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Abstract

In this paper, we investigate the quadratic α-functional equation

2f(x) + 2f(y) = f(x− y) + α−2f(α(x+ y)), (1)

2f(x) + 2f(y) = f(x+ y) + α−2f(α(x− y)), (2)

where α is a fixed nonzero real or complex number with α−1 6= ±
√

3.
Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic

α-functional equations (1) and (2) in Banach spaces. c©2016 All rights reserved.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [21] concerning the
stability of group homomorphisms.

The functional equation f(x+y) = f(x)+f(y) is called the Cauchy equation. In particular, every solution
of the Cauchy equation is said to be an additive mapping. Hyers [13] gave a first affirmative partial answer to
the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings
and by Rassias [20] for linear mappings by considering an unbounded Cauchy difference. A generalization
of the Rassias theorem was obtained by Găvruta [10] by replacing the unbounded Cauchy difference by a
general control function in the spirit of Rassias’ approach. See [2, 3, 7, 9, 11, 12, 18] for more information
on functional equations.

We recall a fundamental result in fixed point theory.
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Theorem 1.1 ([4, 8]). Let (X, d) be a complete generalized metric space and let J : X → X be a strictly
contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th. M. Rassias [14] were the first to provide applications of stability theory of
functional equations for the proof of new fixed point theorems with applications. By using fixed point
methods, the stability problems of several functional equations have been extensively investigated by a
number of authors (see [5, 6, 16, 17, 19]).

In Section 2, we solve the quadratic α-functional equation (1) in vector spaces and prove the Hyers-Ulam
stability of the quadratic α-functional equation (1) in Banach spaces by using the fixed point method.

In Section 3, we prove the Hyers-Ulam stability of the quadratic α-functional equation (1) in Banach
spaces by using the direct method.

In Section 4, we solve the quadratic α-functional equation (2) in vector spaces and prove the Hyers-Ulam
stability of the quadratic α-functional equation (2) in Banach spaces by using the fixed point method.

In Section 5, we prove the Hyers-Ulam stability of the quadratic α-functional equation (2) in Banach
spaces by using the direct method.

Throughout this paper, assume that X is a normed space and that Y is a Banach space. Let α be a
fixed nonzero real or complex number with α−1 6= ±

√
3.

2. Quadratic α-functional equation (1) in Banach spaces I

We solve the quadratic α-functional equation (1) in vector spaces.

Lemma 2.1. Let X and Y be vector spaces. If a mapping f : X → Y satisfies

2f(x) + 2f(y) = f(x− y) + α−2f(α(x+ y)) (2.1)

for all x, y ∈ X, then f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get 3f(0) = α−2f(0). So f(0) = 0.
Letting y = 0 in (2.1), we get f(x) = α−2f(αx) and so f(αx) = α2f(x) for all x ∈ X. Thus

2f(x) + 2f(y) = f(x− y) + α−2f(α(x+ y)) = f(x− y) + f(x+ y)

for all x, y ∈ X, as desired.

Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic α-functional equation
(2.1) in Banach spaces.

Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(x

2
,
y

2

)
≤ L

4
ϕ (x, y) (2.2)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and∥∥2f(x) + 2f(y)− f(x− y)− α−2f (α(x+ y))
∥∥ ≤ ϕ(x, y) (2.3)
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for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ L

4(1− L)
(ϕ (2x, 0) + ϕ (x, x)) (2.4)

for all x ∈ X.

Proof. Letting y = x in (2.3), we get ∥∥4f(x)− α−2f(2αx)
∥∥ ≤ ϕ(x, x) (2.5)

for all x ∈ X.
Replacing x by 2x and letting y = 0 in (2.3), we get∥∥f(2x)− α−2f(2αx)

∥∥ ≤ ϕ(2x, 0) (2.6)

for all x ∈ X.
It follows from (2.5) and (2.6) that

‖f(2x)− 4f(x)‖ ≤ ϕ(2x, 0) + ϕ(x, x) (2.7)

for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}

and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µ(ϕ (2x, 0) + ϕ (x, x)), ∀x ∈ X} ,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [15]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ ε(ϕ (2x, 0) + ϕ (x, x))

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =
∥∥∥4g

(x
2

)
− 4h

(x
2

)∥∥∥ ≤ 4ε
(
ϕ (x, 0) + ϕ

(x
2
,
x

2

))
≤ 4ε

L

4
(ϕ (2x, 0) + ϕ (x, x)) ≤ Lε(ϕ (2x, 0) + ϕ (x, x))

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.7) that∥∥∥f(x)− 4f

(x
2

)∥∥∥ ≤ ϕ (x, 0) + ϕ
(x

2
,
x

2

)
≤ L

4
(ϕ (2x, 0) + ϕ (x, x))

for all x ∈ X. So d(f, Jf) ≤ L
4 .
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By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , that is,

Q (x) = 4Q
(x

2

)
(2.8)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (2.8) such that there exists a µ ∈ (0,∞) satisfying

‖f(x)−Q(x)‖ ≤ µ(ϕ (2x, 0) + ϕ (x, x))

for all x ∈ X;
(2) d(J lf,Q)→ 0 as l→∞. This implies the equality

lim
l→∞

4nf
( x

2n

)
= Q(x)

for all x ∈ X;
(3) d(f,Q) ≤ 1

1−Ld(f, Jf), which implies

‖f(x)−Q(x)‖ ≤ L

4(1− L)
(ϕ (2x, 0) + ϕ (x, x))

for all x ∈ X.
It follows from (2.2) and (2.3) that∥∥2Q(x) + 2Q(y)−Q(x− y)− α−2Q (α(x+ y))

∥∥
= lim

n→∞
4n
∥∥∥∥2f

( x
2n

)
+ 2f

( y
2n

)
− f

(
x− y

2n

)
− α−2f

(
α

(
x+ y

2n

))∥∥∥∥ ≤ lim
n→∞

4nϕ
( x

2n
,
y

2n

)
= 0

for all x, y ∈ X. So
2Q(x) + 2Q(y)−Q(x− y)− α−2Q (α(x+ y)) = 0

for all x, y ∈ X. By Lemma 2.1, the mapping Q : X → Y is quadratic.

Corollary 2.3. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying∥∥2f(x) + 2f(y)− f(x− y)− α−2f (α(x+ y))
∥∥ ≤ θ(‖x‖r + ‖y‖r) (2.9)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2r + 2

2r − 4
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = 22−r and we get the desired result.

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ 4Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.3). Then there exists a unique
quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4(1− L)
(ϕ (2x, 0) + ϕ (x, x))

for all x ∈ X.
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Proof. It follows from (2.7) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
(ϕ (2x, 0) + ϕ (x, x))

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 2.5. Let r < 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying (2.9).
Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2 + 2r

4− 2r
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = 2r−2 and we get desired result.

3. Quadratic α-functional equation (1) in Banach spaces II

In this section, using the direct method, we prove the Hyers-Ulam stability of the quadratic α-functional
equation (2.1) in Banach spaces.

Theorem 3.1. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying f(0) = 0 and

Ψ(x, y) :=
∞∑
j=1

4jϕ
( x

2j
,
y

2j

)
<∞,∥∥2f(x) + 2f(y)− f(x− y)− α−2f (α(x+ y))

∥∥ ≤ϕ(x, y)

(3.1)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4
(Ψ(2x, 0) + Ψ(x, x)) (3.2)

for all x ∈ X.

Proof. It follows from (2.7) that ∥∥∥f(x)− 4f
(x

2

)∥∥∥ ≤ ϕ (x, 0) + ϕ
(x

2
,
x

2

)
for all x ∈ X. Hence∥∥∥4lf

( x
2l

)
− 4mf

( x

2m

)∥∥∥ ≤m−1∑
j=l

∥∥∥4jf
( x

2j

)
− 4j+1f

( x

2j+1

)∥∥∥
≤

m−1∑
j=l

(
4jϕ

( x
2j
, 0
)

+ 4jϕ
( x

2j+1
,
x

2j+1

)) (3.3)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.3) that the sequence
{4kf( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence {4kf( x

2k
)} converges. So one

can define the mapping Q : X → Y by

Q(x) := lim
k→∞

4kf
( x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.3), we get (3.2).

Now, let T : X → Y be another quadratic mapping satisfying (3.2). Then we have

‖Q(x)− T (x)‖ =
∥∥∥4qA

( x
2q

)
− 4qT

( x
2q

)∥∥∥
≤
∥∥∥4qQ

( x
2q

)
− 4qf

( x
2q

)∥∥∥+
∥∥∥4qT

( x
2q

)
− 4qf

( x
2q

)∥∥∥
≤ 4q

2
Ψ

(
2x

2q
, 0

)
+

4q

2
Ψ
( x

2q
,
x

2q

)
,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that Q(x) = T (x) for all x ∈ X. This
proves the uniqueness of Q.

The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 3.2. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying
(2.9). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2r + 2

2r − 4
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.1 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.

Theorem 3.3. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying f(0) = 0,
(3.1), and

Ψ(x, y) :=

∞∑
j=0

1

4j
ϕ(2jx, 2jy) <∞

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4
(Ψ(2x, 0) + Ψ(x, x)) (3.4)

for all x ∈ X.

Proof. It follows from (2.7) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
(ϕ (2x, 0) + ϕ (x, x))

for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

4j
f
(
2jx
)
− 1

4j+1
f
(
2j+1x

)∥∥∥∥
≤

m−1∑
j=l

(
1

4j+1
ϕ(2j+1x, 0) +

1

4j+1
ϕ(2jx, 2jx)

) (3.5)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.5) that the sequence
{ 1
4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence { 1

4n f(2nx)} converges.
So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.5), we get (3.4).
The rest of the proof is similar to the proofs of Theorems 2.2 and 3.1.

Corollary 3.4. Let r < 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying (2.9).
Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2 + 2r

4− 2r
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.3 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.

4. Quadratic α-functional equation (2) in Banach spaces I

We solve the quadratic α-functional equation (2) in vector spaces.

Lemma 4.1. Let X and Y be vector spaces. If a mapping f : X → Y satisfies

2f(x) + 2f(y) = f(x+ y) + α−2f(α(x− y)) (4.1)

for all x, y ∈ X, then f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (4.1).
Letting x = y = 0 in (4.1), we get 3f(0) = α−2f(0). So f(0) = 0.
Letting y = 0 in (4.1), we get f(x) = α−2f(αx) and so f(αx) = α2f(x) for all x ∈ X. Thus

2f(x) + 2f(y) = f(x+ y) + α−2f(α(x− y)) = f(x+ y) + f(x− y)

for all x, y ∈ X, as desired.

Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic α-functional equation
(4.1) in Banach spaces.

Theorem 4.2. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(x

2
,
y

2

)
≤ L

4
ϕ (x, y) (4.2)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and∥∥2f(x) + 2f(y)− f(x+ y)− α−2f (α(x− y))
∥∥ ≤ ϕ(x, y) (4.3)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ L

4(1− L)
ϕ (x, x) (4.4)

for all x ∈ X.
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Proof. Letting y = x in (4.3), we get

‖4f(x)− f(2x)‖ ≤ ϕ(x, x) (4.5)

for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}

and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, x) , ∀x ∈ X} ,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [15]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ εϕ (x, x)

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =
∥∥∥4g

(x
2

)
− 4h

(x
2

)∥∥∥ ≤ 4εϕ
(x

2
,
x

2

)
≤ 4ε

L

4
ϕ (x, x) ≤ Lεϕ (x, x)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (4.5) that ∥∥∥f(x)− 4f

(x
2

)∥∥∥ ≤ ϕ(x
2
,
x

2

)
≤ L

4
ϕ (x, x)

for all x ∈ X. So d(f, Jf) ≤ L
4 .

By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , that is,

Q (x) = 4Q
(x

2

)
(4.6)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (4.6) such that there exists a µ ∈ (0,∞) satisfying

‖f(x)−Q(x)‖ ≤ µϕ (x, x)

for all x ∈ X;
(2) d(J lf,Q)→ 0 as l→∞. This implies the equality

lim
l→∞

4nf
( x

2n

)
= Q(x)

for all x ∈ X;
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(3) d(f,Q) ≤ 1
1−Ld(f, Jf), which implies

‖f(x)−Q(x)‖ ≤ L

4(1− L)
ϕ (x, x)

for all x ∈ X.
It follows from (4.2) and (4.3) that∥∥2Q(x) + 2Q(y)−Q(x+ y)− α−2Q (α(x− y))

∥∥
= lim

n→∞
4n
∥∥∥∥2f

( x
2n

)
+ 2f

( y
2n

)
− f

(
x+ y

2n

)
− α−2f

(
α

(
x− y

2n

))∥∥∥∥ ≤ lim
n→∞

4nϕ
( x

2n
,
y

2n

)
= 0

for all x, y ∈ X. So
2Q(x) + 2Q(y)−Q(x+ y)− α−2Q (α(x− y)) = 0

for all x, y ∈ X. By Lemma 4.1, the mapping Q : X → Y is quadratic.

Corollary 4.3. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying∥∥2f(x) + 2f(y)− f(x+ y)− α−2f (α(x− y))
∥∥ ≤ θ(‖x‖r + ‖y‖r) (4.7)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

2r − 4
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 4.2 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = 22−r and we get the desired result.

Theorem 4.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ 4Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (4.3). Then there exists a unique
quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4(1− L)
ϕ (x, x)

for all x ∈ X.

Proof. It follows from (4.5) that ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ (x, x)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 4.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 4.2.
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Corollary 4.5. Let r < 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying (4.7).
Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

4− 2r
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 4.4 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X. Then we
can choose L = 2r−2 and we get desired result.

5. Quadratic α-functional equation (2) in Banach spaces II

In this section, using the direct method, we prove the Hyers-Ulam stability of the quadratic α-functional
equation (4.1) in Banach spaces.

Theorem 5.1. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying f(0) = 0 and

Ψ(x, y) :=
∞∑
j=1

4jϕ
( x

2j
,
y

2j

)
<∞,∥∥2f(x) + 2f(y)− f(x+ y)− α−2f (α(x− y))

∥∥ ≤ ϕ(x, y)

(5.1)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4
Ψ(x, x) (5.2)

for all x ∈ X.

Proof. It follows from (4.5) that ∥∥∥f(x)− 4f
(x

2

)∥∥∥ ≤ ϕ(x
2
,
x

2

)
for all x ∈ X. Hence∥∥∥4lf

( x
2l

)
− 4mf

( x

2m

)∥∥∥ ≤ m−1∑
j=l

∥∥∥4jf
( x

2j

)
− 4j+1f

( x

2j+1

)∥∥∥ ≤ m−1∑
j=l

4jϕ
( x

2j+1
,
x

2j+1

)
(5.3)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (5.3) that the sequence
{4kf( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence {4kf( x

2k
)} converges. So one

can define the mapping Q : X → Y by

Q(x) := lim
k→∞

4kf
( x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (5.3), we get (5.2).

Now, let T : X → Y be another quadratic mapping satisfying (5.2). Then we have

‖Q(x)− T (x)‖ =
∥∥∥4qA

( x
2q

)
− 4qT

( x
2q

)∥∥∥
≤
∥∥∥4qQ

( x
2q

)
− 4qf

( x
2q

)∥∥∥+
∥∥∥4qT

( x
2q

)
− 4qf

( x
2q

)∥∥∥
≤ 4q

2
Ψ
( x

2q
,
x

2q

)
,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that Q(x) = T (x) for all x ∈ X. This
proves the uniqueness of Q.

The rest of the proof is similar to the proof of Theorem 4.2.
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Corollary 5.2. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying
(4.7). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

2r − 4
θ‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 5.1 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.

Theorem 5.3. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying f(0) = 0,
(5.1) and

Ψ(x, y) :=

∞∑
j=0

1

4j
ϕ(2jx, 2jy) <∞

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4
Ψ(x, x) (5.4)

for all x ∈ X.

Proof. It follows from (4.5) that ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ (x, x)

for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

4j
f
(
2jx
)
− 1

4j+1
f
(
2j+1x

)∥∥∥∥ ≤ m−1∑
j=l

1

4j+1
ϕ(2jx, 2jx) (5.5)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (5.5) that the sequence
{ 1
4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence { 1

4n f(2nx)} converges.
So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (5.5), we get (5.4).
The rest of the proof is similar to the proofs of Theorems 4.2 and 5.1.

Corollary 5.4. Let r < 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying (4.7).
Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

4− 2r
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 5.3 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r) for all x, y ∈ X.
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[10] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math.
Anal. Appl., 184 (1994), 431–436.1
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