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Abstract

In this paper, we use weakly commuting and weakly compatible conditions of self-mapping pairs, prove
some new common fixed point theorems for three pairs of self-maps in the framework of generalized metric
spaces. The results presented in this paper generalize the well known comparable results in the literature
due to Abbas et al. [M. Abbas, T. Nazir, R. Saadati, Adv. Difference Equ., 2011 (2011), 20 pages]. We
also provide illustrative examples in support of our new results. c©2016 All rights reserved.
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1. Introduction and Preliminaries

The study of fixed points of mappings satisfying certain conditions has been at the center of vigorous
research activity. In 2006, Mustafa and Sims [31] introduced a new structure of generalized metric spaces,
which are called G-metric spaces as the following.

Definition 1.1 ([31]). Let X be a nonempty set and let G : X ×X ×X → R+ be a function satisfying the
following properties:

(G1) G(x, y, z) = 0 if x = y = z;
(G2) 0 < G(x, x, y), for all x, y ∈ Xwith x 6= y;
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(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , symmetry in all three variables;
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then the function G is called a generalized metric, or, more specifically, a G-metric on X, and the pair
(X,G) is called a G-metric space.

It is known that the function G(x, y, z) on G-metric space X is jointly continuous in all three of its
variables, and G(x, y, z) = 0 if and only if x = y = z; see [31] and the reference therein for more details.

Based on the notion of generalized metric spaces, Mustafa et al. [29, 30, 32] obtained some fixed point
results for mappings satisfying different contractive conditions. Aydi [8] obtained a fixed point result for
a self-mapping on a G-metric space satisfying (ψ,ϕ)-weakly contractive conditions. Shatanawi [34] proved
some fixed point results for self-maps in a complete G-metric space under some contractive conditions related
to a nondecreasing map φ : R+ → R+ with limn→∞ φ

n(t) = 0 for all t ≥ 0. Chugh et al. [11] obtained
some fixed point results for maps satisfying property P in G-metric spaces. Hussain et al. [20] introduced
the notion of Gm-Meir-Keeler contractive, Gm

c -Meir-Keeler contractive and G-(α,ψ)-Meir-Keeler contractive
mapping and prove some fixed point theorems for the several class of mappings in the setting of G-metric
spaces. Abbas and Rhoades [7] initiated the study of a common fixed point theory in generalized metric
spaces. Kaewcharoen [22] obtained some common fixed point results for contractive mappings satisfying
Φ-maps in G-metric spaces. Abbas et al. [4] obtained some periodic point results in generalized metric
spaces. Aydi et al. [10] obtained some common fixed point results for generalized weakly G-contraction
mapping in G-metric spaces. Ye and Gu [38] obtained some common fixed point theorems for a class of
twice power type contraction maps in G-metric spaces. In [16], Gu and Ye introduce the concept of ϕ-weakly
commuting self-mapping pairs in G-metric space, and used this concept, they establish a new common fixed
point theorem of Altman integral type mappings in G-metric space. Aydi [9] obtained a common fixed
point theorem of integral type contraction in generalized metric spaces. Tahat et al. [37] obtained some
common fixed point theorems for single-valued and multi-valued maps satisfying a generalized contraction
in G-metric spaces. Manro et al. [25] obtained some common fixed point theorems for expansion mappings
in G-metric spaces. Abbas et al. [1] and Manro et al. [26] gives some common fixed point theorems for R-
weakly commuting maps in G-metric spaces. In [27], the authors proved some common fixed point theorems
of weakly compatible mappings in G-metric spaces. In [5, 6, 12, 15, 23, 33, 39], the authors proved some
common fixed point results of three (or four, or six) mappings in G-metric spaces. Recently, Abbas et al. [3]
and Mustafa et al. [28] obtained some common fixed point results for a pair of mappings satisfying (E.A)
property under certain generalized strict contractive conditions in G-metric spaces. Long et al. [24] obtained
some common fixed points results of two pairs of mappings when only one pair satisfies (E.A) property G-
metric spaces. Gu and Yin [17] obtained some common fixed points results of three pairs of mappings
for which only two pairs need to satisfy common (E.A) property in the framework of a generalized metric
space. Very recently, Gu and Shatanawi [14] used the concept of common (E.A) property, proved some
common fixed point theorems for three pairs of weakly compatible self-maps satisfying a generalized weakly
G-contraction condition in generalized metric spaces. In [18, 19, 35], some coupled fixed point and common
coupled fixed point results are obtained in generalized metric spaces. In [2, 13, 36], the authors proved
some coupled fixed point results for mappings satisfying different contractive conditions in two generalized
metric spaces. In 2014, Hussain et al. [21] introduced a new concept of generalized partial b-metric space
using the concepts of G-metric, partial metric, and b-metric spaces and obtained some fixed point results
for contractive mappings in such spaces.

The purpose of this paper is to use the concept of weakly commuting mappings and weakly compatible
mappings to discuss some new common fixed point problem for three pairs of self-maps in G-metric spaces.
The results presented in this paper extend and improve the corresponding results of Abbas, Nazir and
Saadati [5].

We now recall some of the basic concepts and results in G-metric spaces.
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Definition 1.2 ([31]). Let (X,G) be a G-metric space, and let (xn) be a sequence of points of X. A point
x ∈ X is said to be the limit of the sequence (xn), if limn,m→+∞G(x, xn, xm) = 0, and we say that the
sequence (xn) is G-convergent to x or (xn) G− convergent to x.

Thus, xn → x in a G-metric space (X,G) if for any ε > 0, there exists k ∈ N such that G(x, xn, xm) < ε
for all m,n ≥ k.

Proposition 1.3 ([31]). Let (X,G) be a G-metric space, then the following are equivalent
1. (xn) is G-convergent to x.
2. G(xn, xn, x)→ 0 as n→ +∞.
3. G(xn, x, x)→ 0 as n→ +∞.
4. G(xn, xm, x)→ 0 as n,m→ +∞.

Definition 1.4 ([31]). Let (X,G) be a G-metric space. A sequence (xn) is called G-Cauchy if for every ε > 0,
there is k ∈ N such that G(xn, xm, xl) < ε for all m,n, l ≥ k; that is G(xn, xm, xl)→ 0 as n,m, l→ +∞.

Proposition 1.5 ([31]). Let (X,G) be a G-metric space. Then the following are equivalent:
1. The sequence (xn) is G-Cauchy.
2. For every ε > 0, there is k ∈ N such that G(xn, xm, xm) < ε for all m,n ≥ k.

Definition 1.6 ([31]). Let (X,G) and (X ′, G′) be G-metric spaces, and let f : (X,G) → (X ′, G′) be a
function. Then f is said to be G-continuous at a point a ∈ X if and only if for every ε > 0, there is δ > 0
such that x, y ∈ X and G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ε. A function f is G-continuous at X if
only if it is G-continuous for all a ∈ X.

Proposition 1.7 ([31]). Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly continuous
in all three of its variables.

Definition 1.8 ([31]). A G-metric space (X,G) is G-complete if every G-cauchy sequence in (X,G) is
G-convergent in X.

Definition 1.9 ([37]). Two self mappings f and g of a G-metric space (X,G) is said to be weakly commuting
if G(fgx, gfx, gfx) ≤ G(fx, gx, gx) for all x in X.

Definition 1.10 ([37]). Let f and g be two self mappings from a G-metric space (X,G) into itself. Then
the mappings f and g are said to be weakly compatible if G(fgx, gfx, gfx) = 0 whenever G(fx, gx, gx) = 0.

Proposition 1.11 ([31]). Let (X,G) be a G-metric space. Then, for all x, y, z in X, it follows that
G(x, y, y) ≤ 2G(y, x, x).

2. Main Results

Theorem 2.1. Let (X,G) be a complete G-metric space and let f , g, h, A, B, and C are six mappings of
X into itself satisfying the following conditions:

(i) f(X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);
(ii) ∀x, y, z ∈ X,

G(fx, gy, hz) ≤ kmax


G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx),
G(Ax, gy, gy) +G(By, gy, gy) +G(Cz, gy, gy),
G(Ax, hz, hz) +G(By, hz, hz) +G(Cz, hz, hz)

 (2.1)

or

G(fx, gy, hz) ≤ kmax


G(Ax,Ax, fx) +G(By,By, fx) +G(Cz,Cz, fx),
G(Ax,Ax, gy) +G(By,By, gy) +G(Cz,Cz, gy),
G(Ax,Ax, hz) +G(By,By, hz) +G(Cz,Cz, hz)

 , (2.2)

where k ∈ [0, 16). Then one of the pairs (f,A), (g,B), and (h,C) has a coincidence point in X. Moreover,
if one of the following conditions is satisfied:
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(a) Either f or A is G-continuous, the pair (f,A) is weakly commuting, the pairs (g,B) and (h,C) are
weakly compatible;

(b) Either g or B is G-continuous, the pair (g,B) is weakly commuting, the pairs (f,A) and (h,C) are
weakly compatible;

(c) Either h or C is G-continuous, the pair (h,C) is weakly commuting,the pairs (f,A) and (g,B) are
weakly compatible.

Then the mappings f , g, h, A, B, and C have a unique common fixed point in X.

Proof. Let us first assume that mappings f , g, h, A, B, and C satisfy condition (2.1).
Let x0 in X be an arbitrary point, since f(X) ⊂ B(X) , g(X) ⊂ C(X), h(X) ⊂ A(X) there exists the

sequences {xn} and {yn} in X, such that

y3n = fx3n = Bx3n+1, y3n+1 = gx3n+1 = Cx3n+2, y3n+2 = hx3n+2 = Ax3n+3

for n = 0, 1, 2, · · · .
If y3n = y3n+1, then gp = Bp where p = x3n+1; If y3n+1 = y3n+2, then hp = Cp where p = x3n+2; If

y3n+2 = y3n+3, then fp = Ap where p = x3n+3. Without loss of generality, we can assume that yn 6= yn+1,
for all n = 0, 1, 2, · · · .

Now we prove that {yn} is a G-Cauchy sequence in X.
Actually, using the condition (2.1) and (G3) we have

G(y3n−1, y3n, y3n+1)

= G(fx3n, gx3n+1, hx3n−1)

≤ kmax


G(Ax3n, fx3n, fx3n) +G(Bx3n+1, fx3n, fx3n) +G(Cx3n−1, fx3n, fx3n),

G(Ax3n, gx3n+1, gx3n+1)+G(Bx3n+1, gx3n+1, gx3n+1)+G(Cx3n−1, gx3n+1, gx3n+1),
G(Ax3n, hx3n−1, hx3n−1)+G(Bx3n+1, hx3n−1, hx3n−1)+G(Cx3n−1, hx3n−1, hx3n−1)


= kmax


G(y3n−1, y3n, y3n) +G(y3n, y3n, y3n) +G(y3n−2, y3n, y3n),

G(y3n−1, y3n+1, y3n+1) +G(y3n, y3n+1, y3n+1) +G(y3n−2, y3n+1, y3n+1),
G(y3n−1, y3n−1, y3n−1) +G(y3n, y3n−1, y3n−1) +G(y3n−2, y3n−1, y3n−1)


≤ kmax


G(y3n−1, y3n, y3n+1) +G(y3n−2, y3n−1, y3n),

G(y3n−1, y3n, y3n+1) +G(y3n−1, y3n, y3n+1) +G(y3n−2, y3n, y3n+1)
G(y3n−2, y3n−1, y3n) +G(y3n−2, y3n−1, y3n)


≤ k [2G(y3n−1, y3n, y3n+1) + 2G(y3n−2, y3n−1, y3n)] ,

which further implies that

(1− 2k)G(y3n−1, y3n, y3n+1) ≤ 2kG(y3n−2, y3n−1, y3n).

Thus
G(y3n−1, y3n, y3n+1) ≤ λG(y3n−2, y3n−1, y3n), (2.3)

where λ = 2k
1−2k . Obviously 0 ≤ λ < 1.

Similary it can be shown that

G(y3n, y3n+1, y3n+2) ≤ λG(y3n−1, y3n, y3n+1) (2.4)

and
G(y3n+1, y3n+2, y3n+3) ≤ λG(y3n, y3n+1, y3n+2). (2.5)

It follows from (2.3), (2.4), and (2.5) that, for all n ∈ N,

G(yn, yn+1, yn+2) ≤ λG(yn−1, yn, yn+1) ≤ λ2G(yn−2, yn−1, yn) ≤ · · · ≤ λnG(y0, y1, y2).
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Therefore, for all n,m ∈ N, n < m, by (G3) and (G5) we have

G(yn, ym, ym) ≤ G(yn, yn+1, yn+1) +G(yn+1, yn+2, yn+2) +G(yn+2, yn+3, yn+3)

+ · · ·+G(ym−1, ym, ym)

≤ G(yn, yn+1, yn+2) +G(yn+1, yn+2, yn+3) + · · ·+G(ym−1, ym, ym+1)

≤ (λn + λn+1 + kn+2 + · · ·+ λm−1)G(y0, y1, y2)

≤ λn

1− λ
G(y0, y1, y2)→ 0, as n→∞.

Hence, {yn} is a G-Cauchy sequence in X, since X is a complete G-metric space, there exists a point u ∈ X
such that yn → u as n→∞.

Since the sequences {fx3n} = {Bx3n+1},{gx3n+1} = {Cx3n+2} and {hx3n−1} = {Ax3n} are all subse-
quences of {yn}, then they all converge to u.

y3n=fx3n=Bx3n+1 → u, y3n+1=gx3n+1=Cx3n+2 → u, y3n−1=hx3n−1=Ax3n → u as n→∞. (2.6)

Now we prove that u is a common fixed point of f , g, h, A, B, and C under the condition (a).
First, we suppose that A is continuous, the pair (f,A) is weakly commuting, the pairs (g,B) and (h,C)

are weakly compatible.

Step 1. We prove that u = fu = Au.

By (2.6) and weakly commuting of mapping pair (f,A) we have

G(fAx3n, Afx3n, Afx3n) ≤ G(fx3n, Ax3n, Ax3n)→ 0 as n→∞. (2.7)

Since A is continuous, then A2x3n → Au as n → ∞, Afx3n → Au as n → ∞. By (2.7) we know
fAx3n → Au as n→∞.

From the condition (2.1) we know:

G(fAx3n, gx3n+1, hx3n+2)

≤kmax


G(A2x3n, fAx3n, fAx3n)+G(Bx3n+1, fAx3n, fAx3n)+G(Cx3n+2, fAx3n, fAx3n),
G(A2x3n, gx3n+1, gx3n+1)+G(Bx3n+1, gx3n+1, gx3n+1)+G(Cx3n+2, gx3n+1, gx3n+1),
G(A2x3n, hx3n+2, hx3n+2)+G(Bx3n+1, hx3n+2, hx3n+2)+G(Cx3n+2, hx3n+2, hx3n+2)

 .

Letting n→∞, and using the Proposition 1.11 we have

G(Au, u, u) ≤ kmax


G(Au,Au,Au) +G(u,Au,Au) +G(u,Au,Au),

G(Au, u, u) +G(u, u, u) +G(u, u, u),
G(Au, u, u) +G(u, u, u) +G(u, u, u)


= kmax {2G(u,Au,Au), G(Au, u, u)), G(Au, u, u)}
≤ 4kG(Au, u, u).

Hence, G(Au, u, u)=0 and Au = u, since 0 ≤ k < 1
6 .

Again by use of the condition (2.1) we have

G(fu, gx3n+1, hx3n+2)

≤kmax


G(Au, fu, fu) +G(Bx3n+1, fu, fu) +G(Cx3n+2, fu, fu),

G(Au, gx3n+1, gx3n+1)+G(Bx3n+1, gx3n+1, gx3n+1)+G(Cx3n+2, gx3n+1, gx3n+1),
G(Au, hx3n+2, hx3n+2)+G(Bx3n+1, hx3n+2, hx3n+2)+G(Cx3n+2, hx3n+2, hx3n+2)

 .
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Letting n→∞, using Au = u and the Proposition 1.11, we have

G(fu, u, u) ≤ kmax


G(u, fu, fu) +G(u, fu, fu) +G(u, fu, fu),

G(u, u, u) +G(u, u, u) +G(u, u, u),
G(u, u, u) +G(u, u, u) +G(u, u, u)


= 3kG(u, fu, fu)

≤ 6kG(fu, u, u),

which implies that G(fu, u, u)=0 and so fu = u, since 0 ≤ k < 1
6 . Thus we have u = Au = fu.

Step 2. We prove that u = gu = Bu.

Since f(X) ⊂ B(X) and u = fu ∈ f(X), there is a point v ∈ X such that u = fu = Bv. Again by use
of condition (2.1), we have

G(fu, gv, hx3n+2)

≤ kmax


G(Au, fu, fu) +G(Bv, fu, fu) +G(Cx3n+2, fu, fu),
G(Au, gv, gv) +G(Bv, gv, gv) +G(Cx3n+2, gv, gv),

G(Au, hx3n+2, hx3n+2) +G(Bv, hx3n+2, hx3n+2) +G(Cx3n+2, hx3n+2, hx3n+2)

 .

Letting n→∞, using u = Au = fu = Bv and the Proposition 1.11, we obtain

G(u, gv, u) ≤ kmax


G(u, u, u) +G(u, u, u) +G(u, u, u),

G(u, gv, gv) +G(u, gv, gv) +G(u, gv, gv),
G(u, u, u) +G(u, u, u) +G(u, u, u)


= 3kG(u, gv, gv)

≤ 6kG(u, gv, u),

which gives that G(u, gv, u) = 0 because 0 ≤ k < 1
6 , and so gv = u = Bv.

Since the pair (g,B) is weakly compatible, we have

gu = gBv = Bgv = Bu.

Again by use of condition (2.1), we have

G(fu, gu, hx3n+2)

≤ kmax


G(Au, fu, fu) +G(Bu, fu, fu) +G(Cx3n+2, fu, fu),
G(Au, gu, gu) +G(Bu, gu, gu) +G(Cx3n+2, gu, gu),

G(Au, hx3n+2, hx3n+2) +G(Bu, hx3n+2, hx3n+2) +G(Cx3n+2, hx3n+2, hx3n+2)

 .

Letting n→∞, using u = Au = fu, gu = Bu and the Proposition 1.11, we have

G(u, gu, u) ≤ kmax


G(u, u, u) +G(gu, u, u) +G(u, u, u),

G(u, gu, gu) +G(gu, gu, gu) +G(u, gu, gu),
G(u, u, u) +G(gu, u, u) +G(u, u, u)


= kmax {G(gu, u, u), 2G(u, gu, gu)}
≤ 4kG(u, gu, u).

This implies that G(u, gu, u) = 0 and so u = gu = Bu.

Step 3. We prove that u = hu = Cu.
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Since g(X) ⊂ C(X) and u = gu ∈ g(X), there is a point w ∈ X such that u = gu = Cw. Again by use
of condition (2.1), we have

G(fu, gu, hw) ≤ kmax


G(Au, fu, fu) +G(Bu, fu, fu) +G(Cw, fu, fu),
G(Au, gu, gu) +G(Bu, gu, gu) +G(Cw, gu, gu),
G(Au, hw, hw) +G(Bu, hw, hw) +G(Cw, hw, hw)

 .

Using u = Au = fu, u = gu = Bu = Cw and the Proposition 1.11, we obtain

G(u, u, hw) ≤ 3kG(u, hw, hw) ≤ 6kG(u, u, hw),

which implies that G(u, u, hw) = 0 and so hw = u = Cw.
Since the pair (h,C) is weakly compatible, we have

hu = hCw = Chw = Cu.

Again by use of condition (2.1), we have

G(fu, gu, hu) ≤ kmax


G(Au, fu, fu) +G(Bu, fu, fu) +G(Cu, fu, fu),
G(Au, gu, gu) +G(Bu, gu, gu) +G(Cu, gu, gu),
G(Au, hu, hu) +G(Bu, hu, hu) +G(Cu, hu, hu)

 .

Using u = Au = fu, u = gu = Bu, Cu = hu and the Proposition 1.11, we have

G(u, u, hu) ≤ kmax {G(hu, u, u), 2G(u, hu, hu)} ≤ 4kG(u, u, hu),

which gives that G(u, u, hu) = 0 and so u = hu = Cu.
Therefore u is the common fixed point of f , g, h, A, B, and C when A is continuous and the pair (f,A)

is weakly commuting, the pairs (g,B) and (h,C) are weakly compatible.
Next, we suppose that f is continuous, the pair (f,A) is weakly commuting, the pair (g,B) and (h,C)

are weakly compatible.

Step 1. We prove that u = fu.

By (2.6) and weakly commuting of mapping pair (f,A) we have

G(fAx3n, Afx3n, Afx3n) ≤ G(fx3n, Ax3n, Ax3n)→ 0 as n→∞. (2.8)

Since f is continuous, then f2x3n → fu as n → ∞, fAx3n → fu as n → ∞. By (2.6) we know
Afx3n → fu as n→∞.

From the condition (2.1) we know

G(f2x3n, gx3n+1, hx3n+2)

≤kmax


G(Afx3n, f

2x3n, f
2x3n) +G(Bx3n+1, f

2x3n, f
2x3n) +G(Cx3n+2, f

2x3n, f
2x3n),

G(Afx3n, gx3n+1, gx3n+1)+G(Bx3n+1, gx3n+1, gx3n+1)+G(Cx3n+2, gx3n+1, gx3n+1),
G(Afx3n, hx3n+2, hx3n+2)+G(Bx3n+1, hx3n+2, hx3n+2)+G(Cx3n+2, hx3n+2, hx3n+2)

 .

Letting n→∞ and the Proposition 1.11 we have

G(fu, u, u) ≤ kmax


G(fu, fu, fu) +G(u, fu, fu) +G(u, fu, fu),

G(fu, u, u) +G(u, u, u) +G(u, u, u),
G(fu, u, u) +G(u, u, u)+G(u, u, u)


= kmax {2G(u, fu, fu), G(fu, u, u)}
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≤ 4kG(fu, u, u),

which implies that G(fu, u, u) = 0 and so fu = u.

Step 2. We prove that u = gu = Bu.

Since f(X) ⊂ B(X) and u = fu ∈ f(X), there is a point z ∈ X such that u = fu = Bz, again by use
of condition (2.1), we have

G(f2x3n, gz, hx3n+2)

≤ kmax


G(Afx3n, f

2x3n, f
2x3n) +G(Bz, f2x3n, f

2x3n) +G(Cx3n+2, f
2x3n, f

2x3n),
G(Afx3n, gz, gz) +G(Bz, gz, gz) +G(Cx3n+2, gz, gz),

G(Afx3n, hx3n+2, hx3n+2) +G(Bz, hx3n+2, hx3n+2) +G(Cx3n+2, hx3n+2, hx3n+2)

 .

Letting n→∞, using u = fu = Bz and the Proposition 1.11 we have

G(u, gz, u) ≤ kmax


G(u, u, u) +G(u, u, u) +G(u, u, u),

G(u, gz, gz) +G(u, gz, gz) +G(u, gz, gz),
G(u, u, u) +G(u, u, u) +G(u, u, u)


= 3kG(u, gz, gz)

≤ 6kG(u, gz, gz),

which implies that G(u, gz, u) = 0 and so gz = u = Bz.
Since the pair (g,B) is weakly compatible, we have

gu = gBz = Bgz = Bu.

Again by use of condition (2.1), we have

G(fx3n, gu, hx3n+2)

≤ kmax


G(Ax3n, fx3n, fx3n) +G(Bu, fx3n, fx3n) +G(Cx3n+2, fx3n, fx3n),

G(Ax3n, gu, gu) +G(Bu, gu, gu) +G(Cx3n+2, gu, gu),
G(Ax3n, hx3n+2, hx3n+2) +G(Bu, hx3n+2, hx3n+2) +G(Cx3n+2, hx3n+2, hx3n+2)

 .

Letting n→∞, using u = fu, gu = Bu and the Proposition 1.11 we have

G(u, gu, u) ≤ kmax


G(u, u, u) +G(gu, u, u) +G(u, u, u),

G(u, gu, gu) +G(gu, gu, gu) +G(u, gu, gu),
G(u, u, u) +G(gu, u, u) +G(u, u, u)


= kmax {G(gu, u, u), 2G(u, gu, gu)}
≤ 4kG(u, gu, u).

This implies that G(u, gu, u) = 0 and so gu = u = Bu.

Step 3. We prove that u = hu = Cu.

Since g(X) ⊂ C(X) and u = gu ∈ g(X), there is a point t ∈ X such that u = gu = Ct. Again by use of
condition (2.1), we have

G(fx3n, gu, ht) ≤ kmax


G(Ax3n, fx3n, fx3n) +G(Bu, fx3n, fx3n) +G(Ct, fx3n, fx3n),

G(Ax3n, gu, gu) +G(Bu, gu, gu) +G(Ct, gu, gu),
G(Ax3n, ht, ht) +G(Bu, ht, ht) +G(Ct, ht, ht)

 .
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Letting n→∞, using u = gu = Bu = Ct and the Proposition 1.11, we obtain

G(u, u, ht) ≤ kmax


G(u, u, u) +G(u, u, u) +G(u, u, u),
G(u, u, u) +G(u, u, u) +G(u, u, u),

G(u, ht, ht) +G(u, ht, ht) +G(u, ht, ht)


= 3kG(u, ht, ht)

≤ 6kG(u, u, ht).

Hence G(u, u, ht) = 0 and so ht = u = Ct.
Since the pair (h,C) is weakly compatible, we have

hu = hCt = Cht = Cu.

Again by use of condition (2.1), we have

G(fx3n, gu, hu) ≤ kmax


G(Ax3n, fx3n, fx3n) +G(Bu, fx3n, fx3n) +G(Cu, fx3n, fx3n),

G(Ax3n, gu, gu) +G(Bu, gu, gu) +G(Cu, gu, gu),
G(Ax3n, hu, hu) +G(Bu, hu, hu) +G(Cu, hu, hu)

 .

Letting n→∞, using u = gu = Bu, Cu = hu and the Proposition 1.11, we have

G(u, u, hu) ≤ kmax


G(u, u, u) +G(u, u, u) +G(hu, u, u),
G(u, u, u) +G(u, u, u) +G(hu, u, u),

G(u, hu, hu) +G(u, hu, hu) +G(hu, hu, hu)


= kmax {G(hu, u, u), 2G(u, hu, hu)}
≤ 4kG(u, u, hu),

which gives that G(u, u, hu) = 0 and so hu = u = Cu.

Step 4. We prove that u = Au.

Since h(X) ⊂ A(X) and u = hu ∈ h(X), there is a point p ∈ X such that u = hu = Ap. Again by use
of condition (2.1), we have

G(fp, gu, hu) ≤ kmax


G(Ap, fp, fp) +G(Bu, fp, fp) +G(Cu, fp, fp),
G(Ap, gu, gu) +G(Bu, gu, gu) +G(Cu, gu, gu),
G(Ap, hu, hu) +G(Bu, hu, hu) +G(Cu, hu, hu)

 .

Using u = gu = Bu, u = hu = Cu = Ap and the Proposition 1.11, we obtain

G(fp, u, u) ≤ kmax


G(u, fp, fp) +G(u, fp, fp) +G(u, fp, fp),

G(u, u, u) +G(u, u, u) +G(u, u, u),
G(u, u, u) +G(u, u, u) +G(u, u, u)


= 3kG(u, fp, fp)

≤ 6kG(fp, u, u),

which implies that G(fp, u, u) = 0 and so fp = u = Ap.
Since the pair (f,A) is weakly compatible, we have

fu = fAp = Afp = Au = u.

Therefore u is the common fixed point of f , g, h, A, B, and C when S is continuous and the pair (f,A)
is weakly commuting, the pair (g,B) and (h,C) are weakly compatible.
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Similarly we can prove the result that u is a common fixed point of f , g, h, A, B, and C when under
the condition of (b) or (c).

Finally we prove uniqueness of common fixed point u.
Let u and q are two common fixed point of f , g, h, A, B, and C, by use of condition (2.1), we have

G(q, u, u) = G(fq, gu, hu)

≤ kmax


G(Aq, fq, fq) +G(Bu, fq, fq) +G(Cu, fq, fq),
G(Aq, gu, gu) +G(Bu, gu, gu) +G(Cu, gu, gu),
G(Aq, hu, hu) +G(Bu, hu, hu) +G(Cu, hu, hu)


= kmax


G(q, q, q) +G(u, q, q) +G(u, q, q),
G(q, u, u) +G(u, u, u) +G(u, u, u),
G(q, u, u) +G(u, u, u) +G(u, u, u)


= kmax {2G(u, q, q), G(q, u, u)}
≤ 6kG(q, u, u),

which implies that G(q, u, u) = 0 and so q = u. Thus common fixed point is unique.
The proof using (2.2) is similar. This completes the proof.

Remark 2.2. Theorem 2.1 improves and extends the corresponding results of Abbas, Nazir and Saadati [5,
Theorem 2.6] from three self-mappings to six self-mappings.

Remark 2.3. In Theorem 2.1, if we take: 1) f = g = h; 2) A = B = C; 3) f = g = h and A = B = C; 4)
g = h and B = C; 5) g = h and B = C = I, several new results can be obtained.

In Theorem 2.1, if we take A = B = C = I (I is identity mapping, the same below), then we have the
following corollary.

Corollary 2.4 ([36],Theorem 2.6). Let (X,G) be a complete G-metric space and let f , g and h are three
mappings of X into itself satisfying the following conditions

G(fx, gy, hz) ≤ kmax


G(x, fx, fx) +G(y, fx, fx) +G(z, fx, fx),
G(x, gy, gy) +G(y, gy, gy) +G(z, gy, gy),
G(x, hz, hz) +G(y, hz, hz) +G(z, hz, hz)

 (2.9)

or

G(fx, gy, hz) ≤ kmax


G(x, x, fx) +G(y, y, fx) +G(z, z, fx),
G(x, x, gy) +G(y, y, gy) +G(z, z, gy),
G(z, z, hz) +G(y, y, hz) +G(z, z, hz)

 (2.10)

∀x, y, z ∈ X, where k ∈ [0, 16). Then f , g, and h have a unique common fixed point in X.
Also, if we take f = g = h and A = B = C = I in Theorem 2.1, then we get the following.

Corollary 2.5. Let (X,G) be a complete G-metric space and let f be a mapping of X into itself satisfying
the following conditions

G(fx, fy, fz) ≤ kmax


G(x, fx, fx) +G(y, fx, fx) +G(z, fx, fx),
G(x, gy, gy) +G(y, gy, gy) +G(z, gy, gy),
G(x, hz, hz) +G(y, hz, hz) +G(z, hz, hz)

 (2.11)

or

G(fx, fy, fz) ≤ kmax


G(x, x, fx) +G(y, y, fx) +G(z, z, fx),
G(x, x, fy) +G(y, y, fy) +G(z, z, fy),
G(z, z, fz) +G(y, y, fz) +G(z, z, fz)

 (2.12)

∀x, y, z ∈ X, where α ∈ [0, 16). Then f has a unique fixed point in X.
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Theorem 2.6. Let (X,G) be a complete G-metric space and let f , g, h, A, B, and C are six mappings of
X into itself satisfying the following conditions:

(i) f(X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);
(ii) The pairs (f,A), (g,B) and (h,C) are commuting mappings;
(iii) ∀x, y, z ∈ X,

G(fpx, gqy, hrz) ≤ kmax


G(Ax, fpx, fpx)+G(By, fpx, fpx)+G(Cz, fpx, fpx),
G(Ax, gqy, gqy)+G(By, gqy, gqy)+G(Cz, gqy, gqy),
G(Ax, hrz, hrz)+G(By, hrz, hrz)+G(Cz, hrz, hrz)

 (2.13)

or

G(fpx, gqy, hrz) ≤ kmax


G(Ax,Ax, fpx) +G(By,By, fpx) +G(Cz,Cz, fpx),
G(Ax,Ax, gqy) +G(By,By, gqy) +G(Cz,Cz, gqy),
G(Ax,Ax, hrz) +G(By,By, hrz) +G(Cz,Cz, hrz)

 , (2.14)

where k ∈ [0, 16), p, q, r ∈ N, then f , g, h, A, B, and C have a unique common fixed point in X.

Proof. Suppose that mappings f , g, h, A, B, and C satisfies condition (2.13). Since fpX ⊂ fp−1X ⊂ · · · ⊂
fX, fX ⊂ BX, so that fpX ⊂ BX. Similarly, we can show that gqX ⊂ CX and hrX ⊂ AX. From the
Theorem 2.1, we see that fp, gq, hr, A, B and C have a unique common fixed point u.

Since fu = f(fpu) = fp+1u = fp(fu), so that

G(fpfu, gqu, hru) ≤ kmax


G(Afu, fpfu, fpfu)+G(Bu, fpfu, fpfu)+G(Cu, fpfu, fpfu),

G(Afu, gqu, gqu)+G(Bu, gqu, gqu)+G(Cu, gqu, gqu),
G(Afu, hru, hru)+G(Bu, hru, hru)+G(Cu, hru, hru)

 ,

note that Afu = fAu = fu and the Proposition 1.11, we obtain

G(fu, u, u) ≤ kmax


G(fu, fu, fu) +G(u, fu, fu) +G(u, fu, fu),

G(fu, u, u) +G(u, u, u) +G(u, u, u),
G(fu, u, u) +G(u, u, u) +G(fu, u, u)


= kmax {2G(u, fu, fu), G(fu, u, u)}
≤ 4kG(fu, u, u).

This implies that G(fu, u, u) = 0 and so fu = u.
By the same argument, we can prove gu = u and hu = u. Thus we have u = fu = gu = hu = Au =

Bu = Cu, so that f , g, h, A, B and C have a common fixed point u in X. Let v be any other common
fixed point of f , g, h, A, B and C, then use of condition (2.13), we have

G(u, u, v) = G(fpu, gqu, hrv)

≤ kmax


G(Au, fpu, fpu) +G(Bu, fpu, fpu) +G(Cv, fpu, fpu),
G(Au, gqu, gqu) +G(Bu, gqu, gqu) +G(Cv, gqu, gqu),
G(Au, hrv, hrv) +G(Bu, hrv, hrv) +G(Cv, hrv, hrv)


= kmax


G(u, u, u) +G(u, u, u) +G(v, u, u),
G(u, u, u) +G(u, u, u) +G(v, u, u),
G(u, v, v) +G(u, v, v) +G(v, v, v)


≤ kmax {G(v, u, u), 2G(u, v, v)}
≤ 4kG(u, u, v),

which implies that G(u, u, v) = 0 and so u = v. Thus common fixed point is unique.
The proof using (2.14) is similar. This completes the proof.
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Remark 2.7. Theorem 2.6 improves and extends the corresponding results in of Abbas, Nazir and Saadati
[5, Corollary 2.8] from three self-mappings to six self-mappings.

Remark 2.8. In Theorem 2.6, if we take: 1) f = g = h; 2) A = B = C; 3) f = g = h and A = B = C; 4)
g = h and B = C; 5) g = h and B = C = I; 6) p = q = r, several new result can be obtained.

In Theorem 2.6, if we take A = B = C = I, then we have the following corollary.

Corollary 2.9. Let (X,G) be a complete G-metric space and let f , g, and h are three mappings of X into
itself satisfying the following conditions

G(fpx, gqy, hrz) ≤ kmax


G(x, fpx, fpx)+G(y, fpx, fpx)+G(z, fpx, fpx),
G(x, gqy, gqy)+G(By, gqy, gqy)+G(z, gqy, gqy),
G(, hrz, hrz)+G(y, hrz, hrz)+G(z, hrz, hrz)

 (2.15)

or

G(fpx, gqy, hrz) ≤ kmax


G(x, x, fpx) +G(y, y, fpx) +G(z, z, fpx),
G(x, x, gqy) +G(y, y, gqy) +G(z, z, gqy),
G(x, x, hrz) +G(y, y, hrz) +G(z, z, hrz)

 (2.16)

for all x, y, z ∈ X, where k ∈ [0, 16), p, q, r ∈ N, then f , g and h have a unique common fixed point in X.

Remark 2.10. If p = q = r = m, the Corollary 2.9 is reduced to Corollary 2.8 of Abbas, Nazir and Saadati
[5].

Also, if we take f = g = h and A = B = C = I in Theorem 2.6, then we get the following.

Corollary 2.11. Let (X,G) be a complete G-metric space and let f be a mapping of X into itself satisfying
the following conditions

G(fpx, f qy, f rz) ≤ kmax


G(x, fpx, fpx)+G(y, fpx, fpx)+G(z, fpx, fpx),
G(x, f qy, f qy)+G(By, f qy, f qy)+G(z, f qy, f qy),
G(z, f rz, f rz)+G(y, f rz, f rz)+G(z, f rz, f rz)

 (2.17)

or

G(fpx, f qy, f rz) ≤ kmax


G(x, x, fpx) +G(y, y, fpx) +G(z, z, fpx),
G(x, x, f qy) +G(y, y, f qy) +G(z, z, f qy),
G(x, x, f rz) +G(y, y, f rz) +G(z, z, f rz)

 (2.18)

for all x, y, z ∈ X, where k ∈ [0, 16), p, q, r ∈ N, then f has a unique fixed point in X.

Corollary 2.12. Let (X,G) be a complete G-metric space and let f , g, h, A, B and C are six mappings of
X into itself satisfying the following conditions:

(i) f(X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);
(ii) ∀x, y, z ∈ X,

G(fx, gy, hz) ≤ a{G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx)}
+ b{G(Ax, gy, gy) +G(By, gy, gy) +G(Cz, gy, gy)}
+ c{G(Ax, hz, hz) +G(By, hz, hz) +G(Cz, hz, hz)} (2.19)

or

G(fx, gy, hz) ≤ a{G(Ax,Ax, fx) +G(By,By, fx) +G(Cz,Cz, fx)}
+ b{G(Ax,Ax, gy) +G(By,By, gy) +G(Cz,Cz, gy)}
+ c{G(Ax,Ax, hz) +G(By,By, hz) +G(Cz,Cz, hz)}, (2.20)

where 0 ≤ a + b + c < 1
6 . Then one of the pairs (f,A), (g,B) and (h,C) has a coincidence point in X.

Moreover, if one of the following conditions is satisfied:
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(a) Either f or A is G-continuous, the pair (f,A) is weakly commuting, the pairs (g,B) and (h,C) are
weakly compatible;

(b) Either g or B is G-continuous, the pair (g,B) is weakly commuting, the pairs (f,A) and (h,C) are
weakly compatible;

(c) Either h or C is G-continuous, the pair (h,C) is weakly commuting, the pairs (f,A) and (g,B) are
weakly compatible.

Then The mappings f , g, h, A, B and C have a unique common fixed point in X.

Proof. Suppose that mappings f , g, h, A, B and C satisfies condition (2.19). For x, y, z ∈ X, let

M(x, y, z) = max


G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx),
G(Ax, gy, gy) +G(By, gy, gy) +G(Cz, gy, gy),
G(Ax, hz, hz) +G(By, hz, hz) +G(Cz, hz, hz)

 .

Then

a{G(Ax,Ax, fx) +G(By,By, fx) +G(Cz,Cz, fx)}
+ b{G(Ax,Ax, gy) +G(By,By, gy) +G(Cz,Cz, gy)}
+ c{G(Ax,Ax, hz) +G(By,By, hz) +G(Cz,Cz, hz)}
≤ (a+ b+ c)M(x, y, z).

So, if

G(fx, gy, hz) ≤ a{G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx)}
+ b{G(Ax, gy, gy) +G(By, gy, gy) +G(Cz, gy, gy)}
+ c{G(Ax, hz, hz) +G(By, hz, hz) +G(Cz, hz, hz)}

then G(fx, gy, hz) ≤ (a+ b+ c)M(x, y, z). Taking k = a+ b+ c in Theorem 2.1, the conclusion of Corollary
2.12 can be obtained from Theorem 2.1 immediately.

The proof using (2.20) is similar. This completes the proof.

Remark 2.13. In Corollary 2.12, if we take: 1) f = g = h; 2) A = B = C; 3) f = g = h and A = B = C; 4)
g = h and B = C; 5) g = h and B = C = I, several new results can be obtained.

Corollary 2.14. Let (X,G) be a complete G-metric space and let f , g, h, A, B and C are six mappings of
X into itself satisfying the following conditions:

(i) f(X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X);
(ii) The pairs (f,A), (g,B) and (h,C) are commuting mappings;
(iii) ∀x, y, z ∈ X,

G(fpx, gqy, hrz) ≤a{G(Ax, fpx, fpx) +G(By, fpx, fpx) +G(Cz, fpx, fpx)}
+ b{G(Ax, gqy, gqy) +G(By, gqy, gqy) +G(Cz, gqy, gqy)}
+ c{G(Ax, hrz, hrz) +G(By, hrz, hrz) +G(Cz, hrz, hrz)}

(2.21)

or

G(fpx, gqy, hrz) ≤ a{G(Ax,Ax, fpx) +G(By,By, fpx) +G(Cz,Cz, fpx)}
+ b{G(Ax,Ax, gqy) +G(By,By, gqy) +G(Cz,Cz, gqy)}
+ c{G(Ax,Ax, hrz) +G(By,By, hrz) +G(Cz,Cz, hrz)},

(2.22)

where 0 ≤ a+ b+ c < 1
6 , p, q, r ∈ N, then f , g, h, A, B, and C have a unique common fixed point in X.
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Proof. The proof follows from Corollary 2.12, and from an argument similar to that used in Theorem 2.6.

Remark 2.15. In Corollary 2.14, if we take: 1) f = g = h; 2) A = B = C; 3) f = g = h and A = B = C; 4)
g = h and B = C; 5) g = h and B = C = I; 6) p = q = r, several new results can be obtained.

Now we introduce an example to support Theorem 2.1.

Example 2.16. Let X = [0, 1], and (X,G) be a G-metric space defined by G(x, y, z) = |x−y|+|y−z|+|z−x|
for all x, y, z in X. Let f , g, h, A, B and C be self mappings defined by

fx =
18

19
, gx =

{
20
21 , x ∈ [0, 12 ],
18
19 , x ∈ (12 , 1].

, hx =

{
19
20 , x ∈ [0, 12 ],
18
19 , x ∈ (12 , 1].

Ax =


1, x ∈ [0, 12 ],
18
19 , x ∈ (12 , 1),
19
20 , x = 1.

, Bx =

{
1, x ∈ [0, 12 ],
18
19 , x ∈ (12 , 1].

, Cx =


1, x ∈ [0, 12 ],
18
19 , x ∈ (12 , 1),
20
21 , x = 1.

Note that f is G-continuous in X, and g, h, A, B and C are not G-continuous in X.
Clearly we can get f(X) ⊂ B(X), g(X) ⊂ C(X), h(X) ⊂ A(X).
By the definition of the mappings of f and A, for all x ∈ [0, 1], we have

G(fAx,Afx,Afx) = G

(
18

19
,
18

19
,
18

19

)
= 0 ≤ G(fx,Ax,Ax),

so we can get the pair (f,A) is weakly commuting.
By the definition of the mappings of g and B, only for x ∈ (12 , 1], gx = Bx, at this time gBx = g(1819) =

18
19 = B(1819) = Bgx, so gBx = Bgx, so we can obtain the pair (g,B) is weakly compatible. Similarly we can
proof the pair (h,C) is also weakly compatible.

Now we proof the mappings f , g, h, A, B and C are satisfying the condition (2.1) of Theorem 2.1 with
k = 2

21 ∈ [0, 16). Let

M(x, y, z) = max


G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx),
G(Ax, gy, gy) +G(By, gy, gy) +G(Cz, gy, gy),
G(Ax, hz, hz) +G(By, hz, hz) +G(Cz, hz, hz)

 .

Case 1. If x, y, z ∈
[
0, 12
]
, then

G(fx, gy, hz) = G

(
18

19
,
20

21
,
19

20

)
=

4

399
,

G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx)

= G

(
1,

18

19
,
18

19

)
+G

(
1,

18

19
,
18

19

)
+G

(
1,

18

19
,
18

19

)
=

6

19
.

Thus we have

G(fx, gy, hz) =
4

399
<

2

21
· 6

19

=
2

21
(G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx))

≤ 2

21
M(x, y, z).
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Case 2. If x, y ∈
[
0, 12
]
, z ∈

(
1
2 , 1
]
, then

G(fx, gy, hz) = G

(
18

19
,
20

21
,
18

19

)
=

4

399
,

G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx)

≥ G(Ax, fx, fx) +G(By, fx, fx)

= G

(
1,

18

19
,
18

19

)
+G

(
1,

18

19
,
18

19

)
=

4

19
.

Therefore we get

G(fx, gy, hz) =
4

399
<

2

21
· 4

19

≤ 2

21
(G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx))

≤ 2

21
M(x, y, z).

Case 3. If x, z ∈
[
0, 12
]
, y ∈

(
1
2 , 1
]
, then

G(fx, gy, hz) = G

(
18

19
,
18

19
,
19

20

)
=

1

190
,

G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx)

= G

(
1,

18

19
,
18

19

)
+G

(
18

19
,
18

19
,
18

19

)
+G

(
1,

18

19
,
18

19

)
=

4

19
.

Hence we have

G(fx, gy, hz) =
1

190
<

2

21
· 4

19

=
2

21
(G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx))

≤ 2

21
M(x, y, z).

Case 4. If y, z ∈
[
0, 12
]
, x ∈

(
1
2 , 1
]
, then

G(fx, gy, hz) = G

(
18

19
,
20

21
,
19

20

)
=

4

399
,

G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx)

≥ G(By, fx, fx) +G(Cz, fx, fx)

= G

(
1,

18

19
,
18

19

)
+G

(
1,

18

19
,
18

19

)
=

4

19
.
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So we get

G(fx, gy, hz) =
4

399
<

2

21
· 4

19

≤ 2

21
(G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx))

≤ 2

21
M(x, y, z).

Case 5. If x ∈
[
0, 12
]
, y, z ∈

(
1
2 , 1
]
, then

G(fx, gy, hz) = G

(
18

19
,
18

19
,
18

19

)
= 0 ≤ 2

21
M(x, y, z).

Case 6. If y ∈
[
0, 12
]
, x, z ∈

(
1
2 , 1
]
, then

G(fx, gy, hz) = G

(
18

19
,
20

21
,
18

19

)
=

4

399
,

G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx) ≥ G(By, fx, fx) = G

(
1,

18

19
,
18

19

)
=

2

19
.

Thus we have

G(fx, gy, hz) =
4

399
=

2

21
· 2

19

≤ 2

21
(G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx))

≤ 2

21
M(x, y, z).

Case 7. If z ∈
[
0, 12
]
, x, y ∈

(
1
2 , 1
]
, then

G(fx, gy, hz) = G

(
18

19
,
18

19
,
19

20

)
=

1

190
,

G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx)

≥ G(By, fx, fx) +G(Cz, fx, fx)

= G

(
18

19
,
18

19
,
18

19

)
+G

(
1,

18

19
,
18

19

)
=

2

19
.

Hence we have

G(fx, gy, hz) =
1

190
<

2

21
· 2

19

≤ 2

21
(G(Ax, fx, fx) +G(By, fx, fx) +G(Cz, fx, fx))

≤ 2

21
M(x, y, z).

Case 8. If x, y, z ∈
(
1
2 , 1
]
, then

G(fx, gy, hz) = G

(
18

19
,
18

19
,
18

19

)
= 0 ≤ 2

21
M(x, y, z).

Then in all the above cases, the mappings f, g, h,A,B, and C are satisfying the condition (2.1) of the
Theorem 2.1 with k = 2

21 . So that all the conditions of Theorem 2.1 are satisfied. Moreover, 18
19 is the

unique common fixed point for all of the mappings f, g, h,A,B, and C.
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[24] W. Long, M. Abbas, T. Nazir, S. Radenović, Common fixed point for two pairs of mappings satisfying (E.A)
property in generalized metric spaces, Abstr. Appl. Anal., 2012 (2012), 15 pages. 1

[25] S. Manro, S. S. Bhatia, S. Kumar, Expansion mapping theorems in G-metric spaces, Int. J. Contemporary Math.
Sci., 5 (2010), 2529–2535. 1

[26] S. Manro, S. Kumar, S. S. Bhatia, R-weakly commuting maps in G-metric spaces, Fasc. Math., 47 (2011), 11–17.
1

[27] Z. Mustafa, Common fixed points of weakly compatible mappings in G-metric spaces, Appl. Math. Sci., 6 (2012),
4589–4600. 1

[28] Z. Mustafa, H. Aydi, E. Karapinar, On common fixed points in G-metric spaces using (E.A) property, Comput.
Math. Appl., 64 (2012), 1944–1956. 1

[29] Z. Mustafa, M. Khandagji, W. Shatanawi, Fixed point results on complete G-metric spaces, Stud. Sci. Math.
Hung., 48 (2011), 304–319. 1

[30] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorems for mappings on complete G-metric space, Fixed
Point Theory Appl., 2008 (2008), 12 pages. 1



Z. Yang, J. Nonlinear Sci. Appl. 9 (2016), 3962–3979 3979

[31] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297.
1, 1.1, 1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.11

[32] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point
Theory Appl., 2009 (2009), 10 pages. 1

[33] K. P. R. Rao, K. B. Lakshmi, Z. Mustafa, V. C. C. Raju, Fixed and related fixed point theorems for three maps
in G-metric spaces, J. Adv. Stud. Topol., 3 (2012), 12–19. 1

[34] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed Point
Theory Appl., 2010 (2010), 9 pages. 1

[35] S. Shatanawi, Coupled fixed point theorems in generalized metric spaces, Hacet. J. Math. Stat., 40 (2011), 441–447.
1

[36] W. Shatanawi, M. Abbas, T. Nazir, Common coupled coincidence and coupled fixed point results in two generalized
metric spaces, Fixed Point Theory Appl., 2011 (2011), 13 pages. 1, 2.4

[37] N. Tahat, H. Aydi, E. Karapinar, W. Shatanawi, Common fixed points for single-valued and multi-valued maps
satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl., 2012 (2012), 9 pages. 1, 1.9,
1.10

[38] H. Ye, F. Gu, Common fixed point theorems for a class of twice power type contraction maps in G-metric spaces,
Abstr. Appl. Anal., 2012 (2012), 19 pages. 1

[39] Y. Yin, F. Gu, Common fixed point theorem about four mappings in G-metric spaces, J. Hangzhou Norm. Univ.
Nat. Sci., 11 (2012), 511–515. 1


	1 Introduction and Preliminaries
	2 Main Results

