudo-equilibriumEP can collide together at the boundary equilibrium E1
B, as shown in Figure 2 (b),

where ET = δ/[b(k − δh)]. Further, this boundary equilibrium E1
B is unstable, and the solution passes

through E1
B will reach the visible tangent point E2

T and then tends to the regular equilibrium E2
R finally.

This indicates that system (2.1) will stabilize at E2
R, and the pest population can not be controlled below

the threshold ET .
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If 0 < ET < δ/[b(k − δh)], then the invisible tangent point E1
T , the visible tangent point E2

T , the
virtual equilibrium E1

V and the regular equilibrium E2
R can coexist (as shown in Figure 2 (a)), and the

pseudo-equilibrium EP is disappeared.
If δ/[b(k − δh)] < ET < (δ + q2)/{b[k − h(δ + q2)]}, the virtual equilibrium E1

V becomes regular, so
the virtual/regular equilibrium bifurcation occurs. Moreover, the two tangent points E1

T and E2
T becomes

visible, EP lies in the sliding domain and is unstable, E1
R, E2

R, EP , E1
T , and E2

T can coexist. It means
that any solution may tend to E1

R or E2
R with different initial values, which suggests that the successful

control for pest depends on the initial conditions, in particular, the solution stabilizes at E1
R indicates the

pest population can be controlled below ET while the solution stabilizes at E2
R implies pest outbreaks, see

Figure 2 (c). This boundary focus bifurcation shows how a virtual equilibrium becomes a regular equilibrium.
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Figure 2: Boundary focus bifurcation for Filippov system (2.1). Here we choose ET as a bifurcation parameter and fix all other
parameters as follows: r = 0.7, b = 0.4, K = 2, δ = 0.1, k = 0.8, h = 2, q1 = 0.1, q2 = 0.1: (a) ET = 0.2; (b) ET = 0.4167; (c)
ET = 0.8.

Boundary node bifurcation for Filippov system (2.1) may occur when the virtual equilibrium E2
V (a

node), pseudo-equilibrium EP and the tangent point E2
T collide together simultaneously once parameter ET

passes through a critical value [10, 19].
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If we choose ET = 1.25, then E2
R, EP and E2

T can collide together at E2
B, as shown in Figure 3 (a),

where ET is obtained by ET = (δ + q2)/{b[k − h(δ + q2)]}d. Furthermore, this boundary equilibrium E2
B

is also unstable, and all solutions of Filippov system (2.1) will finally tend to the stable equilibrium E2
R.

It is revealed that the pest population is controlled below ET . When ET > (δ + q2)/{b[k − h(δ + q2)]},
then the tangent point E2

T becomes invisible, the pseudo-equilibriumEP lies below x axis, and the regular
equilibrium E2

R becomes virtual and the regular/virtual equilibrium bifurcation occurs, as shown in Figure
3 (b). This boundary node bifurcation shows how a regular equilibrium becomes a virtual equilibrium.
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Figure 3: Boundary node bifurcation for Filippov system (2.1). Here we choose ET as a bifurcation parameter and fix all other
parameters as follows: r = 0.7, b = 0.4, K = 2, δ = 0.1, k = 0.8, h = 2, q1 = 0.1, q2 = 0.1: (a) ET = 1.25; (b) ET = 1.6.

4.3. Global sliding bifurcations

Note that the two subsystems S1 and S2 of Filippov system (2.1) could have standard periodic so-
lutions through a Hopf bifurcation, denote the limit cycle that lies in subsystem S1 (or S2) completely
as Ω1 (or Ω2), and let the leftmost (rightmost) coordinate of the limit cycle Ω1 of subsystem S1 as
L1(xL1 , yL1) (R1(xR1 , yR1)), and let the leftmost (rightmost) coordinate of the limit cycle Ω2 of subsystem
S2 as L2(xL2 , yL2) (R2(xR2 , yR2)). Therefore, there may be many complex dynamics for Filippov system
(2.1) when ET varies.

Touching bifurcation of the sliding cycle: A typical touching bifurcation of Filippov system (2.1) may
occur once the limit cycle Ω2 can be tangent to the sliding segment ΣS at the tangent point E2

T when
ET = xL2 [19]. For example, if we choose ET as a bifurcation parameter and fix all other parameter values
as shown in Figure 4, then a touching bifurcation occurs at ET = 0.397, in this case, the stable limit cycle
Ω2 becomes a touching cycle of system (2.1) and is tangent to the switching line x = ET at the visible
tangent point E2

T , as shown in Figure 4 (b). Further, this stable touching cycle is an attractor with an
incoming stable sliding orbit. When ET < xL2 , then Ω2 is a limit cycle of system (2.1), as shown in Figure
4 (a) with ET = 0.1. If ET > xL2 , then the touching cycle becomes a canard cycle [4], as shown in Figure
4 (c).
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Figure 4: The phase portrait of Filippov system (2.1). We choose ET as a bifurcation parameter and fix all other parameters
as follows: r = 0.7, b = 0.4, K = 5, δ = 0.1, k = 0.8, h = 2, q1 = 0.1, q2 = 0.1: (a) ET = 0.1; (b) ET = 0.397; (c) ET = 0.4;
(d) ET = 0.45.

Sliding crossing bifurcation: If we choose ET as a bifurcation parameter and fix all other parameters
as those in Figure 5, then a sliding crossing bifurcation can be observed. If ET = 2.7, then there exists
a sliding cycle with a single sliding segment ending at the visible tangent point E1

T (as shown in Figure 5
(d)). As ET decreases, then the sliding cycle only passes the tangent point E1

T of the sliding segment with
ET = 2.2 and thus a sliding crossing bifurcation (or crossing critical cycle) occurs (Figure 5 (c)). If ET
further decreases, the sliding segment shrinks as ET → 0.8 and the cycle becomes a crossing cycle when
ET = 0.8 (Figure 5 (b)), which is stable from both inside and outside. The sliding crossing bifurcation
shows how a stable sliding cycle of system (2.1) becomes a stable crossing cycle as parameter ET varies.
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Figure 5: The phase portrait of Filippov system (2.1). We choose ET as a bifurcation parameter and fix all other parameters
as follows: r = 0.7, b = 0.4, K = 5, δ = 0.1, k = 0.8, h = 2, q1 = 0.1, q2 = 0.1: (a) ET = 0.48; (b) ET = 0.8; (c) ET = 2.2; (d)
ET = 2.7.
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Buckling bifurcation of the sliding cycle: If ET < 3.3, then there exists a sliding cycle with part of it
enters into subsystem S2 before returning back to the sliding segment when ET = 2.7 (Figure 5 (d)). If
ET = 3.3, then a buckling bifurcation (or sliding switching) occurs [10, 19] (Figure 6 (a)), and this type of
sliding cycle passes through the whole piece of sliding segment when ET = 3.3. As ET increases, there exists
a sliding cycle (that is, canard cycle) as shown in (Figure 6 (b)). Moreover, another buckling bifurcation of
the sliding cycle can also be observed From Figure 4 (c) to Figure 5 (a), and from Figure 6 (b) to Figure 6
(d) there also exist a touching bifurcation for system (2.1).
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Figure 6: The phase portrait of Filippov system (2.1). We choose ET as a bifurcation parameter and fix all other parameters
as follows: r = 0.7, b = 0.4, K = 5, δ = 0.1, k = 0.8, h = 2, q1 = 0.1, q2 = 0.1: (a) ET = 3.3; (b) ET = 4.2; (c) ET = 4.428;
(d) ET = 4.5.

5. Conclusion

There are many research papers [17, 24, 32] with numerical method for the non-smooth Filippov model
proposed by Gause, which describes the relations between predator and prey interaction. However, those
research papers have not considered that the effects of the control strategies as chemical control or biolog-
ical control. In this paper, we proposed a Filippov predator-prey model considering the chemical control
strategies, and the main purpose of this paper is to incorporate the control strategies into the non-smooth
Gause model and show how it affects the dynamics of the Filippov Gause system. To do this, the dynamics
of the proposed Filippov predator-prey system (1.4) with control strategies have been studied in detail by
using qualitative analysis techniques of non-smooth Filippov dynamic systems and numerical techniques.

Especially, the sliding mode dynamics and existence of the several types of equilibria are discussed, and
the results indicate that the two regular equilibria and the pseudo-equilibrium can coexist. Further, sliding
bifurcations with respect to boundary node (focus) bifurcations, touching bifurcations, sliding crossing
bifurcation and buckling bifurcations (or sliding switching) have been investigated.

In order to keep the prey population below the economic threshold effectively, the control strategies are
taken once the prey population reaches and exceeds the economic threshold. As the economic threshold
varies, the prey and predator can either stabilize at the regular equilibrium, or coexist and oscillate periodi-
cally along a limit cycle, a touching cycle, a canard cycle, a crossing cycle or a periodic solution with sliding
segments. This indicates that if the proposed Filippov system (1.4) depicts the interaction between pest and
natural enemy, then the existence of the periodic solutions including a limit cycle, crossing cycle and limit
cycles with sliding segments show that the pest and natural enemy can coexist and oscillate periodically.
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Moreover, it suggests that the economic threshold should be chosen carefully such that the density of the
pest population can be stabilized at the threshold level.

Compared to the previous studies without considering the control strategies [17, 24, 32], the differences
are listed as follows: (1) the two regular equilibria E1

R, E2
R, and the pseudo-equilibriumEp can coexist, and

the pseudo-equilibrium is unstable in the sliding domain, this implies that the prey and predator population
may stabilize at E1

R and E2
R at the same time; (2) it is interesting to note that the boundary node bifurcation

and boundary focus bifurcation can occur as the threshold increases; (3) more complex bifurcations such
as sliding crossing bifurcation and buckling bifurcation of the sliding cycle are observed in addition to the
touching bifurcations. All these observations confirm that the effects of the control strategies on the Filippov
system (1.4) play an important role in determining the dynamical behaviors of the proposed Filippov system.

Note that the effect of the biological control on the prey and predator population is ignored in this paper.
However, it is shown that biological control is more popular in reality, and it also affects the development
and extinction of the prey population [23, 26]. The more comprehensive analysis for Filippov system (1.4)
with the effects of both chemical and biological control will be studied in the future.
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