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Abstract

The aim of this paper is to introduce the generalized viscosity implicit rules of one nonexpansive mapping
in uniformly smooth Banach spaces. Strong convergence theorems of the rules are proved under certain
assumptions imposed on the parameters. As applications, we use our main results to solve fixed point
problems of strict pseudocontractions in Hilbert spaces and variational inequality problems in Hilbert spaces.
Finally, we also give one numerical example to support our main results. c©2016 All rights reserved.
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1. Introduction

In this paper, we assume that E is a real Banach space and E∗ is the dual space of E. Let C be a subset
of E and T be a self-mapping on C. Let F (T ) be the set of fixed points of mapping T .

A mapping f : C → C is called a contraction, if there exists a constant α ∈ [0, 1) such that

‖f(x)− f(y)‖ ≤ α ‖x− y‖ , ∀ x, y ∈ C. (1.1)

A mapping T : C → C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ , ∀ x, y ∈ C. (1.2)
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Let N and R+ be the set of all positive integers and all positive real numbers, respectively. A mapping
ψ : R+ → R+ is called to be an L-function if ψ(0) = 0, ψ(t) > 0 for all t > 0 and for every s > 0 there exists
u > s such that ψ(t) ≤ s for each t ∈ [s, u].

Let (E, d) be a metric space. A mapping f : E → E is said to be a (ψ,L)-contraction if ψ : R+ → R+

is an L-function and d(f(x), f(y)) < ψ(d(x, y)), for all x, y ∈ E, x 6= y. A mapping f : E → E is said to
be a Meir-Keeler type mapping if for each ε > 0 there exists δ = δ(ε) > 0 such that for each x, y ∈ E, with
ε ≤ d(x, y) < ε+ δ, we have d(f(x), f(y)) < ε.

Proposition 1.1 ([10]). Let (E, d) be a metric space and f : E → E be a mapping. The following assertions
are equivalent:

(i) f is a Meir-Keeler type mapping;

(ii) there exists an L-function ψ : R+ → R+ such that f is a (ψ,L)-contraction.

Proposition 1.2 ([16]). Let C be a convex subset of a Banach space E and let f : C → C be a Meir-Keeler
type mapping. Then, for each ε > 0 there exists r ∈ (0, 1) such that

‖x− y‖ ≥ ε implies ‖f(x)− f(y)‖ ≤ r ‖x− y‖ .

In what follows, a Meir-Keeler type mapping or (ψ,L)-contraction is called a generalized contraction
mapping. We assume that the L-function from the definition of (ψ,L)-contraction is continuous, strictly
increasing and limt→∞ η(t) =∞, where η(t) = t− ψ(t) for all t ∈ R+.

Fixed Point Theory plays a very important role for solving all kinds of problems, such as variational
inequality problems in Hilbert spaces or Banach spaces, equilibrium problems, optimization problems and
so on. Recently, viscosity iterative algorithms for approximating a fixed point of nonexpansive mappings
have been investigated extensively by many authors, see [4, 6, 7, 9, 11, 12, 14, 15, 17] and the references
therein. For instance, Xu [17] introduced an explicit viscosity method for nonexpansive mappings in Hilbert
spaces and uniformly smooth Banach spaces. Strong convergence theorems are obtained under some suitable
conditions on parameters. Song et al.[14] studied a viscosity algorithm for a family of nonexpansive mappings
in a real strictly convex Banach space with a uniformly Gâteaux differentiable norm by using uniformly
asymptotically regular condition.

Very recently, iterative sequence for the implicit midpoint rule has been studied by many authors, because
it is a powerful method for solving ordinary differential equations; see [1, 2, 5, 8, 13, 18, 19] and the references
therein. Recently, Xu et al. [18] considered the following viscosity implicit midpoint rule:

xn+1 = αnf(xn) + (1− αn)T (
xn + xn+1

2
), n ≥ 0. (1.3)

They proved that the iterative sequence defined by (1.3) converges strongly to a fixed point of T which
also solves the following variational inequality in Hilbert spaces:

〈(I − f)q, x− q〉 ≥ 0, x ∈ F (T ). (1.4)

Very recently, Ke et al.[8] applied the viscosity technique to the implicit rules of nonexpansive mappings
in Hilbert spaces. More precisely, they proposed the following two viscosity implicit rules:

xn+1 = αnQ(xn) + (1− αn)T (snxn + (1− sn)xn+1), (1.5)

and
xn+1 = αnxn + βnQ(xn) + γnT (snxn + (1− sn)xn+1). (1.6)

They obtained that the sequence {xn} generated by (1.5) and (1.6) converges strongly to a fixed point of
nonexpansive mapping T , which also solves variational inequality (1.4). The following questions naturally
arise:

Question 1. In ke et al.[8], Step 5 in the proof of Theorem 3.1 and Theorem 3.2 is complicated. Can we
use techniques to simplify the step 5?
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Question 2. Can we extend the main results of Ke et al.[8] from Hilbert spaces to a general Banach spaces?
such as uniformly smooth Banach spaces.

Question 3. Can we replace strict contractions by more generalized contractions? Such as Meir-Keeler
type mappings or a (ψ,L)-functions.

The aim of this paper is to give affirmative answer to these questions mentioned above. We study the
generalized viscosity implicit rules (1.6) of one nonexpansive mapping in uniformly smooth Banach spaces.
We prove some strong convergence theorems for finding a fixed point of one nonexpansive mapping under
suitable assumptions imposed on the parameters. As applications, we apply our main results to solve fixed
point problems of strict pseudocontractions in Banach spaces and variational inequality problems in Hilbert
spaces. Finally, we give some numerical examples for supporting our main results.

2. Preliminaries

The duality mapping J : E → 2E
∗

is defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 , ‖x∗‖ = ‖x‖

}
, ∀ x ∈ E.

It is well known that if E is a Hilbert space, then J is the identity mapping and if E is smooth, then J
is single-valued, which is denoted by j.

Let ρE : [0,∞)→ [0,∞) be the modulus of smoothness of E defined by

ρE(t) = sup

{
1

2
(‖x+ y‖+ ‖x− y‖)− 1 : x ∈ S(E), ‖y‖ ≤ t

}
.

A Banach space E is said to be uniformly smooth if
ρE(t)

t
→ 0 as t → 0. Furthermore, Banach space

E is said to be q-uniformly smooth, if there exists a fixed constant c > 0 such that ρE(t) ≤ ctq. Typical
example of uniformly smooth Banach spaces is Lp, where p > 1. Precisely, Lp is min {p, 2}-uniformly smooth
for every p > 1. It is well known that, if E is q-uniformly smooth, then q ≤ 2 and E is uniformly smooth.

The following lemmas are very useful for proving our main results.

Lemma 2.1 ([17]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0 αn =∞;

(ii) either lim supn→∞
δn
αn
≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

Lemma 2.2 ([15]). Let C be a nonempty closed and convex subset of a uniformly smooth Banach space E.
Let T : C → C be a nonexpansive mapping such that F (T ) 6= ∅ and f : C → C be a generalized contraction
mapping. Then {xt} defined by xt = tf(xt)+(1− t)Txt for t ∈ (0, 1), converges strongly to x̂ ∈ F (T ), which
solves the variational inequality:

〈f(x̂)− x̂, j(z − x̂)〉 ≤ 0, ∀ z ∈ F (T ).

Lemma 2.3 ([15]). Let C be a nonempty closed and convex subset of a uniformly smooth Banach space E.
Let T : C → C be a nonexpansive mapping such that F (T ) 6= ∅ and f : C → C be a generalized contraction
mapping. Assume that {xt} defined by xt = tf(xt)+(1− t)Txt for t ∈ (0, 1), converges strongly to x̂ ∈ F (T )
as t→ 0. Suppose that {xn} is bounded sequence such that xn − Txn → 0 as n→∞. Then

lim sup
n→∞

〈f(x̂)− x̂, j(xn − x̂)〉 ≤ 0.
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3. Main results

Theorem 3.1. Let E be a uniformly smooth Banach space and C a nonempty closed convex subset of E.
Let T : C → C be a nonexpansive mapping with F (T ) 6= ∅ and f : C → C a generalized contraction mapping.
Pick any x0 ∈ C. Let {xn} be a sequence generated by

xn+1 = αnxn + βnf(xn) + γnT (snxn + (1− sn)xn+1), (3.1)

where {αn}, {βn}, and {γn} are three sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii)
∑∞

n=0 βn =∞, limn→∞ βn = 0;

(iii) limn→∞ |αn+1 − αn| = 0 and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;

(iv) 0 < ε ≤ sn ≤ sn+1 < 1 for all n ≥ 0.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T , which is also the solution
of the variational inequality

〈(I − f)x∗, j(y − x∗)〉 ≥ 0, for all y ∈ F (T ).

Proof. First, we show that {xn} is bounded. Indeed, take p ∈ F (T ) arbitrarily, we have

‖xn+1 − p‖ = ‖αnxn + βnf(xn) + γnT (snxn + (1− sn)xn+1)− p‖
= ‖αn(xn − p) + βn(f(xn)− p) + γn(T (snxn + (1− sn)xn+1)− p)‖
≤ αn‖xn − p‖+ βn‖f(xn)− p‖+ γn‖T (snxn + (1− sn)xn+1)− p‖
≤ αn‖xn − p‖+ βn‖f(xn)− f(p)‖+ βn‖f(p)− p‖+ γn‖snxn + (1− sn)xn+1 − p‖
≤ αn‖xn − p‖+ βnψ(‖xn − p‖) + βn‖f(p)− p‖+ γn‖sn(xn − p) + (1− sn)(xn+1 − p)‖
≤ αn‖xn − p‖+ βnψ(‖xn − p‖) + βn‖f(p)− p‖+ γnsn‖xn − p‖+ γn(1− sn)‖xn+1 − p‖.

It follows that

(1− γn(1− sn))‖xn+1 − p‖ ≤ (αn + γnsn + βnψ)‖xn − p‖+ βn‖f(p)− p‖,

that is

‖xn+1 − p‖ ≤
αn + γnsn + βnψ

1− γn(1− sn)
‖xn − p‖+

βn
1− γn(1− sn)

‖f(p)− p‖

=

(
1− βnη

1− γn(1− sn)

)
‖xn − p‖+

βnη

1− γn(1− sn)
· η−1‖f(p)− p‖.

Thus, we have

‖xn+1 − p‖ ≤ max{‖xn − p‖, η−1‖f(p)− p‖}.

By induction, we obtain

‖xn − p‖ ≤ max{‖x0 − p‖, η−1‖f(p)− p‖}.

Hence we obtain that {xn} is bounded.
Next, we prove that limn→∞ ‖xn+1 − xn‖ = 0.
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Set yn = xn+1−αnxn
1−αn

for all n ≥ 0. We observe

yn+1 − yn =
xn+2 − αn+1xn+1

1− αn+1
− xn+1 − αnxn

1− αn

=
βn+1f(xn+1) + γn+1T (sn+1xn+1 + (1− sn+1)xn+2)

1− αn+1
− βnf(xn) + γnT (snxn + (1− sn)xn+1)

1− αn

=
βn+1

1− αn+1
(f(xn+1)− f(xn)) +

1− αn+1 − βn+1

1− αn+1
[T (sn+1xn+1 + (1− sn+1)xn+2)

− T (snxn + (1− sn)xn+1)] + (
βn+1

1− αn+1
− βn

1− αn
)(f(xn)− T (snxn + (1− sn)xn+1)).

It follows that

‖yn+1 − yn‖ ≤
βn+1

1− αn+1
ψ(‖xn+1 − xn‖) +

1− αn+1 − βn+1

1− αn+1
(1− sn+1)‖xn+2 − xn+1‖

+
1− αn+1 − βn+1

1− αn+1
sn‖xn+1 − xn‖+ | βn+1

1− αn+1
− βn

1− αn
| (3.2)

× ‖f(xn)− T (snxn + (1− sn)xn+1)‖.

However,

‖xn+2 − xn+1‖ = ‖αn+1(xn+1 − xn) + (αn+1 − αn)(xn − T (snxn + (1− sn)xn+1))

+ βn+1[f(xn+1)− f(xn)] + (βn+1 − βn) · (f(xn)− T (snxn + (1− sn)xn+1))

+ γn+1[T (sn+1xn+1 + (1− sn+1)xn+2)− T (snxn + (1− sn)xn+1)]‖
≤ αn+1‖xn+1 − xn‖+ |αn+1 − αn|‖xn − T (snxn + (1− sn)xn+1)‖ (3.3)

+ βn+1ψ(‖xn+1 − xn‖) + |βn+1 − βn| · ‖f(xn)− T (snxn + (1− sn)xn+1)‖
+ γn+1(1− sn+1)‖xn+2 − xn+1‖+ γn+1sn‖xn+1 − xn‖

= (αn+1 + γn+1sn + βn+1ψ)‖xn+1 − xn‖+ γn+1(1− sn+1)‖xn+2 − xn+1‖
+ |αn+1 − αn| · ‖xn − T (snxn + (1− sn)xn+1)‖
+ |βn+1 − βn| · ‖f(xn)− T (snxn + (1− sn)xn+1)‖.

It follows that

‖xn+2 − xn+1‖

≤ αn+1 + γn+1sn + βn+1ψ

1− γn+1(1− sn+1)
‖xn+1 − xn‖+

|αn+1 − αn|
1− γn+1(1− sn+1)

‖xn − T (snxn + (1− sn)xn+1)‖

+
|βn+1 − βn|

1− γn+1(1− sn+1)
‖f(xn)− T (snxn + (1− sn)xn+1)‖ (3.4)

=

[
1− βn+1η + γn+1(sn+1 − sn)

1− γn+1(1− sn+1)

]
‖xn+1 − xn‖+ |αn+1 − αn|

‖xn − T (snxn + (1− sn)xn+1)‖
1− γn+1(1− sn+1)

+ |βn+1 − βn|
‖f(xn)− T (snxn + (1− sn)xn+1)‖

1− γn+1(1− sn+1)
.

Substituting (3.4) into (3.2), we have

‖yn+1 − yn‖

≤ βn+1

1− αn+1
ψ(‖xn+1 − xn‖) +

1− αn+1 − βn+1

1− αn+1
· sn‖xn+1 − xn‖+ | βn+1

1− αn+1
− βn

1− αn
|
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× ‖f(xn)− T (snxn + (1− sn)xn+1)‖+
1− αn+1 − βn+1

1− αn+1
(1− sn+1)

× [(1− βn+1η + γn+1(sn+1 − sn)

1− γn+1(1− sn+1)
)‖xn+1 − xn‖+ |αn+1 − αn|

‖xn − T (snxn + (1− sn)xn+1)‖
1− γn+1(1− sn+1)

+ |βn+1 − βn|
‖f(xn)− T (snxn + (1− sn)xn+1)‖

1− γn+1(1− sn+1)
]

=
1

1− αn+1
{βn+1ψ + (1− αn+1 − βn+1)sn + (1− αn+1 − βn+1)(1− sn+1)

× (1− βn+1η + γn+1(sn+1 − sn)

1− γn+1(1− sn+1)
)} · ‖xn+1 − xn‖+ (| βn+1

1− αn+1
− βn

1− αn
|

+
1− αn+1 − βn+1

1− αn+1
(1− sn+1)

|βn+1 − βn|
1− γn+1(1− sn+1)

)‖f(xn)− T (snxn + (1− sn)xn+1)‖

+
1− αn+1 − βn+1

1− αn+1
(1− sn+1)

|αn+1 − αn|
1− γn+1(1− sn+1)

· ‖xn − T (snxn + (1− sn)xn+1)‖

≤ (1− ηβn+1

1− αn+1
)‖xn+1 − xn‖+ [| βn+1

1− αn+1
− βn

1− αn
|+ |βn+1 − βn|

1− γn+1(1− sn+1)
]

× ‖f(xn)− T (snxn + (1− sn)xn+1)‖+
|αn+1 − αn|

1− γn+1(1− sn+1)
· ‖xn − T (snxn + (1− sn)xn+1)‖

≤ (1− ηβn+1

1− αn+1
)‖xn+1 − xn‖+ [| βn+1

1− αn+1
− βn

1− αn
|+ |βn+1 − βn|

1− γn+1(1− sn+1)

+
|αn+1 − αn|

1− γn+1(1− sn+1)
]M1,

where M = supn≥0{‖f(xn)− T (snxn + (1− sn)xn+1)‖+ ‖xn − T (snxn + (1− sn)xn+1)‖}.
Hence, we have

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

It follows that limn→∞ ‖yn − xn‖ = 0. By the definition of {yn}, we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (3.5)

Next, we prove that limn→∞ ‖xn − Txn‖ = 0. In fact, we observe

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Txn‖
≤ ‖xn − xn+1‖+ αn ‖xn − Txn‖+ βn ‖f(xn)− Txn‖+ γn ‖snxn + (1− sn)xn+1 − xn‖
≤ ‖xn − xn+1‖+ αn ‖xn − Txn‖+ βn ‖f(xn)− Txn‖+ γn(1− sn) ‖xn+1 − xn‖ ,

which implies

‖xn − Txn‖ ≤
1 + γn(1− sn)

1− αn
‖xn+1 − xn‖+

βn
1− αn

‖f(xn)− Txn‖ .

Then by (3.5) and condition (iii), we get

‖xn − Txn‖ → 0 as n→∞. (3.6)

Let {xt} be a sequence defined by xt = tf(xt) + (1− t)Txt, by Lemma 2.2, we have that {xt} converges
strongly to a fixed point x∗ of T , which solves the variational inequality:

〈(I − f)x∗, j(x− x∗)〉 ≥ 0, x ∈ F (T ).

It follows from (3.6) and Lemma 2.3 that

lim sup
n→∞

〈f(x∗)− x∗, j(xn − x∗)〉 ≤ 0. (3.7)
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Finally, we show that xn → x∗ as n → ∞. Assume that the sequence {xn} does not converge strongly
to x∗ ∈ F (T ). Then there exists ε > 0 and a subsequence {xnj} of {xn} such that ‖xnj − x∗‖ ≥ ε, for all
j ∈ {0, 1 · ··}. For this ε there exists r ∈ (0, 1) such that

‖f(xnj )− f(x∗)‖ ≤ r‖xnj − x∗‖.

Then we have

‖xnj+1 − x∗‖2

= 〈αnjxnj + βnjf(xnj ) + γnjT (snjxnj + (1− snj )xnj+1)− x∗, j(xnj+1 − x∗)〉
= 〈αnjxnj + βnjf(xnj ) + γnjT (snjxnj + (1− snj )xnj+1)− (αnj + βnj + γnj )x

∗, j(xnj+1 − x∗)〉
= αnj 〈xnj − x∗, j(xnj+1 − x∗)〉+ βnj 〈f(xnj )− f(x∗), j(xnj+1 − x∗)〉

+ βnj 〈f(x∗)− x∗, j(xnj+1 − x∗)〉+ γnj 〈T (snjxnj + (1− snj )xnj+1)− x∗, j(xnj+1 − x∗)〉
≤ αnj‖xnj − x∗‖‖xnj+1 − x∗‖+ rβnj‖xnj − x∗‖‖xnj+1 − x∗‖+ γnjsnj‖xnj − x∗‖‖xnj+1 − x∗‖

+ γnj (1− snj )‖xnj+1 − x∗‖2 + βnj 〈f(x∗)− x∗, j(xnj+1 − x∗)〉
= (αnj + rβnj + γnjsnj )‖xnj − x∗‖‖xnj+1 − x∗‖+ γnj (1− snj )‖xnj+1 − x∗‖2

+ βnj 〈f(x∗)− x∗, j(xnj+1 − x∗)〉

≤
αnj + rβnj + γnjsnj

2
‖xnj − x∗‖2 +

αnj + rβnj + γnjsnj

2
‖xnj+1 − x∗‖2

+ γnj (1− snj )‖xnj+1 − x∗‖2 + βnj 〈f(x∗)− x∗, j(xnj+1 − x∗)〉,

which implies

‖xnj+1 − x∗‖2

≤
αnj + rβnj + γnjsnj

2− αnj − rβnj + γnjsnj − 2γnj

‖xnj − x∗‖2 +
2βnj

2− αnj − rβnj + γnjsnj − 2γnj

× 〈f(x∗)− x∗, j(xnj+1 − x∗)〉

=

(
1−

2− 2αnj − 2rβnj − 2γnj

2− αnj − rβnj + γnjsnj − 2γnj

)
‖xnj − x∗‖2 +

2− 2αnj − 2rβnj − 2γnj

2− αnj − rβnj + γnjsnj − 2γnj

×
2βnj

2− 2αnj − 2rβnj − 2γnj

· 〈f(x∗)− x∗, j(xnj+1 − x∗)〉,

where

α′nj
=

2− 2αnj − 2rβnj − 2γnj

2− αnj − rβnj + γnjsnj − 2γnj

=
2βnj (1− r)

2− αnj − rβnj + γnjsnj − 2γnj

=
2βnj (1− r)

1 + βnj (1− r) + γnj (snj − 1)
⊂ [0, 1].

We notice

2βnj (1− r)
1 + βnj (1− r) + γnj (snj − 1)

>
2βnj (1− r)

1 + βnj (1− r)
> βnj (1− r).

As
∑∞

n=0 βnj =∞, so we have
∑∞

n=0 α
′
nj

=∞. Let

σ′nj
=

2βnj

2− 2αnj − 2rβnj − 2γnj

· 〈f(x∗)− x∗, j(xnj+1 − x∗)〉.

Then it follows from (3.7) that lim supn→∞ σ
′
nj
≤ 0. So we obtain that xnj → x∗ as j → ∞. The

contradiction permits us to conclude that {xn} converges strongly to x∗ ∈ F (T ). This finishes the proof.
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The following results can be obtained by Theorem 3.1 easily. We omit the details.

Theorem 3.2. Let E be a uniformly smooth Banach space, C a nonempty closed convex subset of E. Let
T : C → C be a nonexpansive mapping with F (T ) 6= ∅ and f : C → C a generalized contraction mapping.
Pick any x0 ∈ C. Let {xn} be a sequence generated by

xn+1 = αnxn + βnf(xn) + γnT (
xn + xn+1

2
), (3.8)

where {αn}, {βn}, and {γn} are three sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii)
∑∞

n=0 βn =∞, limn→∞ βn = 0;

(iii) limn→∞ |αn+1 − αn| = 0 and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T , which is also the solution
of the variational inequality

〈(I − f)x∗, j(y − x∗)〉 ≥ 0, ∀ y ∈ F (T ).

Corollary 3.3. Let C be a nonempty closed convex subset of Hilbert space E. Let T : C → C be a
nonexpansive mapping with F (T ) 6= ∅ and f : C → C a generalized contraction mapping. Pick any x0 ∈ C.
Let {xn} be a sequence generated by

xn+1 = αnxn + βnf(xn) + γnT (snxn + (1− sn)xn+1), (3.8)

where {αn}, {βn}, and {γn} are three sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii)
∑∞

n=0 βn =∞, limn→∞ βn = 0;

(iii) limn→∞ |αn+1 − αn| = 0 and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;

(iv) 0 < ε ≤ sn ≤ sn+1 < 1 for all n ≥ 0.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T , which is also the solution
of the variational inequality

〈(I − f)x∗, y − x∗〉 ≥ 0, ∀ y ∈ F (T ).

Corollary 3.4. Let C be a nonempty closed convex subset of Hilbert space E. Let T : C → C be a
nonexpansive mapping with F (T ) 6= ∅ and f : C → C a generalized contraction mapping. Pick any x0 ∈ C.
Let {xn} be a sequence generated by

xn+1 = αnxn + βnf(xn) + γnT (
xn + xn+1

2
), (3.10)

where {αn}, {βn}, and {γn} are three sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii)
∑∞

n=0 βn =∞, limn→∞ βn = 0;

(iii) limn→∞ |αn+1 − αn| = 0 and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T , which is also the solution
of the variational inequality

〈(I − f)x∗, y − x∗〉 ≥ 0, ∀ y ∈ F (T ).
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Remark 3.5. Theorem 3.1 improves and extends Theorem 3.2 of Ke and Ma[8] in the following aspects.

(1) Strict contraction is replaced by a generalized contraction.

(2) From Hilbert spaces to more general uniformly smooth Banach spaces.

(3) Condition limn→∞ γn = 1 is removed and condition
∑∞

n=0 |αn+1 − αn| <∞ is weakened as
limn→∞ |αn+1 − αn| = 0.

(4) Our proof of main results are very different from ones in Ke and Ma[8]. Precisely, we use other method
to deal with the proof of step 2 and step 5, in this way, we simplify the proof of main results.

4. Applications

(I) Application to variational inequality problems in Hilbert spaces.
Let C be a nonempty closed convex subset of a Hilbert space H. Recall the following definitions.
A mapping A : C → H is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

A mapping A : C → H is called α-inverse strongly monotone if there exists a positive real number α
such that

〈Ax−Ay, x− y〉 ≥ α ‖Ax−Ay‖2 , ∀x, y ∈ C.

Let A : C → H be a nonlinear operator. The classical variational inequality is to find x∗ satisfying

〈Ax∗, x− x∗〉 ≥ 0, ∀ x ∈ C. (4.1)

We use VI(A,C) to denoted the set of solutions of (4.1).
Ceng et al. [3] considered the following problem of finding (x∗, y∗) ∈ C × C such that{

〈λAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,
〈µBx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C, (4.2)

which is called a general system of variational inequalities, where A, B : C → H are two nonlinear mappings,
λ > 0 and µ > 0 are two constants. They studied the following algorithm: x1 = u ∈ C and{

yn = PC(xn − µBxn),
xn+1 = αnu+ βnxn + γnSPC(yn − λAyn).

(4.3)

By using a relaxed extragradient method, they proved some strong convergence theorems under appro-
priate conditions in a real Hilbert space.

Lemma 4.1 ([3]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let A,B : C → H
be two nonlinear mappings. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of problem (4.2) if and only if x∗ is
a fixed point of the mapping G : C → C defined by

G(x) = PC(PC(x− µBx)− λAPC(x− µBx)),∀ x ∈ C,

where y∗ = QC(x∗ − µBx∗).

Theorem 4.2. Let C be a nonempty closed convex subset of Hilbert space H. Let the mappings A,B : C →
H be α-inverse-strongly monotone and β-inverse-strongly monotone with F (G) 6= ∅, where G : C → C is a
mapping defined by Lemma 4.1. Let f : C → C be a generalized contraction mapping. Pick any x0 ∈ C. Let
{xn} be a sequence generated by
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xn+1 = αnxn + βnf(xn) + γnyn,
yn = QC(un − λAun),
un = QC(zn − µBzn),
zn = snxn + (1− sn)xn+1,

(4.4)

where λ ∈ (0, 2α), µ ∈ (0, 2β). Let {αn}, {βn}, and {γn} be three sequences in [0, 1] satisfying the following
conditions:

(i) αn + βn + γn = 1;

(ii)
∑∞

n=0 βn =∞, limn→∞ βn = 0;

(iii) limn→∞ |αn+1 − αn| = 0 and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;

(iv) 0 < ε ≤ sn ≤ sn+1 < 1 for all n ≥ 0.

Then {xn} converges strongly to a fixed point x∗ G, which is also the solution of the variational inequality

〈(I − f)x∗, y − x∗〉 ≥ 0,∀ y ∈ F (G),

and (x∗, y∗) is a solution of problem (4.2), where y∗ = QC(x∗ − µBx∗).

Proof. By Remark 2.1 of [3], we know that G is nonexpansive. So we obtain the desired results by Theorem
3.1 and Lemma 4.2.

(II) Application to strict pseudocontractive mappings.
Let K be a nonempty subset of a Hilbert space H. Recall that a mapping T : K → H is said to be

k-strict pseudocontractive if there exists a constant k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k ‖(I − T )x− (I − T )y‖2 , ∀ x, y ∈ K. (4.5)

Lemma 4.3 ([20]). Let H be a Hilbert space, K be a closed convex subset of H. If T is a k-strict pseu-
docontractive mapping on K, then the fixed point set F (T ) is closed convex, so that the projection PF (T ) is
well defined.

Lemma 4.4 ([20]). Let H be a Hilbert space, K be a closed convex subset of H. If T : K → H is a k-strict
pseudocontractive mapping with F (T ) 6= ∅, then F (PKT ) = F (T ).

Lemma 4.5 ([20]). Let H be a Hilbert space, K be a closed convex subset of H. If T : K → H is a k-strict
pseudocontractive mapping. Define a mapping S : K → K by Sx = λx+ (1− λ)Tx for all x ∈ K. Then, as
λ ∈ [k, 1), S is a nonexpansive mapping such that F (S) = F (T ).

Theorem 4.6. Let C be a nonempty closed convex subset of Hilbert space E. Let T : C → H be a k-strict
pseudocontractive mapping with F (T ) 6= ∅ and f : C → C a generalized contraction mapping. Pick any
x0 ∈ C. Let {xn} be a sequence generated by

xn+1 = αnxn + βnf(xn) + γnPCS(snxn + (1− sn)xn+1), (4.6)

where S : C → H is defined by Sx = δx+ (1− δ)Tx,∀ x ∈ C, δ ∈ [k, 1). Let {αn}, {βn}, and {γn} be three
sequences in [0, 1] satisfying the following conditions:

(i) αn + βn + γn = 1;

(ii)
∑∞

n=0 βn =∞, limn→∞ βn = 0;

(iii) limn→∞ |αn+1 − αn| = 0 and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
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(iv) 0 < ε ≤ sn ≤ sn+1 < 1 for all n ≥ 0.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T , which is also the solution
of the variational inequality

〈(I − f)x∗, y − x∗〉 ≥ 0, ∀ y ∈ F (T ).

Proof. By Lemma 4.4 and 4.5, we have that PCS is nonexpansive and F (PCS) = F (T ). So we obtain the
desired results by Theorem 3.1 immediately.

5. Numerical Examples

Example 5.1. Let inner product < ·, · >: R3 × R3 → R be defined by

〈x,y〉 = x · y = x1 · y1 + x2 · y2 + x3 · y3,

and the usual norm ‖·‖ : R3 → R be defined by

‖x‖ =
√
x21 + y21 + z21 , ∀ x = (x1, x2, x3),y = (y1, y2, y3) ∈ R3.

Let T, f : R3 → R3 be defined by Tx = f(x) = 1
4x, ∀ x ∈ R. Let

αn =
1

4
+

1

4n
, βn =

1

4n
, γn =

3

4
+

1

2n
, sn =

1

4
, ∀n ∈ N.

Let {xn} be a sequence generated by (3.8). It is easy to see that F (T ) = {0}. Then {xn} converges
strongly to 0 by Corollary 3.3.

We can rewrite (3.8) as follows:

xn+1 =
19n+ 18

55n+ 6
xn. (5.1)

Choosing x1 = (1, 2, 3) in (5.1), we have the following numerical results in Figure 1 and Figure 2.

Figure 1
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Figure 2
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