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Abstract

In this paper, we study the existence of positive solutions to the nonlinear fractional order singular and
semipositone nonlocal boundary value problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = µ

∫ 1

0
u(s)ds

by using the Leray-Schauder nonlinear alternative and a fixed-point theorem on cones, where 0 < µ <
α, 2 ≤ n − 1 < α ≤ n, Dα

0+ is the standard Riemann-Liouville derivative, and f(t, u) is semipositone and
may be singular at u = 0. c©2016 All rights reserved.

Keywords: Singular fractional differential equation, semipositone, positive solutions, nonlocal boundary
conditions.
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1. Introduction

The purpose of this paper is to establish the existence and multiplicity of positive solutions to following
singular semipositone fractional differential equation with nonlocal conditions
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Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = µ

∫ 1

0
u(s)ds,

(1.1)

where 0 < µ < α, 2 ≤ n − 1 < α ≤ n, Dα
0+ is the standard Riemann-Liouville derivative, f(t, u) :

[0, 1]× (0,+∞)→ R is continuous and f(t, u) may also have singularity at u = 0.
Fractional differential equations have been of great interest in the last few decades. This is due to the

intensive development of the theory of fractional calculus itself as well as its applications. Apart from diverse
areas of mathematics, fractional differential equations arise in rheology, dynamical processes in selfsimilar
and porous structures, fluid flows, electrical networks, viscoelasticity, chemical physics, and many other
branches of science. For more details on this theory and its applications, we refer to references [1–4, 6, 8–
12, 14–20]. Recently, many results were obtained dealing with the existence and multiplicity of solutions
of nonlinear fractional differential equations by using the techniques of nonlinear analysis. In [16], the
authors investigated the properties of Green’s function for the nonlinear fractional differential equation with
three-point boundary condition{

Dα
0+u(t) + f(t, u(t)) + e(t) = 0, 0 < t < 1,

u(0) = 0, Dβ
0+
u(1) = aDβ

0+
u(ξ),

(1.2)

where 1 < α ≤ 2, 0 < β ≤ 1, 0 ≤ a ≤ 1, 0 < ξ < 1, α−β−1 ≥ 0, e ∈ L1[0, 1], f : (0, 1)×(0,+∞)→ (0,+∞)
satisfies the Caratheodory conditions, Dα

0+ is the standard Riemann-Liouville derivative. The authors present
some existence results of positive solutions for singular boundary value problems (BVPs) (1.2) by means
of the Schauder fixed-point Theorem. By using the Leray-Schauder nonlinear alternative and a fixed-point
theorem on cones, Xu, Jiang and Yuan [17] investigated the existence of multiple positive solutions to
positone and semipositone Dirichlet-type BVPs of the nonlinear fractional differential equations:{

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,

where 1 < α < 2, Dα
0+ is the standard Riemann-Liouville derivative, f(t, u) may be singular at u = 0.

Motivated by the above papers and [7], the aim of this paper is to establish the existence and multiplicity
of positive solutions of BVP (1.1). We obtain the existence of positive solutions by means of the Leray-
Schauder nonlinear alternative and a fixed-point theorem on cones. Our work presented in this paper has the
following features. First of all, BVP (1.1) possesses singularity, that is, f(t, u) may be singular at u = 0. And
the nonlinearity f is semipositone. The second new feature is that we consider the general integral boundary
conditions, which include two-point, three-point, multi-point and some nonlocal conditions as special cases.
Thirdly, we consider the high order nonlinear fractional differential equation and we obtain the existence
and multiplicity of positive solutions of BVP (1.1). Moreover, in this paper, it is possible to replace the
Riemann integrals in the boundary conditions by Riemann-Stieltjes integrals with minor modifications.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries and lemmas
that will be used to prove our main results. We also develop some properties of Green’s function. In Section
3, we discuss the existence and multiplicity of positive solutions of BVP (1.1).

2. Preliminaries and lemmas

In this section, we present some preliminaries and lemmas that are useful to the proof of our main results.
For the convenience of the reader, we present here the necessary definitions from fractional calculus theory.
These definitions can be found in recent literature.

Definition 2.1 ([8]). The Riemann-Liouville fractional integral of order α > 0 of a function u : (0,+∞)→ R
is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds,



X. Hao, L. Liu, Y. Wu, J. Nonlinear Sci. Appl. 9 (2016), 3992–4002 3994

provided the right-hand side is pointwise defined on (0,+∞).

Definition 2.2 ([8]). The Riemann-Liouville fractional derivative of order α > 0 of a continuous function
u : (0,+∞)→ R is given by

Dα
0+u(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

u(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided the right-hand side is pointwise
defined on (0,+∞).

Lemma 2.3 ([8]). Let α ≥ 0. Then the following equality holds for u ∈ L1(0, 1) and Dα
0+u ∈ L

1(0, 1):

Iα0+Dα
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

where ci ∈ R, i = 1, 2, · · · , n, n− 1 < α ≤ n.

Lemma 2.4 ([18]). Let y ∈ C[0, 1] be a given function, then the boundary value problem
Dα

0+u(t) + y(t) = 0, 0 < t < 1, 2 ≤ n− 1 < α ≤ n,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = µ

∫ 1

0
u(s)ds,

(2.1)

has a unique solution

u(t) =

∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) =


[t(1− s)]α−1(α− µ+ µs)− (α− µ)(t− s)α−1

(α− µ)Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1− s)]α−1(α− µ+ µs)

(α− µ)Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(2.2)

Here G(t, s) is called Green’s function of boundary value problem (2.1).

Lemma 2.5 ([18]). The function G(t, s) defined by (2.2) has the following properties:

µtα−1Φ(s) ≤ G(t, s) ≤ M0

(α− µ)Γ(α)
tα−1, G(t, s) ≤M0Φ(s), t, s ∈ [0, 1],

where M0 = (α− µ)(α− 1) + α+ µ and Φ(s) = 1
(α−µ)Γ(α)s(1− s)

α−1.

Lemma 2.6. Suppose e ∈ C[0, 1], then
Dα

0+x(t) + e(t) = 0, 0 < t < 1,

x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(1) = µ

∫ 1

0
x(s)ds

has a unique solution

x(t) =

∫ 1

0
G(t, s)e(s)ds, and x(t) ≤ C0t

α−1, t ∈ [0, 1],

where C0 = M0
(α−µ)Γ(α)

∫ 1
0 e(s)ds.
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Proof. From Lemma 2.4, we have

x(t) =

∫ 1

0
G(t, s)e(s)ds, t ∈ [0, 1].

According to Lemma 2.5, we get

x(t) =

∫ 1

0
G(t, s)e(s)ds ≤ tα−1 M0

(α− µ)Γ(α)

∫ 1

0
e(s)ds = C0t

α−1, t ∈ [0, 1].

Theorem 2.7 ([13]). Let 1 ≤ p ≤ ∞ be a constant and q be such that 1
p + 1

q = 1. Assume f ∈ C[0, 1],

g : [0, 1]× R→ R is a Lq-Caratheodory function. By this we mean :

(i) the map y 7→ g(t, y) is continuous for almost all t ∈ [0, 1],

(ii) the map t 7→ g(t, y) is measurable for all y ∈ R,
(iii) for any r > 0 there exists µr ∈ Lq[0, 1] such that |y| ≤ r implies

|g(t, y)| ≤ µr(t) for almost all t ∈ [0, 1].

Kt(s) = K(t, s) ∈ Lp[0, 1] for each t ∈ [0, 1]

and
the map t 7→ Kt is continuous from [0, 1] to Lp[0, 1]

hold. In addition, suppose there is a constant M > |f |0 = sup[0,1] |f(t)|, independent of λ, with |y|0 =
sup[0,1] |y(t)| 6= M for any solution y ∈ C[0, 1] to

y(t) = f(t) + λ

∫ 1

0
K(t, s)g(s, y(s))ds, t ∈ [0, 1]

for each λ ∈ (0, 1]. Then

y(t) = f(t) +

∫ 1

0
K(t, s)g(s, y(s))ds, t ∈ [0, 1]

has at least one solution y ∈ C[0, 1] with |y|0 < M .

Theorem 2.8 ([5]). Let X be a Banach space, and let P ⊂ X be a cone in X. Assume Ω1,Ω2 are open
subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let S : P ∩ (Ω2 \Ω1)→ P be a completely continuous operator such
that, either

(1) ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω2, or

(2) ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω2.

Then S has a fixed point in P ∩ (Ω2 \ Ω1).

3. Main results

Let E = C[0, 1], then E is a Banach space endowed with the norm ‖u‖ = supt∈[0,1] |u(t)|. Let P = {u ∈
E : u(t) ≥ 0, t ∈ [0, 1]}, K =

{
u ∈ P : u(t) ≥ µtα−1

M0
‖u‖, t ∈ [0, 1]

}
. It is easy to see that P and K are cones

in E. For any 0 < r < +∞, let Ω = {u ∈ K : ‖u‖ < r}, ∂Ω = {u ∈ K : ‖u‖ = r}, Ω = {u ∈ K : ‖u‖ ≤ r}.
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Theorem 3.1. Suppose the following conditions are satisfied:{
f : [0, 1]× (0,+∞)→ R is continuous and there exists a function e ∈ C[0, 1],

e(t) > 0 for t ∈ (0, 1), with f(t, u) + e(t) ≥ 0 for (t, u) ∈ [0, 1]× (0,+∞);
(3.1)


f∗(t, u) = f(t, u) + e(t) ≤ q(t)[g(u) + h(u)] on [0, 1]× (0,+∞) with

g > 0 continuous and nonincreasing on (0,+∞), h ≥ 0 continuous on [0,+∞),

h

g
nondecreasing on (0,+∞), and q ∈ L1[0, 1], q(t) > 0 on (0, 1);

(3.2)

∃K0 > 0, with g(xy) ≤ K0g(x)g(y), ∀x > 0, y > 0; (3.3)

b0 =

∫ 1

0
q(s)g(sα−1)ds < +∞; (3.4)

∃r > M0

µ
C0 with

r

g( µrM0
− C0)

{
1 + h(r)

g(r)

} > M0K0a0, (3.5)

where

a0 =

∫ 1

0
Φ(s)q(s)g(sα−1)ds <∞; (3.6)

there exist 0 < θ < 1 and a continuous, nonincreasing function g1 : (0,+∞)→ (0,+∞),

and a continuous function h1 : [0,+∞)→ (0,+∞)with
h1

g1
nondecreasing on (0,+∞)

and f∗(t, u) ≥ q1(t)[g1(u) + h1(u)] for (t, u) ∈ [θ, 1− θ]× (0,+∞), q1 ∈ C([0, 1], [0,+∞)),

(3.7)

and ∃R > r with
Rg1(εθα−1R)

g1(R)g1(εθα−1R) + g1(R)h1(εθα−1R)
≤
∫ 1−θ

θ
G(σ, s)q1(s)ds, (3.8)

here ε > 0 is any constant so that
µ

M0
− C0

R
≥ ε and

∫ 1−θ

θ
G(σ, s)ds = sup

t∈[0,1]

∫ 1−θ

θ
G(t, s)ds.

Then BVP (1.1) has a solution u with u(t) > 0 for t ∈ (0, 1).

Proof. To show BVP (1.1) has a nonnegative solution we will look at the boundary value problem
Dα

0+y(t) + f∗
(
t, y(t)− x(t)

)
= 0, 0 < t < 1,

y(0) = y′(0) = · · · = y(n−2)(0) = 0, y(1) = µ

∫ 1

0
y(s)ds,

(3.9)

where x is as in Lemma 2.6.
We will show, using Theorem 2.8, that there exists a solution y1(t) to BVP (3.9) with y1(t) > x(t) for

t ∈ (0, 1). If this is true, then u(t) = y1(t)− x(t) is a positive solution of BVP (1.1), since

Dα
0+u(t) = Dα

0+y1(t)−Dα
0+x(t) = −f∗(t, y1(t)− x(t)) + e(t)

= −[f(t, y1(t)− x(t)) + e(t)] + e(t) = −f(t, u(t)), 0 < t < 1.

As a result, we will concentrate our study on BVP (3.9). Suppose that y(t) is a solution of BVP (3.9), then

y(t) =

∫ 1

0
G(t, s)f∗(s, y(s)− x(s))ds, 0 < t < 1.
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Let
Ω1 = {u ∈ K : ‖u‖ < r}, Ω2 = {u ∈ K : ‖u‖ < R},

and let T : K ∩ (Ω2\Ω1)→ E be defined by

(Ty)(t) =

∫ 1

0
G(t, s)f∗(s, y(s)− x(s))ds, 0 < t < 1.

First, we show that T is well defined. For each y ∈ K ∩ (Ω2\Ω1), we have r ≤ ‖y‖ ≤ R and y(t) ≥
µtα−1

M0
‖y‖ ≥ µtα−1

M0
r for 0 ≤ t ≤ 1. For each t ∈ [0, 1], we have

R ≥ y(t)− x(t) ≥ µtα−1

M0
r − tα−1C0 = tα−1

(
µr

M0
− C0

)
,

and by (3.2), we see that

f∗(t, y(t)− x(t)) =f(t, y(t)− x(t)) + e(t)

≤q(t)[g(y(t)− x(t)) + h(y(t)− x(t))]

=q(t)g(y(t)− x(t))

{
1 +

h(y(t)− x(t))

g(y(t)− x(t))

}
≤K0q(t)g

(
µr

M0
− C0

)
g(tα−1)

{
1 +

h(R)

g(R)

}
.

Thus, using above inequalities together with (3.4), we deduce that T : K ∩ (Ω2\Ω1) → E is well defined.
Note that y ∈ K ∩ (Ω2\Ω1) also implies that

‖Ty‖ ≤M0

∫ 1

0
Φ(s)f∗(s, y(s)− x(s))ds,

and

(Ty)(t) ≥ µtα−1

∫ 1

0
Φ(s)f∗(s, y(s)− x(s))ds ≥ µtα−1

M0
‖Ty‖, t ∈ [0, 1].

Thus, we conclude that T : K ∩ (Ω2\Ω1)→ K.
Next, we show that T : K ∩ (Ω2\Ω1) → K is continuous and compact. Let yn, y ∈ K ∩ (Ω2\Ω1) with

‖yn−y‖ → 0 as n→∞, then r ≤ ‖yn‖ ≤ R, r ≤ ‖y‖ ≤ R, yn(t) ≥ µtα−1

M0
r, and y(t) ≥ µtα−1

M0
r, for 0 ≤ t ≤ 1.

Notice also that yn(s)− x(s) ≥ sα−1
(
µr
M0
− C0

)
and y(s)− x(s) ≥ sα−1

(
µr
M0
− C0

)
for s ∈ [0, 1], so

ρn(s) := |f∗ (s, yn(s)− x(s))− f∗ (s, y(s)− x(s)) | → 0, as n→∞,

and

ρn(s) ≤ 2K0q(s)g

(
µr

M0
− C0

)
g(sα−1)

{
1 +

h(R)

g(R)

}
.

By a direct application of Lebesgue dominated convergence Theorem,

‖Tyn − Ty‖ ≤ sup
t∈[0,1]

∫ 1

0
G(t, s)ρn(s)ds→ 0, as n→∞.

Therefore, T : K ∩ (Ω2\Ω1)→ K is continuous.
We now show that T is uniformly bounded. For y ∈ K ∩ (Ω2\Ω1), we have

‖Ty‖ = sup
t∈[0,1]

∫ 1

0
G(t, s)f∗(s, y(s)− x(s))ds
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≤M0

∫ 1

0
Φ(s)q(s)g(y(s)− x(s))

{
1 +

h(y(s)− x(s))

g(y(s)− x(s))

}
ds

≤M0

∫ 1

0
Φ(s)q(s)K0g

(
µr

M0
− C0

)
g(sα−1)

{
1 +

h(R)

g(R)

}
ds

=M0K0g

(
µr

M0
− C0

){
1 +

h(R)

g(R)

}∫ 1

0
Φ(s)q(s)g(sα−1)ds

=a0M0K0g

(
µr

M0
− C0

){
1 +

h(R)

g(R)

}
< +∞.

Hence, T (K ∩ (Ω2\Ω1)) is bounded.
We next show that T is equicontinuous. For each ε > 0, y ∈ K ∩ (Ω2\Ω1), t, t′ ∈ [0, 1], t < t′, since

G(t, s) is uniformly continuous on (t, s) ∈ [0, 1]× [0, 1], there exists η > 0 such that for t′ − t < η we have

|G(t′, s)−G(t, s)| < ε

K0b0g
(
µr
M0
− C0

){
1 + h(R)

g(R)

} ,
and

|(Ty)(t′)− (Ty)(t)| ≤
∫ 1

0

∣∣G(t′, s)−G(t, s)
∣∣ f∗(s, y(s)− x(s))ds

≤
∫ 1

0

∣∣G(t′, s)−G(t, s)
∣∣ q(s)K0g

(
µr

M0
− C0

)
g(sα−1)

{
1 +

h(R)

g(R)

}
ds

=K0g

(
µr

M0
− C0

){
1 +

h(R)

g(R)

}∫ 1

0

∣∣G(t′, s)−G(t, s)
∣∣ q(s)g(sα−1)ds < ε.

By means of the Arzela-Ascoli Theorem, T : K ∩ (Ω2\Ω1)→ K is compact.
We claim that

‖Ty‖ ≤ ‖y‖, y ∈ K ∩ ∂Ω1. (3.10)

In fact, for y ∈ K ∩ ∂Ω1, we get ‖y‖ = r and

y(t)− x(t) ≥ tα−1

(
µr

M0
− C0

)
> 0, t ∈ (0, 1),

from which we obtain that

(Ty)(t) =

∫ 1

0
G(t, s)f∗(s, y(s)− x(s))ds

≤M0

∫ 1

0
Φ(s)q(s)[g(y(s)− x(s)) + h(y(s)− x(s))]ds

≤M0

∫ 1

0
Φ(s)q(s)g(y(s)− x(s))

{
1 +

h(r)

g(r)

}
ds

≤M0K0

{
1 +

h(r)

g(r)

}
g

(
µr

M0
− C0

)∫ 1

0
Φ(s)q(s)g(sα−1)ds < r.

Thus, (3.10) holds, as desired.
Next, we show that

‖Ty‖ ≥ ‖y‖, y ∈ K ∩ ∂Ω2. (3.11)

To see this let y ∈ K ∩ ∂Ω2, then ‖y‖ = R and

y(t)− x(t) ≥ tα−1

(
µR

M0
− C0

)
= tα−1R

(
µ

M0
− C0

R

)
≥ εRtα−1, t ∈ [0, 1].
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By using (3.8), we see that

(Ty)(σ) =

∫ 1

0
G(σ, s)f∗(s, y(s)− x(s))ds

≥
∫ 1−θ

θ
G(σ, s)q1(s)g1(y(s)− x(s))

{
1 +

h1(y(s)− x(s))

g1(y(s)− x(s))

}
ds

≥
∫ 1−θ

θ
G(σ, s)q1(s)g1(R)

{
1 +

h1(εRθα−1)

g1(εRθα−1)

}
ds

=g1(R)

{
1 +

h1(εRθα−1)

g1(εRθα−1)

}∫ 1−θ

θ
G(σ, s)q1(s)ds

≥g1(R)

{
1 +

h1(εRθα−1)

g1(εRθα−1)

}
Rg1(εRθα−1)

g1(R)g1(εRθα−1) + g1(R)h1(εRθα−1)
= R,

which implies that
(Ty)(σ) ≥ R = ‖y‖.

Thus ‖Ty‖ ≥ ‖y‖, and (3.11) is held. By Theorem 2.8, we conclude that T has a fixed point y1 ∈ K∩(Ω2\Ω1),

then r ≤ ‖y1‖ ≤ R and y1(t) ≥ µtα−1

M0
r for t ∈ [0, 1]. Thus y1(t) is a solution of BVP (3.9), and

y1(t)− x(t) ≥ tα−1

(
µr

M0
− C0

)
> 0, t ∈ (0, 1).

Therefore, u(t) = y1(t)− x(t) is a positive solution of BVP (1.1).

Theorem 3.2. Suppose that conditions (3.1)-(3.6) hold. Furthermore, assume that
For each constant L > 0, there exists a function ϕL ∈ C[0, 1], ϕL(t) > 0 for t ∈ (0, 1)

such that f∗(t, u) ≥ ϕL(t) for (t, u) ∈ [0, 1]× (0, L], and

ϕr(t) > e(t), t ∈ (0, 1), where r is as in (3.5).

(3.12)

Then BVP (1.1) has at least one positive solution u with 0 < ‖u‖ < r.

Proof. The idea is that we first show that BVP (3.9) has a positive solution y satisfying y(t) > x(t) for
t ∈ (0, 1). If this is true, it is easy to see that u(t) = y(t) − x(t) will be a positive solution of BVP (1.1).
Similar to the proof of Theorem 3.1, we can prove that

y(t) =

∫ 1

0
G(t, s)f∗(s, y(s)− x(s))ds (3.13)

has a positive solution. Since (3.5) holds, there exists n0 ∈ {1, 2, · · · } such that 1
n0
< r − M0

µ C0 and

M0K0a0g

(
µr

M0
− C0

){
1 +

h(r)

g(r)

}
+

1

n0
< r.

Let N0 = {n0, n0 + 1, · · · }. Consider the family of equations

(Tny)(t) =

∫ 1

0
G(t, s)f∗n (s, y(s)− x(s)) ds+

1

n
, t ∈ (0, 1), (3.14)

where n ∈ N0, f
∗
n(t, v) = f∗(t,max{ 1

n , v}). Similar to the proof of Theorem 3.1, we can easy to verify that
Tn is well defined and maps K into K, and Tn is completely continuous. By Leray-Schauder alternative
principle, we need to consider

y(t) = λ

∫ 1

0
G(t, s)f∗n (s, y(s)− x(s)) ds+

1

n
, t ∈ (0, 1), (3.15)
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where n ∈ N0, λ ∈ (0, 1]. We claim that any fixed point y of (3.15) for any λ ∈ (0, 1] must satisfy ‖y‖ 6= r.
Otherwise, assume that y is a fixed point of (3.15) for some λ ∈ (0, 1] such that ‖y‖ = r. Note that

y(t)− 1

n
= λ

∫ 1

0
G(t, s)f∗n(s, y(s)− x(s))ds ≤ λM0

∫ 1

0
Φ(s)f∗n(s, y(s)− x(s))ds,

we conclude that ∥∥∥∥y − 1

n

∥∥∥∥ ≤ λM0

∫ 1

0
Φ(s)f∗n (s, y(s)− x(s)) ds.

On the other hand, we have

y(t)− 1

n
= λ

∫ 1

0
G(t, s)f∗n (s, y(s)− x(s)) ds ≥ λµtα−1

∫ 1

0
Φ(s)f∗n (s, y(s)− x(s)) ds ≥ µtα−1

M0

∥∥∥∥y − 1

n

∥∥∥∥ .
By the choice of n0,

1
n ≤

1
n0
< r − M0

µ C0, we have

y(t) ≥µt
α−1

M0

∣∣∣∣y(t)− 1

n

∣∣∣∣+
1

n
≥ µtα−1

M0

(
‖y‖ − 1

n

)
+

1

n
≥ µtα−1

M0
r +

(
1− µtα−1

M0

)
1

n
, t ∈ [0, 1].

Then, for each t ∈ [0, 1], we estimate

y(t)− x(t) ≥ µtα−1

M0
r +

(
1− µtα−1

M0

)
1

n
− tα−1C0 =

µtα−1

M0

(
r − M0

µ
C0 −

1

n

)
+

1

n
>

1

n
,

and

y(t)− x(t) ≥µt
α−1

M0
r +

(
1− µtα−1

M0

)
1

n
− tα−1C0

=
µtα−1

M0

(
r − M0

µ
C0

)
+

(
1− µtα−1

M0

)
1

n

>
µtα−1

M0

(
r − M0

µ
C0

)
=tα−1

(
µr

M0
− C0

)
.

Thus, for each t ∈ [0, 1], it holds that

y(t) =λ

∫ 1

0
G(t, s)f∗n (s, y(s)− x(s)) ds+

1

n

=λ

∫ 1

0
G(t, s)f∗ (s, y(s)− x(s)) ds+

1

n

≤M0

∫ 1

0
Φ(s)q(s)g (y(s)− x(s))

{
1 +

h(r)

g(r)

}
ds+

1

n

≤M0K0

∫ 1

0
Φ(s)q(s)g(sα−1)g

(
µr

M0
− C0

){
1 +

h(r)

g(r)

}
ds+

1

n

≤M0K0g

(
µr

M0
− C0

){
1 +

h(r)

g(r)

}
a0 +

1

n
.

Therefore,

r = ‖y‖ ≤M0K0a0g

(
µr

M0
− C0

){
1 +

h(r)

g(r)

}
+

1

n
.

This is a contradiction to the choice of n0 and the claim is proved. Hence, by Theorem 2.7,

y(t) =

∫ 1

0
G(t, s)f∗n(s, y(s)− x(s))ds+

1

n

has a fixed point, denoted by yn, in Br = {y ∈ E : ‖y‖ < r}.
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Next, we claim that yn(t) − x(t) have a uniform positive lower bound, that is, there exists a constant
δ > 0, independent of n ∈ N0, such that

min
t∈[0,1]

{yn(t)− x(t)} ≥ δtα−1 (3.16)

for all n ∈ N0. Since (3.12) holds, there exists a continuous function ϕr(t) > 0 such that f∗(t, u) ≥ ϕr(t) >
e(t) for all (t, u) ∈ (0, 1]× (0, r]. Since yn(t)− x(t) < r, it holds that

yn(t)− x(t) =

∫ 1

0
G(t, s)f∗n(s, y(s)− x(s))ds+

1

n
−
∫ 1

0
G(t, s)e(s)ds

≥
∫ 1

0
G(t, s)(ϕr(s)− e(s))ds ≥ µtα−1

∫ 1

0
Φ(s)(ϕr(s)− e(s))ds := δtα−1.

In order to pass the fixed point yn of the truncation equation (3.14) to that of the equation (3.13), we
need the following fact

{yn} is equicontinuous on [0, 1] for all n ∈ N0. (3.17)

In fact, for each ε > 0, yn ∈ Br, t, t
′ ∈ [0, 1], t < t′, since G(t, s) is uniformly continuous on (t, s) ∈

[0, 1]× [0, 1], there exists τ > 0 such that for t′ − t < τ , we have

|G(t′, s)−G(t, s)| < ε

K0b0g(δ)
{

1 + h(r)
g(r)

} ,
then

|yn(t′)− yn(t)| ≤
∫ 1

0

∣∣G(t′, s)−G(t, s)
∣∣ f∗(s, y(s)− x(s))ds

≤
∫ 1

0

∣∣G(t′, s)−G(t, s)
∣∣ q(s)K0g(δ)g(sα−1)

{
1 +

h(r)

g(r)

}
ds

=K0g(δ)

{
1 +

h(r)

g(r)

}∫ 1

0

∣∣G(t′, s)−G(t, s)
∣∣ q(s)g(sα−1)ds < ε.

The facts ‖yn‖ < r and (3.17) imply that {yn}n∈N0 is a bounded and equicontinuous family on [0,1].
Now the Arzela-Ascoli Theorem implies that {yn}n∈N0 has a subsequence {ynk}nk∈N0 converging uniformly
on [0,1] to a function y ∈ E. From the facts ‖yn‖ < r and (3.16), y satisfies δtα−1 ≤ y(t) − x(t) < r for
t ∈ [0, 1]. Moreover, ynk satisfies the integral equation

ynk(t) =

∫ 1

0
G(t, s)f∗nk(s, ynk(s)− x(s))ds+

1

nk
, t ∈ (0, 1).

Passing to the limit as k →∞, we obtain

y(t) =

∫ 1

0
G(t, s)f∗(s, y(s)− x(s))ds, t ∈ (0, 1).

Hence, y is a positive solution of (3.9) and satisfies 0 < ‖y‖ < r. Therefore, u(t) = y(t)− x(t) is a positive
solution of BVP (1.1).

Theorem 3.3. Assume that conditions (3.1)-(3.8) and (3.12) hold. Then BVP (1.1) has at least two positive
solutions.

Proof. From the proof of Theorem 3.1, we have that (3.9) has a positive solution y1(t) > x(t) for t ∈ (0, 1)
with r ≤ ‖y1‖ ≤ R, and by Theorem 3.2, we have that (3.9) has another positive solution y2(t) > x(t)
for t ∈ (0, 1) with ‖y2‖ < r. Thus BVP (1.1) has at least two positive solutions u1(t) = y1(t) − x(t) and
u2(t) = y2(t)− x(t).
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