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Abstract

Fixed point results for several multi-valued nonlinear F -contractions without the Hausdorff metric are
given and three examples are included. The results obtained in this paper differ from the corresponding
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1. Introduction and preliminaries

Throughout this article, let R = (−∞,+∞), R+ = [0,+∞), N0 = {0} ∪ N, where N denotes the set
of all positive integers. Let (X, d) be a metric space, CL(X), CB(X) and C(X) denote the families of all
nonempty closed, all nonempty bounded closed and all nonempty compact subsets of X, respectively. For
T : X → CL(X), A,B ∈ X and x ∈ X, put

d(x,B) = inf{d(x, y), y ∈ B}, f(x) = d(x, Tx),

H(A,B) =

{
max

{
supx∈A d(x,B), supy∈B d(y,A)

}
, if the maximum exists,

+∞, otherwise.
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Such a mapping H is called a generalized Hausdorff metric induced by d in CL(X). A sequence
{xn}n∈N0 ⊆ X is said to be an orbit of T if xn+1 ∈ Txn for each n ∈ N0. A function h : X → R+ is said to
be T -orbitally lower semi-continuous at z ∈ X if h(z) ≤ lim infn→∞ h(xn) for any orbit {xn}n∈N0 ⊆ X of T
with limn→∞ xn = z.

It is well-known that the Banach contraction principle has a lot of generalizations and applications, (see
[2, 6, 7, 9, 10, 12, 17–19, 25]). In 1969, Nadler [19] obtained the following fixed point theorem for the
multi-valued contraction mappings.

Theorem 1.1 ([19]). Let (X, d) be a complete metric space and T a mapping from X to CB(X) such that

H(Tx, Ty) ≤ cd(x, y), ∀x, y ∈ X, (1.1)

where c ∈ [0, 1) is a constant. Then T has a fixed point.

Later, many researchers generalized Theorem 1.1 in various directions (see [1, 3–6, 9, 10, 13, 14, 16, 18–
24]). In 1972, Reich [22] extended Theorem 1.1 and proved the following fixed point theorem for the
multi-valued contraction mapping which maps points into compact sets.

Theorem 1.2 ([22]). Let (X, d) be a complete metric space and T : X → C(X) satisfies

H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y), ∀x, y ∈ X, (1.2)

where
ϕ : (0,+∞)→ [0, 1) with lim sup

r→t+
ϕ(r) < 1, ∀t ∈ (0,+∞). (1.3)

Then T has a fixed point.

In 1989, Mizoguchi and Takahashi [18] responded to the conjecture which has been asked whether Reich’s
theorem [22] can be extended to multi-valued mappings whose range consists of bounded and closed sets
and proved the following result.

Theorem 1.3 ([18]). Let (X, d) be a complete metric space and T : X → CB(X) satisfy that

H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y), ∀x, y ∈ X with x 6= y, (1.4)

where
ϕ : (0,+∞)→ [0, 1) with lim sup

r→t+
ϕ(r) < 1, ∀t ∈ R+. (1.5)

Then T has a fixed point.

In 2006, Feng and Liu [10] generalized Theorem 1.1 to a new type of multi-valued nonlinear contraction
mapping without using the Hausdorff metric. Ćirić [5, 6], and Klim and Wardowski [14] extended the result
of Feng and Liu [10] and showed the existence of fixed points for some new set-valued contraction mappings.
Pathak and Shahzad [21] introduced a new concept of generalized contraction of set-valued mappings and
got fixed point theorems for such mappings.

In 2012, Wardowski [25] introduced the concept of F -contractions for single-valued mappings and proved
a fixed point theorem for the F -contraction, which is a generalization of the Banach contraction principle.

Definition 1.4 ([25]). Let F : (0,+∞)→ R be a mapping satisfying:

(F1) F is strictly increasing;

(F2) for each sequence {αn}n∈N of positive numbers limn→+∞ αn = 0 if and only if limn→+∞ F (αn) = −∞;

(F3) there exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0.
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Denote by F the family of all functions F that satisfy (F1)-(F3).

Definition 1.5 ([25]). Let (X, d) be a metric space. A self-mapping T on X is called an F -contraction if
there exist F ∈ F and τ > 0 such that

τ + F (d(Tx, Ty)) ≤ F (d(x, y)), ∀x, y ∈ X with d(Tx, Ty) > 0.

Theorem 1.6. Let (X, d) be a complete metric space and let T : X → X be an F -contraction. Then T has
a unique fixed point u ∈ X and for every x0 ∈ X a sequence {Tnx0}n∈N is convergent to u.

Recently, the researchers have been attracted to study new classes of F -contractions and to prove the
existence of fixed point theorems for these F -contractions (see [1, 2, 8, 11, 15, 17, 20, 23, 25]). In particular,
Minak et al. [17] and Cosentino and Vetro [8] introduced Ćirić type generalized F -contractions and Hardy-
Rogers type F -contraction mappings and proved some fixed point results for the F -contractions.

The purpose of this paper is to introduce some new multi-valued nonlinear F -contractions without using
the Hausdorff metric and to establish the existence and iterative approximations of fixed points for these
multi-valued nonlinear F -contractions in complete metric spaces. Three examples are included.

2. Main results

In this section, we establish four fixed point theorems for the multi-valued nonlinear F -contractions (a1),
(a3), (a4), and (a6) in complete metric spaces.

Theorem 2.1. Let (X, d) be a complete metric space, T : X → CL(X) be a multi-valued mapping such that

(a1) for any x ∈ X − Tx there is y ∈ Tx− Ty with

F (d(x, y)) ≤ F (f(x)) + τ, F (f(y)) + τ + η(f(x)) ≤ F (d(x, y)),

where F ∈ F , τ > 0 and η : (0,+∞)→ (0,+∞) satisfies that

(a2) lim infs→t+ η(s) > 0, ∀t ∈ R+.

Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that limn→∞ xn = z. Furthermore,
z is a fixed point of T in X if and only if the function f is T -orbitally lower semi-continuous at z.

Proof. Let x0 ∈ X be an arbitrary point with x0 /∈ Tx0. It follows from (a1) that there exists x1 ∈ Tx0−Tx1
satisfying

F (d(x0, x1)) ≤ F (f(x0)) + τ, F (f(x1)) + τ + η(f(x0)) ≤ F (d(x0, x1)). (2.1)

In light of (2.1) and η(f(x0)) > 0, we deduce that

F (f(x1)) ≤ F (d(x0, x1))− τ − η(f(x0))

≤ F (f(x0)) + τ − τ − η(f(x0))

= F (f(x0))− η(f(x0))

< F (f(x0)).

In terms of (a1) there exists x2 ∈ Tx1 − Tx2 with

F (d(x1, x2)) ≤ F (f(x1)) + τ, F (f(x2)) + τ + η(f(x1)) ≤ F (d(x1, x2)),

which together with (2.1), η(f(x0)) > 0 and η(f(x1)) > 0 mean that

F (f(x2)) ≤ F (d(x1, x2))− τ − η(f(x1))

≤ F (f(x1)) + τ − τ − η(f(x1))

= F (f(x1))− η(f(x1))

< F (f(x1)),
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F (d(x1, x2)) ≤ F (f(x1)) + τ

≤ F (d(x0, x1))− τ − η(f(x0)) + τ

= F (d(x0, x1))− η(f(x0))

< F (d(x0, x1)).

Repeating this process, we obtain an orbit {xn}n∈N0 ⊂ X of T satisfying

F (d(xn, xn+1)) ≤ F (f(xn)) + τ,

F (f(xn+1)) + τ + η(f(xn)) ≤ F (d(xn, xn+1)), xn+1 ∈ Txn − Txn+1, ∀n ∈ N0.
(2.2)

In view of (2.2) and η(f(xn−1)) > 0 for each n ∈ N, we have

F (f(xn)) ≤ F (d(xn−1, xn))− τ − η(f(xn−1))

≤ F (f(xn−1)) + τ − τ − η(f(xn−1))

= F (f(xn−1))− η(f(xn−1))

< F (f(xn−1)), ∀n ∈ N.

(2.3)

It follows from (2.3) and (F1) that

0 < f(xn) < f(xn−1), ∀n ∈ N. (2.4)

Note that (2.4) implies that there exists a constant a ∈ R+ with

lim
n→∞

f(xn) = a. (2.5)

By virtue of (a2) there exists a constant b > 0 satisfying

lim inf
s→a+

η(s) = 2b,

which means that for ε = b, there exists δ > 0 satisfying

η(s)− 2b > −ε, ∀s ∈ (a, a+ δ),

that is,
η(s) > b, ∀s ∈ (a, a+ δ). (2.6)

Clearly, (2.4)-(2.6) ensure that there exists n0 ∈ N satisfying

a < f(xn) < a+ δ, η(f(xn)) > b, ∀n ≥ n0. (2.7)

Making use of (2.3) and (2.7), we arrive at

F (f(xn)) ≤ F (f(xn−1))− η(f(xn−1))

≤ F (f(xn−2))− η(f(xn−2))− η(f(xn−1))

...

≤ F (f(xn0))− η(f(xn0))− η(f(xn0+1))− · · · − η(f(xn−1))

≤ F (f(xn0))− (n− n0)b,

which implies that
lim
n→∞

F (f(xn)) = −∞. (2.8)

By means of (F2), (2.5) and (2.8), we conclude immediately that

a = lim
n→∞

f(xn) = 0. (2.9)
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Using (2.2) and (2.7), we infer that

F (d(xn, xn+1)) ≤ F (f(xn)) + τ

≤ F (d(xn−1, xn))− τ − η(f(xn−1)) + τ

= F (d(xn−1, xn))− η(f(xn−1))

≤ F (d(xn−2, xn−1))− η(f(xn−2))− η(f(xn−1))

...

≤ F (d(xn0 , xn0+1))− η(f(xn0))− η(f(xn0+1))− · · · − η(f(xn−1))

≤ F (d(xn0 , xn0+1))− (n− n0)b
→ −∞ as n→∞.

(2.10)

That is,
lim
n→∞

F (d(xn, xn+1)) = −∞.

It follows from (2.10) and (F2) that

lim
n→∞

d(xn, xn+1) = 0. (2.11)

It is clear that (F3) and (2.11) ensure that there exists k ∈ (0, 1) such that

lim
n→∞

[dk(xn, xn+1)F (d(xn, xn+1))] = 0. (2.12)

Using (2.10)-(2.12), we derive that

0 ≤ lim sup
n→∞

[(n− n0)bdk(xn, xn+1)]

≤ lim sup
n→∞

{(F (d(xn0 , xn0+1))− F (d(xn, xn+1)))d
k(xn, xn+1)}

= 0,

which yields that
lim
n→∞

(n− n0)bdk(xn, xn+1) = 0,

that is,

lim
n→∞

ndk(xn, xn+1) = 0. (2.13)

It follows from (2.13) that there exists n1 ≥ n0 satisfying

ndk(xn, xn+1) ≤ 1, ∀n ≥ n1,

that is,

d(xn, xn+1) ≤
1

n
1
k

, ∀n ≥ n1,

which gives that
d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤
m−1∑
i=n

d(xi, xi+1)

≤
∞∑
i=n

d(xi, xi+1)

≤
∞∑
i=n

1

i
1
k

, ∀m > n ≥ n1,

which together with the convergence of the series
∑∞

i=1
1

i
1
k

means that {xn}n∈N0 is a Cauchy sequence. Since
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(X, d) is a complete metric space, there exists a point z ∈ X such that

lim
n→∞

xn = z. (2.14)

Suppose that f is T -orbitally lower semi-continuous at z. It follows from (2.9) and (2.14) that

d(z, Tz) = f(z) ≤ lim inf
n→∞

f(xn) = lim
n→∞

f(xn) = 0,

that is, z ∈ X is a fixed point of T .
Conversely, suppose that z ∈ X is a fixed point of T . For each orbit {yn}n∈N0 of T with limn→∞ yn = z,

we deduce that
f(z) = d(z, Tz) = 0 ≤ lim inf

n→∞
f(yn),

which implies that f is T -orbitally lower semi-continuous in z. This completes the proof.

Theorem 2.2. Let (X, d) be a complete metric space, T : X → CL(X) be a multi-valued mapping such that

(a3) for any x ∈ X − Tx there is y ∈ Tx− Ty with

F (d(x, y)) ≤ F (f(x)) + τ, F (f(y)) + τ + η(d(x, y)) ≤ F (d(x, y)),

where F ∈ F , τ > 0 and η : (0,+∞)→ (0,+∞) satisfies (a2).

Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that limn→∞ xn = z. Furthermore,
z is a fixed point of T in X if and only if the function f is T -orbitally lower semi-continuous at z.

Proof. Let x0 ∈ X be an arbitrary point with x0 /∈ Tx0. It follows from (a2) that there exists x1 ∈ Tx0−Tx1
satisfying

F (d(x0, x1)) ≤ F (f(x0)) + τ, F (f(x1)) + τ + η(d(x0, x1)) ≤ F (d(x0, x1)). (2.15)

In view of (a3), there exists x2 ∈ Tx1 − Tx2 with

F (d(x1, x2)) ≤ F (f(x1)) + τ, F (f(x2)) + τ + η(d(x1, x2)) ≤ F (d(x1, x2)),

which together with (2.15) and η(d(x0, x1)) > 0 we have

F (d(x1, x2)) ≤ F (f(x1)) + τ

≤ F (d(x0, x1))− τ − η(d(x0, x1)) + τ

= F (d(x0, x1))− η(d(x0, x1))

< F (d(x0, x1)).

Repeating this process, we obtain an orbit {xn}n∈N0 ⊂ X of T satisfying

F (d(xn, xn+1)) ≤ F (f(xn)) + τ,

F (f(xn+1)) + τ + η(d(xn, xn+1)) ≤ F (d(xn, xn+1)), xn+1 ∈ Txn − Txn+1, ∀n ∈ N0.
(2.16)

In light of (2.16) and η(d(xn−1, xn)) > 0 for each n ∈ N, we deduce that

F (d(xn, xn+1)) ≤ F (f(xn)) + τ

≤ F (d(xn−1, xn))− τ − η(d(xn−1, xn)) + τ

= F (d(xn−1, xn))− η(d(xn−1, xn))

< F (d(xn−1, xn)), ∀n ∈ N,

(2.17)
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which together with (F1) implies that

0 < d(xn, xn+1) < d(xn−1, xn), ∀n ∈ N. (2.18)

Consequently, (2.18) means that the sequence {d(xn, xn+1)}n∈N0 converges to a constant a ∈ R+, that
is,

lim
n→∞

d(xn, xn+1) = a. (2.19)

As in the proof of Theorem 2.1, we conclude that (2.6) holds. It follows from (2.6), (2.18) and (2.19)
that there exists n0 ∈ N satisfying

a < d(xn, xn+1) < a+ δ, η(d(xn, xn+1)) > b, ∀n ≥ n0. (2.20)

Using (2.17) and (2.20), we obtain that

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− η(d(xn−1, xn))

≤ F (d(xn−2, xn−1))− η(d(xn−2, xn−1))− η(d(xn−1, xn))

...

≤ F (d(xn0 , xn0+1))− η(d(xn0 , xn0+1))− η(d(xn0+1, xn0+2))− · · · − η(d(xn−1, xn))

≤ F (d(xn0 , xn0+1))− (n− n0)b
→ −∞ as n→∞,

which implies (2.11). The rest of the proof is similar to that of Theorem 2.1 and is omitted. This completes
the proof.

Theorem 2.3. Let (X, d) be a complete metric space, T : X → CL(X) be a multi-valued mapping such that

(a4) for any x ∈ X − Tx there is y ∈ Tx− Ty with

F (d(x, y)) ≤ F (f(x)) +
1

2
η(f(x)), F (f(y)) + η(f(x)) ≤ F (d(x, y)),

where F ∈ F , η : (0,+∞)→ (0,+∞) satisfies (a2) and

(a5) lim sups→0+ η(s) < +∞.

Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that limn→∞ xn = z. Furthermore,
z is a fixed point of T in X if and only if the function f is T -orbitally lower semi-continuous at z.

Proof. Let x0 ∈ X be an arbitrary point with x0 /∈ Tx0. It follows from (a4) that there exists x1 ∈ Tx0−Tx1
satisfying

F (d(x0, x1)) ≤ F (f(x0)) +
1

2
η(f(x0)), F (f(x1)) + η(f(x0)) ≤ F (d(x0, x1)). (2.21)

It follows from (2.21) and η(f(x0)) > 0 that

F (f(x1)) ≤ F (d(x0, x1))− η(f(x0))

≤ F (f(x0)) +
1

2
η(f(x0))− η(f(x0))

= F (f(x0))−
1

2
η(f(x0))

< F (f(x0)).
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(a4) implies that there exists x2 ∈ Tx1 − Tx2 with

F (d(x1, x2)) ≤ F (f(x1)) +
1

2
η(f(x1)), F (f(x2)) + η(f(x1)) ≤ F (d(x1, x2)),

which together with (2.21) and η(f(x1)) > 0 give that

F (f(x2)) ≤ F (d(x1, x2))− η(f(x1))

≤ F (f(x1)) +
1

2
η(f(x1))− η(f(x1))

= F (f(x1))−
1

2
η(f(x1))

< F (f(x1)),

F (d(x1, x2)) ≤ F (f(x1)) +
1

2
η(f(x1))

≤ F (d(x0, x1))− η(f(x0)) +
1

2
η(f(x1)).

Repeating this process, we obtain an orbit {xn}n∈N0 ∈ X of T satisfying

F (d(xn, xn+1)) ≤ F (f(xn)) +
1

2
η(f(xn)),

F (f(xn+1)) + η(f(xn)) ≤ F (d(xn, xn+1)), xn+1 ∈ Txn − Txn+1, ∀n ∈ N0.
(2.22)

In view of (2.22) and η(f(xn−1)) > 0 for each n ∈ N, we deduce that

F (f(xn)) ≤ F (d(xn−1, xn))− η(f(xn−1))

≤ F (f(xn−1)) +
1

2
η(f(xn−1))− η(f(xn−1))

≤ F (f(xn−1))−
1

2
η(f(xn−1))

< F (f(xn−1)), ∀n ∈ N

(2.23)

and

F (d(xn, xn+1)) ≤ F (f(xn)) +
1

2
η(f(xn))

≤ F (d(xn−1, xn))− η(f(xn−1)) +
1

2
η(f(xn)), ∀n ∈ N.

(2.24)

Similar to the arguments of Theorem 2.1, we conclude that (2.4)-(2.7) hold. In terms of (2.23) and (2.7),
we arrive at

F (f(xn)) ≤ F (f(xn−1))−
1

2
η(f(xn−1))

≤ F (f(xn−2))−
1

2
η(f(xn−2))−

1

2
η(f(xn−1))

...

≤ F (f(xn0))− 1

2
η(f(xn0))− 1

2
η(f(xn0+1))− · · · −

1

2
η(f(xn−1))

≤ F (f(xn0))− 1

2
(n− n0)b

→ −∞ as n→∞,

which together with (2.5) and (F2), we derive that (2.8) and (2.9) hold.
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In light of (2.7) and (2.24), we get that

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− η(f(xn−1)) +
1

2
η(f(xn))

≤ F (d(xn−2, xn−1))− η(f(xn−2))−
1

2
η(f(xn−1)) +

1

2
η(f(xn))

...

≤ F (d(xn0 , xn0+1))− η(f(xn0))− 1

2
η(f(xn0+1))− · · · −

1

2
η(f(xn−1)) +

1

2
η(f(xn))

≤ F (d(xn0 , xn0+1))−
1

2
(n− n0 − 1)b+

1

2
η(f(xn)), ∀n ≥ n0.

(2.25)

Taking upper limit in (2.25) and using (2.7), (2.9) and (a5), we get that

lim sup
n→∞

F (d(xn, xn+1)) ≤ lim sup
n→∞

[
F (d(xn0 , xn0+1))−

1

2
(n− n0 − 1)b+

1

2
η(f(xn))

]
≤ lim sup

n→∞

[
F (d(xn0 , xn0+1))−

1

2
(n− n0 − 1)b

]
+

1

2
lim sup
n→∞

η(f(xn))

= −∞,

that is, (2.11) holds. Similarly, we know that (2.12) holds.
It follows from (a5), (2.11), (2.12), and (2.25) that

0 ≤ lim sup
n→∞

[
1

2
(n− n0 − 1)bdk(xn, xn+1)

]
≤ lim sup

n→∞

{(
F (d(xn0 , xn0+1))− F (d(xn, xn+1)) +

1

2
η(f(xn))

)
dk(xn, xn+1)

}
≤ lim sup

n→∞
{(F (d(xn0 , xn0+1))− F (d(xn, xn+1)))d

k(xn, xn+1)}

+
1

2
lim sup
n→∞

[η(f(xn))dk(xn, xn+1)]

≤ 0 +
1

2
lim sup
n→∞

η(f(xn)) · lim sup
n→∞

dk(xn, xn+1)

= 0,

which means that
lim sup
n→∞

[(n− n0 − 1)bdk(xn, xn+1)] = 0,

which yields (2.13). The rest of the proof is similar to that of Theorem 2.1 and is omitted. This completes
the proof.

Theorem 2.4. Let (X, d) be a complete metric space, T : X → CL(X) be a multi-valued mapping such that

(a6) for any x ∈ X − Tx there is y ∈ Tx− Ty with

F (d(x, y)) ≤ F (f(x)) +
1

2
η(d(x, y)), F (f(y)) + η(d(x, y)) ≤ F (d(x, y)),

where F ∈ F , η : (0,+∞)→ (0,+∞) satisfies

(a7) η is decreasing,

(a8) lims→0+ η(s) > 0.
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Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that limn→∞ xn = z. Furthermore,
z is a fixed point of T in X if and only if the function f is T -orbitally lower semi-continuous at z.

Proof. Let x0 ∈ X be an arbitrary point with x0 /∈ Tx0. It follows from (a6) that there exists x1 ∈ Tx0−Tx1
satisfying

F (d(x0, x1)) ≤ F (f(x0)) +
1

2
η(d(x0, x1)), F (f(x1)) + η(d(x0, x1)) ≤ F (d(x0, x1)). (2.26)

In view of (2.26) and η(d(x0, x1)) > 0, we arrive at

F (f(x1)) ≤ F (d(x0, x1))− η(d(x0, x1))

≤ F (f(x0)) +
1

2
η(d(x0, x1))− η(d(x0, x1))

= F (f(x0))−
1

2
η(d(x0, x1))

< F (f(x0)).

(a6) implies that there exists x2 ∈ Tx1 − Tx2 with

F (d(x1, x2)) ≤ F (f(x1)) +
1

2
η(d(x1, x2)), F (f(x2)) + η(d(x1, x2)) ≤ F (d(x1, x2)),

which together with (2.26) and η(d(x1, x2)) > 0 show that

F (f(x2)) ≤ F (d(x1, x2))− η(d(x1, x2))

≤ F (f(x1)) +
1

2
η(d(x1, x2))− η(d(x1, x2))

= F (f(x1))−
1

2
η(d(x1, x2))

< F (f(x1)),

F (d(x1, x2)) ≤ F (f(x1)) +
1

2
η(d(x1, x2))

≤ F (d(x0, x1))− η(d(x0, x1)) +
1

2
η(d(x1, x2)).

Repeating this process, we obtain an orbit {xn}n∈N0 ⊂ X of T satisfying

F (d(xn, xn+1)) ≤ F (f(xn)) +
1

2
η(d(xn, xn+1)),

F (f(xn+1)) + η(d(xn, xn+1)) ≤ F (d(xn, xn+1)), xn+1 ∈ Txn − Txn+1, ∀n ∈ N0.
(2.27)

Suppose that there exists some n0 ∈ N satisfying

d(xn0 , xn0+1) ≥ d(xn0−1, xn0), (2.28)

which together with (a7) gives that

η(d(xn0 , xn0+1)) ≤ η(d(xn0−1, xn0)). (2.29)

In terms of (2.27)-(2.29) and η(d(xn0 , xn0+1)) > 0, we deduce that

F (d(xn0−1, xn0)) ≤ F (d(xn0 , xn0+1))

≤ F (f(xn0)) +
1

2
η(d(xn0 , xn0+1))
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≤ F (d(xn0−1, xn0))− η(d(xn0−1, xn0)) +
1

2
η(d(xn0 , xn0+1))

≤ F (d(xn0−1, xn0))− η(d(xn0 , xn0+1)) +
1

2
η(d(xn0 , xn0+1))

= F (d(xn0−1, xn0))− 1

2
η(d(xn0 , xn0+1))

< F (d(xn0−1, xn0)),

which is contradiction. Therefore,

0 < d(xn, xn+1) < d(xn−1, xn), ∀n ∈ N. (2.30)

It is clear that (2.30) implies (2.19) for some a ∈ R. (a7), (a8), (2.19), and (2.30) imply that

lim
n→∞

η(d(xn, xn+1)) = 2b (2.31)

for some b > 0. It is easy to see that (2.19), (2.30), and (2.31) ensure that there exists n1 > n0 satisfying

a < d(xn, xn+1) < a+ δ, η(d(xn, xn+1)) > b, ∀n ≥ n1. (2.32)

It follows from (2.27), (2.30), and (2.32) that

F (d(xn, xn+1)) ≤ F (f(xn)) +
1

2
η(d(xn, xn+1))

≤ F (d(xn−1, xn))− η(d(xn−1, xn)) +
1

2
η(d(xn, xn+1))

≤ F (d(xn−2, xn−1))− η(d(xn−2, xn−1))−
1

2
η(d(xn−1, xn)) +

1

2
η(d(xn, xn+1))

...

≤ F (d(xn1 , xn1+1))− η(d(xn1 , xn1+1))−
1

2
η(d(xn1+1, xn1+2))− · · ·

− 1

2
η(d(xn−1, xn)) +

1

2
η(d(xn, xn+1))

≤ F (d(xn1 , xn1+1))−
1

2
(n− n1 − 1)b+

1

2
η(d(xn, xn+1)), ∀n ≥ n1.

(2.33)

Using (2.33) and (a7), we arrive at

lim sup
n→∞

F (d(xn, xn+1)) ≤ lim sup
n→∞

[
F (d(xn1 , xn1+1))−

1

2
(n− n1 − 1)b+

1

2
η(d(xn, xn+1))

]
≤ lim sup

n→∞

[
F (d(xn1 , xn1+1))−

1

2
(n− n1 − 1)b

]
+

1

2
lim sup
n→∞

η(d(xn, xn+1))

= −∞,

that is,
lim
n→∞

F (d(xn, xn+1)) = −∞.

In view of (F2) and (2.19), we get that

a = lim
n→∞

d(xn, xn+1) = 0. (2.34)

In view of (F3) and (2.33), ensure that there exists k ∈ (0, 1) such that

lim
n→∞

[dk(xn, xn+1)F (d(xn, xn+1))] = 0. (2.35)
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In light of (a7) and (2.33)-(2.35), we deduce that

0 ≤ lim sup
n→∞

[
1

2
(n− n0 − 1)bdk(xn, xn+1)

]
≤ lim sup

n→∞

[(
F (d(xn1 , xn1+1))− F (d(xn, xn+1)) +

1

2
η(d(xn, xn+1))

)
dk(xn, xn+1)

]
≤ lim sup

n→∞
[(F (d(xn1 , xn1+1))− F (d(xn, xn+1)))d

k(xn, xn+1)]

+ lim sup
n→∞

[
1

2
η(d(xn, xn+1)d

k(xn, xn+1)

]
≤ 0 + lim sup

n→∞

1

2
η(d(xn, xn+1) · lim sup

n→∞
dk(xn, xn+1)

= 0,

which connotes (2.13). The rest of the proof is similar to that of Theorem 2.1 and is omitted. This completes
the proof.

3. Remarks and examples

Remark 3.1. The following examples show that Theorems 2.1-2.4 differ from Theorems 1.1-1.3.

Example 3.2. Let X = R be endowed with the Euclidean metric d = | · |. Let τ = ln 4
3 , T : X → CL(X),

F : (0,+∞)→ R and η : (0,+∞)→ (0,+∞) be defined by

Tx =

{
(−∞, 2x] ∪

[
x
2 , 0
)
, x ∈ (−∞, 0),[

0, x3
]
∪ [3x,+∞), x ∈ [0,+∞),

F (t) = ln t, η(t) = ln
6

5
, ∀t ∈ (0,+∞).

It is easy to see that

f(x) = d(x, Tx) =

{
−x

2 , x ∈ (−∞, 0),
2x
3 , x ∈ [0,+∞),

is continuous in X,

lim inf
s→t+

η(s) = lim inf
s→t+

ln
6

5
> 0, ∀t ∈ R+.

Put x ∈ X − Tx. In order to verify (a1) and (a3), we consider the following two possible cases:

Case 1. Let x ∈ (−∞, 0)− Tx. It follows that x ∈
(
2x, x2

)
. Put

y =
x

2
∈ (−∞, 2x] ∪

[x
2
, 0
)
− (−∞, x] ∪

[x
4
, 0
)

= Tx− Ty.

It follows that

F (d(x, y)) = ln
∣∣∣x
2

∣∣∣ ≤ ln
∣∣∣x
2

∣∣∣+ ln
4

3
= F (f(x)) + τ,

and
F (f(y)) + τ + η(f(x)) = F (f(y)) + τ + η(d(x, y))

= ln
∣∣∣x
4

∣∣∣+ ln
4

3
+ ln

6

5

= ln

∣∣∣∣2x5
∣∣∣∣ ≤ ln

∣∣∣x
2

∣∣∣
= F (d(x, y)).
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Case 2. Let x ∈ [0,+∞)− Tx. It follows that x ∈
(
x
3 , 3x

)
. Put

y =
x

3
∈
[
0,
x

3

]
∪ [3x,+∞)−

[
0,
x

9

]
∪ [x,+∞) = Tx− Ty.

It is clear that

F (d(x, y)) = ln
2x

3
≤ ln

2x

3
+ ln

4

3
= F (f(x)) + τ,

and
F (f(y)) + τ + η(f(x)) = F (f(y)) + τ + η(d(x, y))

= ln
2x

9
+ ln

4

3
+ ln

6

5

= ln
16x

45
≤ ln

2x

3
= F (d(x, y)).

That is, (a1) and (a3) hold. It follows from both of Theorems 2.1 and 2.2 that T has a fixed point in X.
However, the mapping T does not satisfy (1.1), (1.2) and (1.4) in Theorems 1.1-1.3, respectively. In fact,
put x0 = −1 and y0 = 1. It is clear that

H(Tx0, T y0) = H

(
(−∞,−2] ∪

[
−1

2
, 0

)
,

[
0,

1

3

]
∪ [3,+∞)

)
= +∞ � 2r = rd(x0, y0), ∀r ∈ [0, 1),

H(Tx0, T y0) = +∞ � 2ϕ(d(x0, y0)) = ϕ(d(x0, y0))d(x0, y0)

for any mapping ϕ : (0,+∞)→ [0, 1) with each of (1.3) and (1.5).

Example 3.3. Let X = R+ be endowed with the Euclidean metric d = | · |. Let T : X → CL(X),
F : (0,+∞)→ R, η : (0,+∞)→ (0,+∞) be defined by

Tx =

{[
0, x

2

2

]
, x ∈ [0, 1],[

0, 14
]
, x ∈ (1,+∞),

F (t) = ln t, η(t) = ln
4

3
, ∀t ∈ (0,+∞).

It is easy to see that

f(x) = d(x, Tx) =

{
x− x2

2 , x ∈ [0, 1],

x− 1
4 , x ∈ (1,+∞),

is lower semi-continuous in X,

lim sup
s→0+

η(s) = ln
4

3
< +∞, lim inf

s→t+
η(s) = ln

4

3
> 0, ∀t ∈ R+.

In order to verify (a4), we consider the following two possible cases:

Case 1. Let x ∈ [0, 1] ∩ (X − Tx). It follows that x ∈
(
x2

2 , 1
]
. Put y = x2

2 ∈
[
0, x

2

2

]
−
[
0, x

4

8

]
= Tx− Ty.

It follows that

F (d(x, y)) = ln

(
x− x2

2

)
≤ ln

(
x− x2

2

)
+

1

2
ln

4

3
= F (f(x)) +

1

2
η(f(x)),

and

F (f(y)) + η(f(x)) = ln

(
x2

2
− x4

8

)
+ ln

4

3
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= ln

(
1

2

(
x+

x2

2

))
+ ln

(
x− x2

2

)
+ ln

4

3

≤ ln
3

4
+ ln

(
x− x2

2

)
+ ln

4

3

= F (d(x, y)).

Case 2. Let x ∈ (1,+∞)∩ (X−Tx). It follows that x ∈ (1,+∞). Put y = 1
4 ∈

[
0, 14
]
−
[
0, 1

32

]
= Tx−Ty.

It is clear that

F (d(x, y)) = ln

(
x− 1

4

)
≤ ln

(
x− 1

4

)
+

1

2
ln

4

3
= F (f(x)) +

1

2
η(f(x)),

and

F (f(y)) + η(f(x)) = ln
7

32
+ ln

4

3
= ln

7

24
< ln

3

4
< ln

(
x− 1

4

)
= F (d(x, y)).

That is, (a4) holds. It follows from Theorem 2.3 that T has a fixed point in X. However, the mappings
T does not satisfy (1.1), (1.2) and (1.4) in Theorems 1.1-1.3, respectively. In fact, put x0 = 1 and y0 = 9

8 .
It is clear that

H(Tx0, Ty0) = H

([
0,

1

2

]
,

[
0,

1

4

])
=

1

4
�

1

8
c = cd(x0, y0), ∀c ∈ [0, 1),

H(Tx0, Ty0) =
1

4
�

1

8
ϕ(d(x0, y0)) = ϕ(d(x0, y0))d(x0, y0)

for any mapping ϕ : (0,+∞)→ [0, 1) with each of (1.3) and (1.5).

Example 3.4. Let X = [0, 1] be endowed with the Euclidean metric d = | · |. Let T : X → CL(X),
F : (0,+∞)→ R, η : (0,+∞)→ (0,+∞) be defined by

Tx =

{{
x2

3

}
, x ∈

[
0, 1736

)
∪
(
17
36 , 1

]
,[

1
8 ,

5
48

]
, x = 17

36 ,

F (t) = ln t, ∀t ∈ (0,+∞),

η(t) =


ln 10, t ∈

[
0, 1

10

)
,

ln 1
t , t ∈

[
1
10 ,

1
5

)
,

ln 9
4 , t ∈

[
1
5 ,+∞

)
.

It is easy to see that

f(x) = d(x, Tx) =

{
x− x2

3 , x ∈
[
0, 1736

)
∪
(
17
36 , 1

]
,

25
72 , x = 17

36

is lower semi-continuous in X and
lim
s→0+

η(s) = ln 10 > 0.

Put x ∈ X − Tx. In order to verify (a6), we consider the following two possible cases:

Case 1. Let x ∈
(
0, 1736

)
∪
(
17
36 , 1

]
−
{
x2

3

}
. Put y = x2

3 ∈
{
x2

3

}
−
{
x4

27

}
= Tx−Ty. Note that x− x2

3 ∈
(
0, 23
]
.

Assume that x− x2

3 ∈
(
0, 1

10

)
. It follows that

1

3

(
x+

x2

3

)
< x− x2

3
<

1

10
,
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which yields that

ln
1

3

(
x+

x2

3

)
+ ln 10 < 0.

Consequently, we have

F (d(x, y)) = ln

(
x− x2

3

)
≤ ln

(
x− x2

3

)
+

1

2
ln 10 = F (f(x)) +

1

2
η(d(x, y)),

and

F (f(y)) + η(d(x, y)) = ln

(
x2

3
− x4

27

)
+ ln 10

= ln
1

3

(
x+

x2

3

)
+ ln

(
x− x2

3

)
+ ln 10

< ln

(
x− x2

3

)
= F (d(x, y)).

Assume that x− x2

3 ∈
[
1
10 ,

1
5

)
. It follows that

F (d(x, y)) = ln

(
x− x2

3

)
≤ ln

(
x− x2

3

)
+

1

2
ln

1(
x− x2

3

) = F (f(x)) +
1

2
η(d(x, y)),

and

F (f(y)) + η(d(x, y)) = ln

(
x2

3
− x4

27

)
+ ln

1(
x− x2

3

)
= ln

1

3

(
x+

x2

3

)
+ ln

(
x− x2

3

)
+ ln

1(
x− x2

3

)
= ln

1

3

(
x+

x2

3

)
< ln

(
x− x2

3

)
= F (d(x, y)).

Assume that x− x2

3 ∈
[
1
5 ,+∞

)
. It follows that

F (d(x, y)) = ln

(
x− x2

3

)
≤ ln

(
x− x2

3

)
+

1

2
ln

9

4
= F (f(x)) +

1

2
η(d(x, y)),

and

F (f(y)) + η(d(x, y)) = ln

(
x2

3
− x4

27

)
+ ln

9

4

= ln
1

3

(
x+

x2

3

)
+ ln

(
x− x2

3

)
+ ln

9

4

≤ ln
4

9
+ ln

(
x− x2

3

)
+ ln

9

4
= ln

(
x− x2

3

)
= F (d(x, y)).

Case 2. Let x = 17
36 . Put y = 1

8 ∈
{
1
8 ,

5
48

}
−
{

1
192

}
= Tx− Ty. It follows that

F (d(x, y)) = ln
25

72
≤ ln

25

72
+

1

2
ln

9

4
= F (f(x)) +

1

2
η(d(x, y)),

and

F (f(y)) + η(d(x, y)) = ln
23

192
+ ln

9

4
< −1.31 < −1.06 < ln

25

72
= F (d(x, y)).
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That is, (a6) holds. It follows from Theorem 2.4 that T has a fixed point in X. However, the mappings T
does not satisfy (1.1), (1.2) and (1.4) in Theorems 1.1-1.3, respectively. In fact, put x0 = 1

2 and y0 = 17
36 . It

is clear that

H(Tx0, T y0) = H

(
1

12
,

{
1

8
,

5

48

})
=

1

24
=

1

36
· 3

2
�

1

36
c = cd(x0, y0), ∀c ∈ [0, 1),

H(Tx0, T y0) =
1

24
�

1

36
ϕ(d(x0, y0)) = ϕ(d(x0, y0))d(x0, y0)

for any mapping ϕ : (0,+∞)→ [0, 1) with each of (1.3) and (1.5).
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[1] Ö. Acar, I. Altun, A fixed point theorem for multivalued mappings with δ-distance, Abstr. Appl. Anal., 2014
(2014), 5 pages. 1, 1
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