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Abstract

In this paper, we introduce and analyze a hybrid extragradient algorithm for solving bilevel pseudomono-
tone variational inequalities with multiple solutions in a real Hilbert space. The proposed algorithm is based
on Korpelevich’s extragradient method, Mann’s iteration method, hybrid steepest-descent method, and vis-
cosity approximation method (including Halpern’s iteration method). Under mild conditions, the strong
convergence of the iteration sequences generated by the algorithm is derived. (©2016 All rights reserved.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, C' be a nonempty closed convex
subset of H and Pg be the metric projection of H onto C. If {z,} is a sequence in H, then we denote by
x, — x (respectively, z,, — x) the strong (respectively, weak) convergence of the sequence {z,} to x. Let
S : C — H be a nonlinear mapping on C. We denote by Fix(S) the set of fixed points of S and by R the
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set of all real numbers. A mapping S : C' — H is called L-Lipschitz continuous if there exists a constant
L > 0 such that
|82 — Syll < Lilz -yl va,yeC.

In particular, if L = 1, then S is called a nonexpansive mapping; if L € [0, 1) then S is called a contraction.
Let A: C — H be a nonlinear mapping on C. The classical variational inequality problem (VIP) is to

find x € C such that
(Az,y —x) >0 YyeC. (1.1)

The solution set of VIP ({1.1)) is denoted by VI(C, A).

The VIP (1.1) was first discussed by Lions [23]. There are many applications of VIP (1.1} in various
fields; see e.g., [0 [7, @, [32]. In 1976, Korpelevich [22] proposed an iterative algorithm for solving the VIP
in Euclidean space R™:

{ Yk = Po(rp — TAzy),
Th+1 = Pc<a?k — TAyk), Vk 2 0,
with 7 > 0 a given number, which is known as the extragradient method. The literature on the VIP is vast
and Korpelevich’s extragradient method has received great attention given by many authors, who improved
it in various ways; see e.g., [1l, 4-13], 17, 25] 33| [38] and references therein.

Let A: C — H and B : H — H be two mappings. Consider the following bilevel variational inequality

problem (BVIP):

Problem 1.1 (Problem AKM). We find z* € VI(C, B) such that

(Az*,x —2*) >0 Vz € VI(C, B), (1.2)
where VI(C, B) denotes the set of solutions of the VIP: Find y* € C such that
(By*,y—y") >0 VyeC. (1.3)

In particular, whenever H = R", the BVIP was recently studied by Anh, Kim and Muu [I].

Bilevel variational inequalities are special classes of quasivariational inequalities (see [2, 3], 14} 31]) and of
equilibrium with equilibrium constraints considered in [19} 24]. However it covers some classes of mathemat-
ical programs with equilibrium constraints (see [24]), bilevel minimization problems (see [20]), variational
inequalities (see [16, 21} 35, B7]), and complementarity problems.

In what follows, suppose that A and B satisfy the following conditions:

C1) B is pseudomonotone on H and A is S-strongly monotone on C;

(

(C2) A is Ly-Lipschitz continuous on C}
(C3) B is Ly-Lipschitz continuous on H;
(

C4) VI(C, B) # 0.

It is remarkable that under conditions (C1)-(C4), Problem AKM has only a solution because A is [3-
strongly monotone and L;-Lipschitz continuous on C. In 2012, Anh, Kim and Muu [I] introduced the
following extragradient iterative algorithm for solving the above bilevel variational inequality.

Algorithm 1.2 (Algorithm AKM). ([1, Algorithm 2.1]). Initialization. Choose u € R", z¢g € C, k =

0, 0<A< %ﬁ, positive sequences {0}, {\c}, {ow}, {8}, {7}, and {€} such that
1

o
lim 6, =0 € < 00
k—)ook 7;)16 y

o
o+ B+ =1k >0, Zak:OO,
k=0
. _ . _ 1 . _ 1
klggoak =0, klggloﬁk =£€(0,35), kILH;oAk =0, iy <4, VE>0.




L.-C. Ceng, Y.-C. Liou, C.-F. Wen, J. Nonlinear Sci. Appl. 9 (2016), 4052-4069 4054

Step 1. Compute
{ Y = Po(zr — A\ Bxy),
2z := Po(xr — M Buyg).

Step 2. Inmer loop 7 =0,1,.... Compute

Tko ‘= 2k — )\Azk,

Yr.j = Polzr,; — 0;Brr),

Trjr1 = i + Bjzr; + v Po(Tkj — 6;BYk,j)-

If |lzgj11 — Pyvice,B)Troll < € then set hy := ;11 and go to Step 3.
Otherwise, increase j by 1 and repeat the inner loop Step 2.

Step 3. Set xpi1 := axu + Brrr + Yhi. Then increase k by 1 and go to Step 1.

Theorem 1.3 (Theorem AKM). ([I, Theorem 3.1]). Suppose that the assumptions (C1)-(C4) hold. Then
the two sequences {xx} and {z,} in Algorithm AKM converges to the same point x* which is a solution of
the BVIP.

It is well known that an important approach to the BVIP is the Tikhonov regularization method. The
main idea of this method for monotone variational inequalities is to add a strongly monotone operator
depending on a parameter to the cost operator to obtain a parameterized strongly monotone variational
inequality, which is uniquely solved. By letting the parameter to a suitable limit, the sequence of the solutions
of the regularized problems will tend to the solution of the original problem. This result allows that the
Tikhonov regularization method can be used to solve bilevel monotone variational inequalities. Recently,
in [18-20] the Tikhonov method with generalized regularization operators and bifunctions is extended to
pseudomonotone variational inequalities and equilibrium problems, respectively. However in this case, the
regularized subproblems, may fail to be strongly monotone, even pseudomonotone, since the sum of a
strongly monotone operator and a pseudomonotone operator, in general, is not pseudomonotone. In our
opinion, the existing methods that require some monotonicity properties cannot be applied to solve the
regularized subvariational inequalities. Therefore the above Theorem AKM shows that the Algorithm AKM
(i.e., an extragradient-tyle algorithm) is an efficient approach for directly solving bilevel pseudomonotone
variational inequalities.

Motivated and inspired by the above facts, we introduce and analyze a hybrid extragradient algorithm
for solving bilevel pseudomonotone variational inequalities with multiple solutions in a real Hilbert space.
The proposed algorithm is based on Korpelevich’s extragradient method (see [22]), Mann’s iteration method,
hybrid steepest-descent method (see [30] 32]) and viscosity approximation method (see[33], 36]) (including
Halpern’s iteration method). Under some mild conditions, the strong convergence of the iteration sequences
generated by the proposed algorithm is derived. Our results improve and extend the corresponding results
announced by some others, e.g., Anh, Kim amd Muu [I, Theorem 3.1].

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product and norm are
denoted by (-,-) and || - ||, respectively. Let C be a nonempty closed convex subset of H. We write z, — =
to indicate that the sequence {z,} converges weakly to = and z,, — z to indicate that the sequence {z,}
converges strongly to z. Moreover, we use wy, () to denote the weak w-limit set of the sequence {z,}, that
is,

wy(xy) == {z € H : x,, — x for some subsequence {xy,} of {xy}}.

Recall that a mapping A : C' — H is called

(i) monotone if
(Az — Ay,x —y) >0 Vz,y e C;
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(ii) m-strongly monotone if there exists a constant n > 0 such that

(Az — Ay,z —y) > nllz —y|* Vz,y€C;

(iii) a-inverse-strongly monotone if there exists a constant o > 0 such that

(Av — Ay, —y) > af| Az — Ay||* Va,y € C.

It is obvious that if A is a-inverse-strongly monotone, then A is monotone and é—LipSChitZ continuous.
The metric (or nearest point) projection from H onto C' is the mapping Po : H — C which assigns to
each point z € H the unique point Pox € C satisfying the property

lv = Pea|| = inf [lz —y|| =: d(z,C)

Some important properties of projections are gathered in the following proposition.
Proposition 2.1 ([15]). For given x € H and z € C':
(i) z2=Pex & (x—2z,y—2)<0Vye(;
(i) 2= Pox & [ -zl < o —yll> — lly — 2| Vy € C;
(iti) (Pox — Poy,x —y) = ||Pow — Poyll? ¥y € H.

Consequently, P¢ is nonexpansive and monotone.
If A is an a-inverse-strongly monotone mapping of C into H, then it is obvious that A is é—Lipschitz
continuous. We also have that, for all u,v € C' and A > 0,

(I = AA)u — (I — AA)|]? < JJu — v]|* + A\ — 2)||Au — Av|?. (2.1)
So, if A < 2, then I — AA is a nonexpansive mapping from C to H.

Definition 2.2. A mapping T : H — H is said to be:

(a) nonexpansive, if
[Tz =Tyl < |z —yll Va,y € H;

(b) firmly nonexpansive, if 27" — I is nonexpansive, or equivalently, if 7" is 1-inverse strongly monotone
(1-ism),
<$ - vax - Ty) > ||TZL‘ - Ty”2 vay € H;

alternatively, T' is firmly nonexpansive if and only if T' can be expressed as

1

T==
2

(I+5),

where S : H — H is nonexpansive; projections are firmly nonexpansive.

It can be easily seen that if T' is nonexpansive, then I — T is monotone. It is also easy to see that
a projection Pg is 1-ism. Inverse strongly monotone (also referred to as co-coercive) operators have been
applied widely in solving practical problems in various fields.

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma 2.3 ([29]). Let X be a real inner product space. Then there holds the following inequality

lz +yl* < l|lz] + 2(y, @ +y) Yo,y € X.
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It is not hard to prove the following lemmas which will be used in the sequel. Here we omit their proofs.

Lemma 2.4. Let F': H — H be a k-Lipschitzian and n-strongly monotone operator with positive constants
k,m >0 andV : H — H be an l-Lipschitzian mapping. If un — vl > 0 for p,v > 0, then uF — vV is
(un — ~l)-strongly monotone, that is,

(WF = AV)a — (uF = V)y,x —y) = (un —l)llz —y|* Va,y € H.
Lemma 2.5. Let H be a real Hilbert space. Then the followings hold:
(@) llz —ylI> = llzl* = Iy — 2z — y,y) for all z,y € H;
(b) Az + gl = Al + allgl> = Malle — gl for all 2,y € H and A € [0,1] with A+ = 1;
(c) If {xx} is a sequence in H such that xy, — x, it follows that

lim sup [y — g2 = limsup |y — 2 + [}z — yl? ¥y € H.

k—o0 k—o0

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some notations. Let
A be a number in (0,1] and let x> 0. Associating with a nonexpansive mapping S : C' — H, we define the
mapping S* : C — H by
SAz := Sz — A\uF(Sz) VzeC,

where F' : H — H is an operator such that, for some positive constants x,n > 0, F' is x-Lipschitzian and
n-strongly monotone on H; that is, F' satisfies the conditions:

|Fz = Fy|| < wlle —yl| and (Fz - Fy,z —y) > nlz - y|?
for all xz,y € H.

Lemma 2.6 ([30], Lemma 3.1). S* is a contraction provided 0 < p < 2—2; that is,

172 = S*y|l < (1 = Ar)llz — gyl Va,y € C,

where T =1 — /1 — pu(2n — ux?) € (0,1].

Lemma 2.7 ([28], Demiclosedness principle). Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let S be a nonexpansive self-mapping on C with Fix(S) # 0. Then I — S is demiclosed. That is,
whenever {z,} is a sequence in C weakly converging to some x € C' and the sequence {(I — S)x,} strongly
converges to some vy, it follows that (I — S)x =vy. Here I is the identity operator of H.

Lemma 2.8 ([30], Lemma 2.1). Let {a,} be a sequence of nonnegative numbers satisfying the condition
An+1 < (1 - an)an + anﬂn Vn > 07
where {ay,} and {B,} are sequences of real numbers such that

(i) {an} C [0,1] and >°77 y an = 00, or equivalently,

ﬁ(l — ay) = lim ﬁ(l —a) =0
n=0 n%ookzo

(ii) limsup,, o Bn <0, 0or > 07 lonfBn| < 0.

Then, lim,,_, a, = 0.
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3. Iterative algorithm and convergence criteria

Let C be a nonempty closed convex subset of a real Hilbert space H. Throughout this section, we always
assume the following:

e I': H — H is a k-Lipschitzian and n-strongly monotone operator with positive constants x,n > 0,
and V : H — H is an [-Lipschitzian mapping;

. 0<u<2—727and0§7l<7'with7':1—\/1—p(2n—u/£2);

K

e A:C — H and B: H — H are two mappings such that the hypotheses (H1)-(H4) hold:

H1

) B is pseudomonotone on H;

H2) A is -inverse-strongly monotone on C;
)
)

H3
H4) VI(C, B) # 0.

(
(
( B is L-Lipschitz continuous on H;

(

Next, we introduce and consider the following BVIP, which may have multiple solutions.

Problem 3.1. We find z* € VI(C, B) such that
(Az*,z —2*) >0 Vz e VI(C,B), (3.1)
where VI(C, B) denotes the set of solutions of the VIP: Find y* € C such that
(By*,y—vy*) >0 VyeC. (3.2)

Algorithm 3.2. Initialization. Choose uw € H, xg € H, k = 0, 0 < A < 203, positive sequences
{0}, {Aets {ow}, {8}, { e}, and {&} such that

oo
lim 6 =0 €,
kirgok ,;}6k<00,
- oo
Qg+ B+ =1k >0, Y oy = o0,
k=0

kli_g)loak =0, kli_g}loﬂk =¢€(0,3], kli_)ngo)\k =0, \y < 1 VE>0.

o Step 1.
v = apYVag + e + (1 — ) — appF) g,
yr := Po(vx — A Buy),
2 = Pc(’l)k — )\kByk).

o Step 2. Inner loop j =0,1,.... Compute

Tko = 2k — )\Azk,

Yr,j = Po(wg,; — 0jBry ),

Thj1 7= Th0 + BiTr; + v Po(n; — 6;BYk,;)-

If |lzgj11 — Pyice,B)Troll < € then set hy := ;11 and go to Step 3.
Otherwise, increase j by 1 and repeat the inner loop Step 2.

e Step 3. Set xp11 = agu + BrTi + Yxhi- Then increase k by 1 and go to Step 1.

Let C be a nonempty closed convex subset of H, B : C'— H be monotone and L-Lipschitz continuous
on C, and S : C' — C be a nonexpansive mapping such that VI(C, B) NFix(S) # (). Let the sequences {x,}
and {yn} be generated by
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xg € C chosen arbitrarily,
yr = Po (v, — dpBxy),
Th4l = QT + Brxy + ’ykSPc(:Ek — 5kByk) Vk >0,

where {ag}, {8k}, {7}, and {dx} satisfy the following conditions:
0 >0 Vk >0, limd, =0,
k—o0
o+ B+ =1 Yk =0,
Zak =00, limag =0,
k—o0
k=0

0 < liminff, < limsupf, < 1.
L k—o0 k—o0

Under these conditions, Yao, Liou and Yao [34] proved that the sequences {z}} and {yx} converge to the

same point PVI(C, B)NFix(5)%0-
Applying these iteration sequences with S being the identity mapping, we have the following lemma.

Lemma 3.3. Suppose that the hypotheses (H1)-(H4) hold. Then the sequence {x*7} generated by Algorithm
converges strongly to the point Pyyc p)(zk — AAzg) as j — oo. Consequently, we have

||hk — PVI(C’,B) (Zk - )\Azk)H <& Vk>0.

In the sequel we always suppose that the inner loop in the Algorithm [3.2] terminates after a finite number
of steps. This assumption, by Lemma [3.3] is satisfied when B is monotone on C.

Lemma 3.4. Let sequences {vi},{yr} and {zi} be generated by Algorithm B be L-Lipschitzian and
pseudomonotone on H, and p € VI(C, B). Then, we have

Ize = I < llog = 2l = (1 = ML) Jo, = wgl® = (1 = ML) [lyn. — 2| (33)
Proof. Let p € VI(C, B). That means
(Bp,x —p) >0 VzxeC.
Then, for each A\p > 0, p satisfies the fixed point equation
p = Pc(p— \eBp).
Since B is pseudomonotone on H and p € VI(C, B), we have
(Bp,yk —p) 20 = (Byg,yx —p) = 0.
Then, applying Proposition (ii) with v — A\xByy and p, we obtain

2zt — pII* < llvw — M Byr — plI> = [lox — MeByr — 2|?
= |lok — plI* = 2Xe(Byg, v — p) + Al Bywl* — o — 2|2
— Xl Bywll* + 2\ By, vk, — 2x)
= llor = plI> = llvk — z&ll* + 22 (Byr, p — z1)
= llox = plI* = vk — 2 lI* + 2\ (B, p — Yx) + 22 (Byg, i — 21)
< vk = plI* = llvk — 2xl1* + 27\ ( By, . — 2k)-

Applying Proposition (i) with vy, — A\ Bug and zi, we also have

(v — Mg Bug — yg, 21 — yk) < 0.
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Combining this inequality with (3.4]) and observing that B is L-Lipschitz continuous on H, we obtain

lze — 2l < lloe — pII> = [I(ve — wr) + (e — 212 + 22 (Byr, yr — k)
= llve = pII> = llvw — well® = e — 21> = 2{vk — yi, Yo — 21)
+ 2By, Yk — 2k)
= |lvk — plI* = Jvk — vill* = llyk — 21> — 2{vk — M BYk — Yks Y — 2k
= lox — pII* = llve — wll® = llyw — 2ell* — 2ok — A Bok — yi, Y — 2k)
+ 2\ (Bvg — Byk, 2x — Yr) (3.5)
< ok = plI* = [lve — yell® = llyk — z&ll? + 2Xe(Bvk — Byk, 2k — yk)
<ok = plI* = llve — well® = llye — 2&l1> + 2A\k /| Buk, — Byl 26 — i
< ok = plI* = llve — yell® = llve — zell® + 226 Lok — yrllll 26 — vl
< vk = plI* = lloe = wrll® = llyr — 2&l1? + M Lllox — vell® + 26 — wrll?)
<ok = plI? = (1 = ML) llog — yll? = (1 = ML) |y — 2]

This completes the proof. O

Lemma 3.5. Suppose that the hypotheses (H1)-(H4) hold and that VI(VI(C, B), A) # (). Then the sequence
{zr} generated by Algorithm [3.2] is bounded.

Proof. Since limy_,o0 o, = 0, limg_yo0 B = & € (0, %] and ag + B + 7 = 1, we get

lim (1 — ) = lim (o + Br) =¢&.
k—o0 k—o0

Hence, we may assume, without loss of generality, that 0 < 13’% <1 for all £ > 0.
Take an arbitrary p € VI(VI(C, B), A). Then we have

(Ap,x —p) >0 Vz e VI(C, B),
which implies
p = Pyic,p)(p — Ap).
Then, it follows from (2.1]), Proposition (iii), B-inverse strong monotonicity of A, and 0 < A < 2/ that
[

I Pyicc,p) (2 — AMzi) — plI> = |Pyie,B) (2 — AMzi) — Pyie,p)(p — AAp)
< 2k — Mz, — p + MAp|?

< Iz — oI + A\ = 28) [ Az, — Ap|? (36)
< lzk — pl*
Furthermore, from Algorithm and Lemma 2.6, we have
lox = pll = lleyVay + yexr + (1 — )T — agpF)ay — p|
= lax(vWar — pF'p) +yi(zr —p) + (1 — )] — agpl)zy,
— (T =) — g F)p|
< apy|Var = Vpll + arl|(vV = pF)pll + vellzk — pll
+ 11 = ve) I — agpF )z — (1 — )L — cawpF)p||
< agpylllwg = pll + arl|(VV — pF)pll + vellzw — pl|
+ (1 =)l = 2L Fay, — (I — 22 F)p||
< apylllzk — pll + axll (Y — wF)pll + illz — (37)

+ (1 =) = 2572k — pll

apYll|zg — pll + arl|(YV — uF)pl| + villex — pl|
+ (1 — v — ag7)|zs — p|

= (1 = ag(r =) ||k — pll + cwl|(WV — wF)p|

= (1= an(r — )l — pll + o (7 — ) 10
—ul
< max{|ay, — p||, L2y,
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Utilizing (3.5)-(3.7) and the assumptions 0 < XA < 283, Y 7, & < oo we obtain that

Tkt — pll = |lowu + Brxr + yihi — p||
< arflu = pll + Bellw — pll + /i — pll
< agllu = pll + Bellzr — pll + vxllhe — Pyre,p) (e — Az ||
+ el Pyio,B) (2 — AAzi,) — p|
< agllu —pl| + Brllzk — pll + Yrér + Villzk — Pl
< agllu = pll + Brllzx — pll + ek + Yellvr — pl|
V—uF)
< allu — pll + Billzr — pll + yrer + v max{ ||z, — p||, L=y
V—uF)
< apllu— pl + (Bk + ) max{ |y, — p||, L=y 4 7
V—uF)
= agllu — pl| + (1 — o) max{ ||z, — p|, =2y 4+ 7
V—uF)
< max{||zx — pll, [lu - pll, M}m
V—uF)
< max{lzo — p||, lu — p||, L2=2020 4 Z
V—uF)
< max{||zo — p||, u — p||, L2 =2l p”}+zek
< 00,
which shows that the sequence {x}} is bounded, and so are the sequences {vg}, {yr}, and {z;}. O

Lemma 3.6 ([27]). Let {x} and {yx} be two bounded sequences in a real Banach space X. Let {Sx} be a
sequence in [0, 1]. Suppose that

0< hm 1nf6k < limsupf, < 1,
k—o0

Tpt1 = (1 — Br)yk + Brxk,
lim sup(||yx+1 — vkl — |Tes1 — 2x]) <0
k—oco

Then, Timg-oc [l — 24]] = 0.

Lemma 3.7. Suppose that the hypotheses (H1)-(H4) and that the sequences {vi},{yx}, and {z;} are gen-
erated by Algorithm[3.2) Then, we have

121 = 26l < (L + A1 L) [visr — vkll + Akl Bkl + o1 (1 Bvksa | + | Byia || + [[ Bugll)- (38)
Moreover
lim sz+1 — ZkH = lim H'UkJrl - ka =0.
k—o00 k—o0

Proof. Since B is L-Lipschitzian on H, for each x,y € H, we have

I(I = ArB)x — (I = M B)yl| = [l —y — A(Bz — By)|
< |z =yl + Al Bz — By||
< (T4 ML)z =yl

Combining this inequality with Proposition (iii), we have

= |Pc(vks1 — M1 BYrt1) — Po(ve — Ak Byy) ||
< [[(Vkg1 — Akt1BYrt1) — vk + A Byg||
= [[(vk+1 — Ak1BR+1) — (V& — Ap1Bog)
+ M1 (Bvg41 — Byry1 — Bug) + M Byg|
< (1 + M D) [Jvksr — vkl + Al By |
+ A1 (| Bogsa || + [ Byg+ll + || Bul]).-

This is the desired result (3.8)). O

[2k41 — 22l
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Now we denote xp11 = (1 — Bg)wk + Brrk. Then, we have

e 1UtVe+1PE+1  aputihs

Wiyl — W = akifﬁkﬂ - 1—%“ e (3.10)
= (1—5k+1 - 1—12% )u + (1—5k+1 o )hk + 1 —Br+1 (k1 — Tig).

Note that, for 0 < A\ < 243, we have from (2.1]) that

I1Pvi(c, By (zht1 — AMzi1) — Pyie,) (2 — Mz ||°
< [[(zhe1 — Azpy1) — (2 — Az |2
< zrrs — 2zl + A = 28) [ Azgr — Azl
< lzrg1 — zl*.
Then, by using (3.10) we get
w1 — will —[|e41 — ﬂfk;H
«
<= a | hger1 — Bl = kg1 — 2
< f’;{il %“ - 1 |(||PV1 C,B)(Zk — AMz)|| + &)

+ 1= 5k+1 H VI(C B)(Zk+1 AAzp1) — PVI(C,B) (zr — Az ||
+ 1255 (1Pvie,py (1 — AMzig1) — b |

+ || Py CB)(Zk — ANAzp) — hgll) — ”37k+1 — x|

< |25 e — 25| (| Pyae,y (2r — AAzp) || + &)

T 11%211 ”Zk“ zl + = 5k+1 (€1 + &) — |opr1 — 2k

Hence,
[wi+1 — wil| —||1‘1ch+1 - iE’k|| ,
< =h T — 25 | ([Pvio,B) (2 — AMzk)|| + &)
Vk+1

1+ L
+ %HH gl + 25 (€1 + &)

+ 1250 (M1 (1 Borsa || + [ By || + | Bukll) + Ael[ By )

— | zp41 — IkH e
<l i — P tes — Marl] + 2

+ W”UM—I - Uk|| —[|Zry1 — @il + 17%:1  (Erv1 + &)

+ 1zﬁ+kirl A1 (1 Buggall + [ Byl + [ Bogl]) + Arl Byl)-

On the other hand, we define w;, = “4—% which implies that v, = (1 — )Wy + k2. Simple calculations
h that o
show tha

~ ~ o Vk41Ve4+1%k+1 Ve —VeTk
Wg1 — W = 1— -

Vk+1 —Yk
_ a1 Ve (e ) =i pF) ey oy Ve +((L—yp) I —oppF)zy
o 1=Yk+1 1= o
— k+1 _ k _ (672 _ k+1 F
=t YV T Vg + fL‘k+1 T+ poy i E e — = T

= 1o (W — MF$k+1) + 25 (uFap — YVag) + Thgr — .

So, it follows that

[ Wp41 — ]|
< To (Ve + laFaial) + 72 (laFal + V) + e o
T e (3.12)
Oft1 Qg
< ks — @l + (2 )Mo’

=1 1—m
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where supyso{l|uFor|| + [[vVarl|} < Mo for some My > 0. In the meantime, from vy = (1 — )W + Y24,
together with (3.12]), we get
k1 — vkl = IVe12841 + (1 = Y1) Wr41 — (Vexk + (1 — 75) W) |
= [|(1 = Yot 1) (Wht1 — W) — (Vo1 — Y)Wk
+ Vet 1(Thr1 — @) + (Vo1 — )T

< (L= ) D1 = Dl + Yt llwnsr — @ill + [virn = welllon — Dl (3.13)
< (U = ) llwnar — zill + (=50 + 7250 ) Mo

+ Vi1l Thg1 — zell + |’Yk:+1 Vil [|ex — |
« ~
< g1 — opll + (20 + 12 A )Mo + [k — ellloe — -

1=vk+1
Combining (3.11]) and ( we have

|we+1 — wgl] *||$l&+1 - l”k|| )
< lean e 2 |(I1 Py CB)(Zk — Mz || + &)
1+A L
+%kfr”ka+; —anl (2 OM)
+ k1 = elllze — Dl = lors — 2l + =257 (s + &)

+ 17%:11 (M1 (| Bogsr | + || Byggi || + [[Bokll) + el Bywll) (3.14)
= Vet — (| Pyie,m) (25 — AMzi)|| + &)
1+A L ~
+ vkﬂl(_(ﬁ;lu i)[(lf’;ﬁl + = )Mo T tr — Yol — @]

O~ Dlloen - ol + 25 (G + )
+ 17255 (A1 ([ Bogsa | + 1 Byea | + [1Bugll) + Al Bygl)-

From the assumptions oy + Ok + 7 = 1, limg_o0 B = £ € (0, %], limy, oo 0 = 0 and limy_,oo A, = 0, it
follows that limg_,e0 |[Ye+1 — Y&| = 0,

1+ A L
i1 = lim |-k (=0 and Jim Yer1(L+ M l)
hvoo 1 — By 1— 5 koo 1= Bryr  1— Bk k—oo 1 —[Pky1

Combining these equalities with (3.14]), we obtain from Lemma and limy_,o, € = 0 that

limsup(flwg+1 — will — [[2k+1 — z]) < 0.
k—o0

Now applying Lemma we have
lim |Jwg — x| = 0.
k—o0

Hence by zp11 = (1 — Bg)wk + Brxk, we deduce that

lim ||zg41 — 2kl = lim (1 — Bg)||wk — zx|| =0, (3.15)
k—00 k—o00

which together with limg_, A = 0, (3.8]) and (3.13)), implies that
lim [|vg41 — vkl =0 and  lm ||zg41 — 2k = 0. (3.16)
k—o0 k—oo
Lemma 3.8. Suppose that the hypotheses (H1)-(H4) hold and that VI(VI(C, B),A) # 0. Then for any
p € VI(VI(C, B), A) we have

lzes1 — 2l < awllu —pl* + Brllzk — pII* + vellok — plI* + 2vkérllz — pll (3.17)
+ e — w1 = ML) (o — well* + [lyx — 2&l?)-

Moreover,

Jim || Pyie,p) (2 — AeAzi) — 2] = 0,
Jim ([ Pyye,) (ke — AeAyr) = vl = 0.
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Proof. By Lemma [3.3] we know that

‘lim Tk,j = PVI(C,B)(Zk — /\Azk),
J—00

which together with 0 < A < 28, inequality (3.3]), limg_,~ S = & € (0, %], and p € VI(VI(C, B), A), implies
that

zkt1 — plI* = llawu + Bezk + ki — p||?
< agp|lu — plI* + Brllzk — plI* + vellhe — pl|
< Otk”u _pH2 + ﬁkak - p”2 + 7k(‘|PVI(C,B)(Zk - )\Azk) —pH + Ek)2
= agllu — pl* + Bellxr — pl?
+ ([ Pyicc, ) (21 — AMzi) — Pyie,p)(p — Mp)|| + &)?
< agllu = pl* + Brllzr — plI* + e (ll(zx — Azr) — (p — AMp)|| + &)° (3.18)
< agllu — plI? + Brllzk — plI* + vk (llzr — pll + &)? '

agllu —pl* + Bellze — plI* + wllze — plI? + 2kl 2 — pll + Wrér
< agllu = plI* + Brllzw — plI* + 2kérllzr — pll + rér

+ v (lok = plI* = (1 = ML) vk — yel* = (1 = ML)y — 2]1?)
= agllu = plI* + Beller — plI* +velloe — plI* + 2vnerllzr — pll + Ve,
— (1 = ML) ([Joe — yil® + luk — 2l1?)-

On the other hand, from Algorithm [3.2] we have

vk = pII* = [y Var + ek + (1 — ) — agpF )y — pl|?
= [lax(WVay — pFp) + vi(zr — p) + (1 = ) — cgp )y,
— (1 =) — awpF)p||?
= |laxy(Vag — Vp) + ax(vyVp — pFp) + v (@ — p)
+ (1= )] — appF) g, — (1= )] — appF)p|?
< lay(Vey — Vip) + (@i — p) + (1 — )L — appF )y,
— (1 =) I — axpF)p* + 203 (VV — pF)p, v — p)
< ||V — V| + villzk — pll + (1 = ve)I — g F )y,
— (1 =) = appF)pl]? + 200 ((yV — pF)p, vy — p) (3.19)
< [owylllwy — pll + yillzk — pll + (1 = v — ) |z — pl|]?
+ 204((vV — uF)p, vi, — p)
= [T Ly, — pl| + ek — pll + (1 — 5 — ) |Jzx, — p||]?
+205{(yV = uF)p, vk — p)
< o |z — pI? + yllan — plI? + (1 — 9 — axr)l|zy — plI?
+ 2ak<(72V —éUF)P, VR — D)
= (1 — o == |z — pl|? + 200 ((4V — pF)p, vk — p)
< o — plI? + 204 {(vV — puF)p, vg — p).

Combining (3.18) and (3.19)), we get

zk1 = plI* < arllu—pl* + Brllzk — plI* + ellve — pII* + 2kékl|zx — p
+ s — (1 = ML) (lor — well® + llyk — 21l”)
< agllu = p|I* + Bellzx — plI* + lllax — plI* + 2a1((7V = uF)p, v — p)]
+ 2kl — pll + e — (1 = ML) (loe — well® + llue — 2ll)
< agllu—pl* + [lzx — plI?> + 20| (vV = pF)pl|lvx — pll + 2vkéxllzi — pll
+ ks — (1 = ML) (lor — well® + llyr — 201%),
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which immediately yields

Y1 = XeL)(lve — well® + llye — 21l?)
< agllu = plI> + [|zx — plI* = lzks1 — pII” + 20| (VV — wF)pll||v — p||

+ 2vyk€xllzk — p|| + 'ykéi (3.20)
< agllu = pl? + ok = zegall(lzr — pll + [2r41 = pl) + 206 [[(YV = wF)pll vk = pll

+ 2vierllze — Pl + Yrér-

Since ax + B + % = 1, ax — 0, B — & € (0, %], € — 0, Az — 0 and ||zx — 241 — O, from the
boundedness of {xy}, {vx}, and {2} we obtain

lim [lop —yell =0 and  lim [jyx — 2| = 0.
k—oo k—o00
In addition, it is clear from a; — 0 that as k — oo,

lve — zill = |l Var +vizr + (1 — 1) — cgpF )y, — x|
= |lapx(YVxr — pFxg)|| — 0.

That is,
lim ||vg — x| = 0. (3.21)
k—o0

Taking into consideration that ||vy — 2zl < [lvk — yll + llyr — 2kl and ||zx — 21l < |2k — vl + lok — 2kl

we deduce from (3.20) and (3.21)) that

lim [|vpy — 2|l =0 and lim ||z — x| = 0. (3.22)
k—o0 k—o0

It is clear from (3.20]) and (3.21)) that
dim [y, — gyl = 0. (3.23)

Since A is [-inverse-strongly monotone, it is known from (2.1 that I — AA is a nonexpansive mapping for
0 < A <23. Again by Proposition (iii) and Lemma we have

I Pvice,y (e — Myr) — Tpp|

< [[Pvic,B)(yx — AMyk) — Pyio,B)(2k — Az ||
+ | Pyicc,B)(2k — AAzi) — g |

<|[[(I = AA)yx — (I = AA)zi|| + | Pyyo,) (26 — AA2k) — g1 |

< lyr — 2kl + axl| Pyro,B) (26 — AAzi,) — ul|
+ Bl Pyvicc,By (zr — AMAzi) — ai|| + ér

< lyk — 2kl + axl| Pyio, ) (2k — AAzk) — ul| + € (3.24)
+ Bl Pyie,By(zk — AMzi) — Pyre,p) (yx — My || '
+ Bl Pvie,By(yk — ANyk) — ykll + Brllyr — wll

< lyk — 2kl + x| Pyyo,B) (2k — AAzi) — ul|
+ € + Bill(I — AA)zk — (I — AA)yg||
+ Brll Pyic,By(yx — Myr) — yell + Brllyx — zk|

< lyx — 21l + arl| Pyic,py (26 — AMAzp) — ul| + &
+ Brllze — el + Brll Pvie, By (e — AMyr) — vrll + Brllyr — 2l

Consequently, from (3.24)), we have

| Pyice,By (e — Muyr) — urll < [[Pvic,B)(ux — AMyk) — Tr1ll + |2p1 — zell + [|2x — yrl]
< lyr — 21l + arl| Pyic,py (26 — AMzp) — ul| + &
+ Brllzk — yrll + Brll Pvie,sy(yx — Muyr) — yrll + Bellye — 2l
+ |71 — 2xll + |2k — yell
= (L4 Bi)llyr — 2l + arll Pyro, ) (2 — AAzy) — ul| + &
+ Bl Pvie,By (ke — AMuyk) — vl + (1 + Be)llyk — el + |2k+1 — 2k,
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which immediately yields

) ]
1Pvie,m) (k= Myr) — vill < 1255 llvr — 2kll + 1251 Pyio,my (25 — AMAzi) — ull + 125

+ T2 Ny — el + 25 lergr — @l

Since ag+Br+vk =1, ax = 0, By = £ € (0,3], & — 0, |lyk—zxl| = 0, |lys—2x]| = 0, and ||zp41—2x]| — 0

(due to (3.15)), (3.20) and (3.23))), we conclude that
lim || Pyyc,)(yr — AMyx) — yll = 0. (3.25)
k—o00

From ([2.1)) and Proposition (iii), it follows that

| Pvice,sy (2 — AMzi) — zill < |Pvie,p) (2 — AMzr) — Pyie,B)(yx — Ay ||
+ | Pyice,B) (ke — Myk) — el + [k — 2|
< (I = AA)z — (I = AA)yi|l + |1 Pvie,B) (k — AMyk) — yell + [lyk — 2k
< lzr = wrll + [[Pvice,5)(wr — Myr) — yell + lyr — 2|l
< [|Pyie,B) (e — AMyr) — vrll + 2]y — 2i|l-

Utilizing the last inequality we obtain from (3.20]) and (3.25]) that

| Pyic,)(2r — AAzi) — 21| = 0. (3.26)

lim
k—o0
This completes the proof. O
Theorem 3.9. Suppose that the hypotheses (H1)-(H4) hold and that VI(VI(C, B), A) # 0. Then the two

sequences {zy} and {z} in Algorithm[3.2] converge strongly to the same point * € VI(VI(C, B), A) provided
|xks1 — x| + € = o(ak), which is a unique solution to the VIP

<(I + EMF - E'YV)'I‘* —Uu,p— $*> >0 Vp € VI(VI(C>B)7 A)v (327)
where £ =1—¢ € [3,1).

Proof. Note that Lemma shows the boundedness of {xy}. Since H is reflexive, there is at least a weak
convergence subsequence of {zy}. First, let us assert that wy,(xr) C VI(VI(C, B), A). As a matter of fact,
take an arbitrary w € VI(VI(C, B), A). Then there exists a subsequence {zy,} of {z}} such that z, — w.
From (3.23)), we know that y;, — w. It is easy to see that the mapping Pyyc,py(I=AA): C = VI(C,B) C C
is nonexpansive because Pyy(c, p) is nonexpansive and I —\A is nonexpansive for S-inverse-strongly monotone

mapping A with 0 < A < 28. So, utilizing Lemma and (3.25]), we obtain
w = Pyyc,p)(w — AMw),

which leads to w € VI(VI(C, B), A). Thus, the assertion is valid.
Also, note that 0 <yl < 7 and

pn >71 & pn > 1= /11— p(2n — ps?)
& 1= u2n—pr®) > 1—
& 1= 2un+ p?k? > 1 —2um + pin?
o k2>
& K2

It is clear that
(uF = yV)x = (uF = yV)y, & —y) > (un — )|z — y[|* Va,y € H.
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Hence, it follows from 0 < vl < 7 < pn that uF —~V is (un — vl)-strongly monotone. In the meantime, it is
clear that uF —~V is Lipschitzian with constant ux + I > 0. We define the mapping I' : H — H as below

1
I'e=(pF —~V)x + g(x—u) Vr € H,

where v € H and £ =1 —€ € [%, 1). Then it is easy to see that I" is (un — vl + %—)—strongly monotone and
Lipschitzian with constant ux + vl + %— > 0. Thus, there exists a unique solution z* € VI(VI(C, B), A) to
the VIP

(uF —yV)x* + 2(m —u),p—2*) >0 Vpe VI(VI(C,B),A). (3.28)

Next, let us show that 2, — z*. Indeed, take an arbitrary p € VI(VI(C, B), A). In terms of Algorithm3.2]
and Lemma we conclude from , , and the (S-inverse-strong monotonicity of A with A < 23,
that

241 — Pl

= ||agu + Brxr + by — p||?

< 1Bk — p) + e (he =PI + 200 (u — p, 241 — p)

< Brllze — plI* + llhe — plI* + 20 (u — p, 2p41 — p)

< Brllze — plI* + (| Pyie,p) (zk — AMzi) — pll + €)* + 2ax(u — p, 2k41 — p)

= Bellze — plI* + (| Pyviie,p) (2 — AAzi) — Pyyo,y(p — Ap)|| + &)? (3.29)
+ 204, (u — p, T 11 — p)

< Brllk = plI” + (I = AA)z, — (I = AA)p|| + &)* + 20, (u — p, Tx11 — )

< Brllzr = plI* + wllz — pll + &) + 20k (u — p, 211 — p)

= Brllzx — plI* + wllzk — pI* + e (2llzx — pl| + &) + 2an(u — p, x40 — p)

< 5k”$k —PH2 + Yilloe — plI? + ker (2llzk — pll + &) + 205 (u — p, Tps1 — p).

Combining (3.19)) and ( , we get

|2r+1 —P||2

< Billze — plI* + vellvw —p||2 +7k€k(2\|2k —pl| + &) + 2o, {u — p, 11 — p)

< Brllee = plI2 + wl(1 — a9 g — p||2 + 205((YV — uF)p, vg — p)]
+ ek (22K — pH + ek) + 204k<u — D, Tht1 — D)

= Bk + W — e —- (7 r ek —pll? + 2076 {(YV — nF)p, vk, — Tpy1) (3.30)
+ ek (22 p|| &) + 20097V — uF)p + 5 (u—=p), x40 —p) '
<(1- ak%* Mk — plI? + 2axl|(7V — wF)pll(lox — k|l + [|ox — 2p41l])

+ k(22 — pll + &) + 2007((VV = uF)p + 5-(u = p), Tp41 — D)
< llox = plI? + 20| (YV = wE)pll(lok — @il + llox — 2pesal])
+ ek (2l 2k — pll + &) + 2007k (VY = uF)p + 5 (u = p), 41 — D),

which immediately yields

(uF =AV)p+ 5-(p — ), 241 — p)

< mag e Sl — i — Pl + LIV — wF)pll o el + s — i )
+ 5 (2|2 — pll + &) (3.31)
< —“xga:s,:l” (k= pll + lznsr = pI) + 1V = wF)pl ok — 2]l + ek — zaga )

+ 52 (2l|zk — pll + €)-

Since for any w € ww(zk) there exists a subsequence {zj,} of {zx} such that zy, — w, we deduce from

(3-21), - - —> 2, and ||zk41 — x| + € = o(ay) that
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(WF =AV)p+ Hp —w),w —p) = lm (uF = 4V)p+ 5-(p — u), 2k, —p)
< 11msup<(uF 'yV)p+ ( —u), Tk — P)

= limsup((uF —~V)p + %,c(p — ), Tpy1 — D)
k—oo 3 H
< tim sup L (e — ] + [zt — )
%

+ limsupill(’VV — wE)pll (v — il + [k — 2t [)
+hmsup (224 — pl] + &)
=0.
So, it follows that
1
(uF —~V)p+ E-(p —u),p—w) >0 Vpe VI(VI(C,B),A).

Since w € wy(zx) C VI(VI(C, B), A), by Minty’s lemma [7] we have
1
(WF = yV)w + g—(w —u),p—w) >0 Vpe VIVI2,B),A);

that is, w is a solution of VIP (3.28). Utilizing the uniqueness of solutions of VIP , we get w = z¥,
which hence implies that wy,(zr) = {z*}. Therefore, it is known that {x;} converges weakly to the unique
solution z* € VI(VI(C, B), A) of VIP (3.28).

Finally, let us show that ||z — 2*|| — 0 as k — oco. Indeed, utilizing with p = z*, we have

lzren — 22 < (1= om0 g — 2*|2 + 20| (7 — pF)z? Ihow = il + ok = e )
+ @l — o[ + &) + 200 (Y — pF)e* + o (u— a%), e — ¥)
= (1 — o, %wx — )% + (s ) (3.32)
x = 2| (W — pF)a | (Jog — 2kl + 2k — @)
+ 8 (2|2 — 27| + &) + (Y — pF)a* + 2k (u— 2%), 21 — 2],

Since ak =0, ap+ Bt + 7% = 1, Zzooozk =00, fr — & € (0, %], e = o(ay), and xp — z*, from (3.15))
and ( we conclude that Y ;2 o vk (Vl) = 0o and

lim sup{ 2=z (21 (VV = pF)2* [ (lok — 2all + Il — zesal])
k00 [CORRLT
+ £ (2llak — 2" + &) + 2((7V — pF)z* + vik(u — %), k41 — 2¥)]} <0.

Therefore, applying Lemma 2.8 to (3.32)), we obtain that ||z, — z*|| — 0 as k — co. Utilizing (3.23)) we also
obtain that ||z — z*|| — 0 as k — oco. This completes the proof. O

Remark 3.10. Theorem extends, improves, supplements, and develops Anh, Kim and Muu [I, Theorem
3.1] in the following aspects.

(i) The problem of finding a solution z* of Problem (BVIP) in Theorem [3.9|is very different from the
problem of finding a solution x* of Problem AKM because our BVIP generalizes Anh, Kim and Muu’s
BVIP in [I, Theorem 3.1] from the space R™ to the general Hilbert space, and extends Anh, Kim and
Muu’s BVIP with only a solution to the setting of the BVIP with multiple solutions.

(ii) The Algorithm 2.1 in [1] is extended to develop Algorithm [3.2] by virtue of Mann’s iteration method,
hybrid steepest descent method and viscosity approximation method. The Algorithm [3.2] is more
advantageous and more flexible than Algorithm 2.1 in [I] because it involves solving the BVIP with
multiple solutions, that is, Problem [3.1}
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(iii) The proof of our Theorem [3.9|is very different from the proof of Anh, Kim and Muu’s Theorem 3.1 [I]
because the proof of our Theorem [3.9] makes use of the nonexpansivity of the combination mapping
I — \A for inverse-strongly monotone mapping A (see inequality (2.1])), the contraction coefficient
estimate for the composite mapping S* (see Lemma, the demiclosedness principle for nonexpansive
mappings (see Lemma [2.7]), the convergence criteria for nonnegative real sequences (see Lemma [2.8)),
and Suzuki’s lemma (see Lemma .
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