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Abstract

In this paper, we establish an existence result for the (GSVQEP) without assuming that the dual of the
ordering cone has a weak star compact base and give an example to show our existence theorem is different
from the main result of Long et al. [X. J. Long, N. J. Huang, K. L. Teo, Math. Comput. Modelling, 47
(2008), 445–451]. Furthermore, we introduce a concept of Hadamard-type well-posedness for the (GSVQEP)
and establish sufficient conditions of Hadamard-type well-posedness for the (GSVQEP). c©2016 All rights
reserved.
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1. Introduction

In recent years, the vector equilibrium problem has been attracting great interest because it provides a
unified model of several classes of problems, for example, vector optimization problems, vector variational
inequalities, and vector complementarity problems, and so on. Furthermore, the vector equilibrium problem
has been generalized to many cases and many different types of vector equilibrium problems have been
intensively studied, see [1, 4–8, 10–14, 16–19, 21, 22, 24, 25, 27, 28, 30, 33] and the references therein.

∗Corresponding author
Email addresses: yiyuexue219@163.com (Jing Zeng), pengzaiyun@126.com (Zai-Yun Peng), sxkcqu@163.com (Xiang-Kai

Sun), xianjunlong@hotmail.com (Xian-Jun Long)

Received 2016-01-14



J. Zeng, Z.-Y. Peng, X.-K. Sun, X.-J. Long , J. Nonlinear Sci. Appl. 9 (2016), 4104–4113 4105

Throughout this paper, unless specified otherwise, we assume that X, Y, and Z are real locally convex
Hausdorff topological vector spaces. Let K and D be two nonempty convex subsets of X and Y , respectively.
Suppose that C ⊂ Z is a nonempty closed convex cone. Let S : K → 2K and T : K → 2D be multivalued
mappings with nonempty values and F : K × D × K → 2Z be a set-valued mapping. We consider the
following generalized strong vector quasi-equilibrium problems (for short, (GSVQEP)): finding x̄ ∈ K and
ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and

F (x̄, ȳ, z) ⊂ C ∀z ∈ S(x̄).

We call (x̄, ȳ) a strong solution for the (GSVQEP).
The concept of Hadamard well-posedness is inspired by the classical idea of Hadamard, which goes back

to the beginning of the last century. It is based on the continuous dependence of the optimal solution from
the data of the considered optimization problem (the feasible set and the objective function). Hadamard
well-posedness and Tykhonov well-posedness are two main types of concepts for well-posed optimization
problems. Recently, it has been studied and generalized in other more complicated situations, such as scalar
optimization problems, vector optimization problems, nonlinear optimal control problems and so on, see
[9, 23, 26, 32, 34] and references therein. However, to the best of our knowledge, there are few papers to
investigate Hadamard well-posedness of generalized strong vector quasi-equilibrium problems.

In this paper, we first establish an existence result for the (GSVQEP) without assuming that the dual
of the ordering cone has a weak star compact base and give an example to show our existence theorem is
different from Theorem 3.1 in [25]. Then, we introduce a concept of Hadamard-type well-posedness for the
(GSVQEP) and establish sufficient conditions of Hadamard-type well-posedness for the (GSVQEP). The
paper is organized as follows. In Section 2, we give some basic concepts and notations and introduce a kind
of Hadamard well-posedness for set-valued mappings. In Section 3, we first establish an existence result for
the (GSVQEP). In Section 4, we state a concept of Hadamard-type well-posedness for the (GSVQEP) and
establish sufficient conditions of Hadamard-type well-posedness for the (GSVQEP).

2. Preliminaries and Notations

In this section, we recall some notations and results of set-valued mappings, which will be needed in the
followings.

Let X and Y be two real locally convex Hausdorff topological vector spaces. The set-valued mapping
F : X → 2Y is said to be closed, if the graph of F , that is, Graph(F ) = {(x, y) : x ∈ X, y ∈ F (x)}, is a
closed set in X × Y .

Definition 2.1 ([2]). Let X and Y be two real locally convex Hausdorff topological vector spaces.

(i) The set-valued mapping F : X → 2Y is said to be upper semicontinuous (u.s.c. for short) at x ∈ X, if
for any open set F (x) ⊂ U , there exists a neighborhood V of x, such that

⋃
x∈V F (x) := F (V ) ⊂ U .

F is said to be u.s.c., if F is u.s.c. at each point of X.

(ii) The set-valued mapping F is said to be lower semicontinuous (l.s.c. for short) at x ∈ X, if for any
y ∈ F (x) and any neighborhood U of y, there exists a neighborhood V of x, such that ∀x′ ∈ V , we
have F (x′) ∩ U 6= ∅. F is said to be l.s.c., if F is l.s.c. at every point of X.

(iii) The set-valued mapping F is said to be continuous if F is both l.s.c. and u.s.c..

Lemma 2.2 ([3], Theorems 6,7). Assume that X and Y are two locally convex Hausdorff topological vector
spaces and Y is also compact. The set-valued mapping F : X → 2Y is u.s.c. with compact values if and
only if it is a closed mapping.

Lemma 2.3 ([2]). Assume that X and Y are two locally convex Hausdorff topological vector spaces. The
set-valued mapping F : X → 2Y is lower semicontinuous at x ∈ X, if and only if for any y ∈ F (x) and any
net {xα} with xα → x, there exists a net {yα} such that yα ∈ F (xα) and yα → y.
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Definition 2.4 ([20, 29]). Let (Z,C) be an ordered topological vector space, K be a nonempty convex
subset of a vector space X, and F : K → Z be a set-valued mapping.

(i) F is called C-convex, if for every x1, x2 ∈ K and for every λ ∈ [0, 1], one has

F (λx1 + (1− λ)x2) ⊂ λF (x1) + (1− λ)F (x2)− C.

(ii) F is called properly C-quasiconvex, if for every x1, x2 ∈ K and λ ∈ [0, 1], one has either F (x1) ⊂
F (λx1 + (1− λ)x2) + C or F (x2) ⊂ F (λx1 + (1− λ)x2) + C.

(iii) F is called naturally C-quasiconvex on K, if for every x1, x2 ∈ K, λ ∈ [0, 1], there exists µ ∈ [0, 1],
such that

F (λx1 + (1− λ)x2) ⊂ µF (x1) + (1− µ)F (x2)− C.

Remark 2.5. It is clear that every convex or properly C-quasiconvex mapping is naturally C-quasiconvex.
However, the converse is not true. For the details, the readers can see Lemma 2.1 and Remark 2.1 of [29].

3. Existence for solutions of (GSVQEP)

In this section, we will establish an existence result for the (GSVQEP) and give an example to show our
existence theorem is different from Theorem 3.1 in [25].

The following well-known Kakutani-Fan-Glicksberg theorem is our main tool.

Lemma 3.1 ([15]). Let X be a locally convex Hausdorff topological vector space and K ⊂ X be a nonempty,
convex compact subset. Let F : K → 2K be u.s.c. with nonempty, closed, and convex set F (x) ∀x ∈ K.
Then F has a fixed point in K.

We first recall Theorem 3.1 of [25] in order to compare it with our result.
Theorem 3.1 of [25]. Let X, Y , and Z be real locally convex Hausdorff topological vector spaces, K ⊂ X
and D ⊂ Y be two nonempty compact convex subsets, and C ⊂ Z be a nonempty closed convex cone. Let
S : K → 2K be a continuous set-valued mapping such that for any x ∈ K, S(x) is a nonempty closed convex
subset of K. Let T : K → 2D be an upper semicontinuous set-valued mapping such that for any x ∈ K,
T (x) is a nonempty closed convex subset of D. Let F : K ×D ×K → 2D be a set-valued mapping satisfy
the following conditions:

(i) for all (x, y) ∈ K ×D, F (x, y, S(x)) ⊂ C;

(ii) for all (y, z) ∈ D ×K, F (·, y, z) is properly C-quasiconvex;

(iii) F (·, ·, ·) is upper C-continuous;

(iv) for all y ∈ D, F (·, y, ·) is lower (−C)-continuous.

Then Vs(F ) 6= ∅. Moreover, Vs(F ) is closed.
Now we establish our existence result for the (GSVQEP).

Theorem 3.2. Let X, Y and Z be locally convex topological vector spaces, K ⊆ X and D ⊆ Y be nonempty
compact convex subsets, and C ⊂ Z be a nonempty closed convex cone with apex at the origin. Assume that
S : K → 2K is a continuous set-valued mapping with nonempty closed convex values and T : K → 2D is a
upper semicontinuous set-valued mapping with nonempty closed convex values. Let F : K ×D×K → 2Z be
a set-valued mapping, which satisfies the following conditions:

(i) for all (x, y) ∈ K ×D, F (x, y, S(x)) ⊂ C;

(ii) for all (y, z) ∈ D ×K, the mapping −F (·, y, z) is naturally C-quasiconvex on K;

(iii) F : K ×D ×K → 2Z is lower semicontinuous.
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Then, there exists a solution (x̄, ȳ) ∈ K ×D of (GSVQEP).

Proof. For any (x, y) ∈ K ×D, define a set-valued mapping A : K ×D → 2K as follows:

A(x, y) = {u ∈ S(x)|F (u, y, z) ⊂ C ∀z ∈ S(x)}.

(i) First, we show that A(x, y) is a nonempty convex subset of K.
In fact, since for any x ∈ K, S(x) is nonempty, according to condition (i), we get that A(x, y) is

nonempty. Let u1, u2 ∈ A(x, y) and λ ∈ [0, 1]. Then, we have that

u1, u2 ∈ S(x) (3.1)

and
F (u1, y, z) ⊂ C ∀z ∈ S(x),
F (u2, y, z) ⊂ C ∀z ∈ S(x).

(3.2)

Now we need to show that λu1 + (1− λ)u2 ∈ A(x, y). Since for any x ∈ K, S(x) is a nonempty convex set,
by (3.1), we get that

λu1 + (1− λ)u2 ∈ S(x). (3.3)

Since for all (y, z) ∈ D×K, the mapping −F (·, y, z) is naturally C-quasiconvex on K, there exists µ ∈ [0, 1]
such that

(−F (λu1 + (1− λ)u2, y, z)) ⊂ µ(−F (u1, y, z)) + (1− µ)(−F (u2, y, z))− C,

it means that
F (λu1 + (1− λ)u2, y, z) ⊂ µF (u1, y, z) + (1− µ)F (u2, y, z) + C.

By (3.2), we have that

F (λu1 + (1− λ)u2, y, z) ⊂ µF (u1, y, z) + (1− µ)F (u2, y, z) + C ⊂ µC + (1− µ)C + C ⊂ C. (3.4)

By (3.3) and (3.4), we get that A(x, y) is a convex subset.
(ii) Second, we show that A(x, y) is a closed subset of K.
In fact, let a net {uα} ⊂ A(x, y) with uα → u∗. Then, we have that

uα ∈ S(x) (3.5)

and
F (uα, y, z) ⊂ C ∀z ∈ S(x). (3.6)

Since for any x ∈ K, S(x) is a nonempty closed subset, by (3.5) and uα → u∗, we have that

u∗ ∈ S(x). (3.7)

Next we prove that
F (u∗, y, z) ⊂ C ∀z ∈ S(x). (3.8)

Suppose to the contrary, there exists z∗ ∈ S(x) such that F (u∗, y, z∗) 6⊂ C. It means that there exists
v ∈ F (u∗, y, z∗) such that v 6∈ C. Since z∗ ∈ S(x) and S(x) is a closed set, we have that there exists a net
{zα} ⊂ S(x) such that zα → z∗. Since for any y ∈ D, F (., y, .) is lower semicontinuous, by v ∈ F (u∗, y, z∗),
uα → u∗, and zα → z∗, we have that there exists a net {vα} such that vα ∈ F (uα, y, zα) such that vα → v.
Since {zα} ⊂ S(x), by (3.6), we get that

F (uα, y, zα) ⊂ C ∀z ∈ S(x).

It follows that vα ∈ F (uα, y, zα) ⊂ C. Since C is a closed set and vα → v, we get that v ∈ C, which
contradicts v 6∈ C. Therefore, (3.8) holds.
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(iii) Third, we show that A : K ×D → 2K is upper semicontinuous.
Since K is compact and A(x, y) included in K, by Lemma 2.2, we need to show that A is a closed

mapping. Let {(xα, yα)} ⊂ K×D be a net with (xα, yα)→ (x, y) and uα ∈ A(xα, yα) be a net with uα → u.
Since K and D are compact, we have that (x, y) ∈ K ×D. Then we need to show that u ∈ A(x, y), that is,
we shall show u ∈ S(x) and F (u, y, z) ⊂ C for all z ∈ S(x). Since uα ∈ A(xα, yα), we have that

uα ∈ S(xα) (3.9)

and
F (uα, yα, z) ⊂ C ∀z ∈ S(xα). (3.10)

Since S is upper semicontinuous and S(x) is a closed set, by Lemma 2.2, we have that S is a closed mapping.
Together with (3.9), we obtain that u ∈ S(x). Next we prove that

F (u, y, z) ⊂ C ∀z ∈ S(x). (3.11)

Suppose to the contrary, there exists z ∈ S(x) such that F (u, y, z) 6⊂ C. It means that there exists
v ∈ F (u, y, z) with v 6∈ C. Since z ∈ S(x), xα → x, and S is lower semicontinuous, by Lemma 2.3, we have
that there exists a net {zα} such that zα ∈ S(xα) and zα → z. Furthermore, by (3.10), we have that

F (uα, yα, zα) ⊂ C. (3.12)

Since (uα, yα, zα)→ (u, y, z), v ∈ F (u, y, z), and F (., ., .) is lower semicontinuous, there exists a net vα such
that

vα ∈ F (uα, yα, zα) (3.13)

and
vα → v. (3.14)

By (3.12) and (3.13), we get that {vα} ⊂ C. Since C is a closed set and vα → v, we get that v ∈ C, which
contradicts v 6∈ C. Therefore, (3.11) holds.

(iv) Finally, there exists a solution (x̄, ȳ) ∈ K × D of (GSVQEP). Define a set-valued mapping N :
K ×D → 2K×D as follows:

N(x, y) = (A(x, y), T (x)) ∀(x, y) ∈ K ×D.
Then, by the assumptions and the proofs above, N is upper semicontinuous. Since for any (x, y) ∈ K ×D,
A(x, y) and T (x) are nonempty closed convex subsets, we obtain that N(x, y) is a nonempty closed convex
subset of K ×D. By Lemma 3.1, there exists a point (x̄, ȳ) ∈ K ×D such that (x̄, ȳ) ∈ N(x̄, ȳ). It means
that there exists a point (x̄, ȳ) ∈ K × D such that x̄ ∈ A(x̄, ȳ) and ȳ ∈ T (x̄). It follows that there exists
x̄ ∈ K and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and F (x̄, ȳ, z) ⊂ C for all z ∈ S(x̄).

Remark 3.3. The assumptions about F in Theorem 3.2 in this paper are different from those in Theorem 3.1
in [25], since it requires that −F (., y, z) is naturally C-quasiconvex and F (., ., .) is lower semicontinuous in
Theorem 3.2, however, it requires that F (., y, z) is properly C-quasiconvex and F (., ., .) is upper C-continuous
in Theorem 3.1 in [25]. Now we give the following example to show the difference.

Example 3.4. Let X = Y = R, Z = R2, K = D = [0, 1] and C = R2
+. Assume that the set-valued

mappings S : K → 2K and T : K → 2D are defined as S(x) = T (x) = [0, 1] for all x ∈ K. For all
(x, y, u) ∈ K ×D ×K, let

F (x, y, u) = {(a, b)|b− 1 = y2
1− (1− x2)

1− x2
(a− 1), a ∈ [x, 1]}.

Then assumptions of Theorem 3.2 hold. But the set-valued mapping F is not a properly C-quasiconvex
mapping, and thus this example does not satisfy in conditions of Theorem 3.1.

Remark 3.5. Under the conditions of Theorem 3.2, together with condition (iv) of Theorem 3.1 in [25], we
can obtain that the solution set of (GSVQEP) is closed too. The proof is similar to that in Theorem 3.1 in
[25].
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4. Hadamard well-posedness of (GSVQEP)

In this section, we will state the concepts of Hadamard-type well-posedness for the (GSVQEP) and
establish sufficient conditions of Hadamard-type well-posedness for the (GSVQEP).

Definition 4.1 ([34]). Let (P, dP ) stands for a metric space of data of problems one considers, (E, dE)
stand for the metric space for solutions of the corresponding problems in (P, dP ) and let Γ be the solution
mapping from the space (P, dP ) of data of problems to the space 2E of all non-empty solution subsets in
(E, dE).

(1) Problem p ∈ P is called Hadamard well-posed (in short, H-wp) with respect to (P, dP ) and (E, dE),
if the set Γ(p) of solutions of p is a singleton and any sequence xn ∈ Γ(pn) with pn → p must converge
to the unique solution of p.

(2) Problem p ∈ P is called generalized Hadamard well-posed (in short, gH-wp) with respect to (P, dP )
and (E, dE), if the set Γ(p) of solutions of p is nonempty and any sequence xn ∈ Γ(pn) with pn → p
must have a subsequence converging to some solution in Γ(p).

Lemma 4.2 ([34]). Let (P, dP ) stands for a metric space of data of problems one considers, (E, dE) stands
for the metric space for solutions of the problems space (P, dP ), and Γ : P → 2E be the solution mapping.
Suppose that the solution mapping Γ is u.s.c. with compact set values at problem p in (P, dP ). Then, if the
solution set Γ(p) is non-empty and compact, then p is gH-wp.

Lemma 4.3 ([31]). Let E be a metric space and let A, An (n = 1, 2, . . .) be compact sets in E. Suppose
that for any open set O ⊃ A, there exists n0 such that An ⊂ O for all n ≥ n0. Then, any sequence {xn}
satisfying xn ∈ An has a convergent subsequence with limit in A.

Assume that Z is a metric space, the excess of the set A ⊂ Z to the set B ⊂ Z is defined by

e(A,B) = sup{d(a,B) : a ∈ A} (4.1)

and the Hausdorff distance between A and B is defined as

h(A,B) = max{e(A,B), e(B,A)}. (4.2)

For convenience, in the following of this section, assume that P0 is a set of problems of (GSVQEP) and
pn = (Fn, Sn, Tn), (n = 1, 2, . . .) means a sequence of problems of (GSVQEP) which belongs to P0. We show
that the description of pn as follows: find x̄n ∈ K and ȳn ∈ Tn(x̄n), such that x̄n ∈ Sn(x̄n) and

Fn(x̄n, ȳn, u) ⊂ C ∀u ∈ Sn(x̄n).

Meanwhile, consider a problem p = (F, S, T ) ∈ P0 and the description of p is showed as follows: finding
x̄ ∈ K and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and

F (x̄, ȳ, x) ⊂ C ∀x ∈ S(x̄).

Given a set P0 of (GSVQEP), let us define the distance function dP0 as following:

dP0(p1, p2) = sup
(x,y,u)∈K×D×K

h(F1(x, y, u), F2(x, y, u)) + sup
x∈K

h(S1(x), S2(x)) + sup
x∈D

h(T1(x), T2(x)),

where p1 = (F1, S1, T1), p2 = (F2, S2, T2) ∈ P0. Let

sup
(x,y,u)∈K×D×K

h(F1(x, y, u), F2(x, y, u)) < +∞.

Clearly, (P0, dP0) is a metric space.
We say that pn → p, if dP0(pn, p) → 0. Moreover, let Γ(p) be the set of solutions of p ∈ P0. Γ is a

set-valued mapping from P0 to 2K×D and called the solution mapping of p.
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Example 4.4. Let X = Y = R, Z = R, C = R+, and K = D = [−1, 1]. Assume the problem p
defined by S(x) = (−1, 1), T (x) = {0}, F (x, y, u) = {x − u}. Define a sequence of problems {pn} by
Sn(x) = [−1 + 1

n , 1 −
1
n ], Tn(x) = {0}, and Fn(x, y, u) = {x − u + 1

n}. It is clear that d(p, pn) → 0, the
solution set Γ(pn) of pn is [1 − 2

n , 1 −
1
n ] × {0}, but the problem p has not any solution. Therefore, the

problem p is not Hadamard well-posed. It means that not every (GSVQEP) is Hadamard well-posed, the
following study that when a (GSVQEP) is Hadamard well-posed, is meaningful.

Lemma 4.5. Assume that X, Y , and Z are metric spaces, K ⊆ X and D ⊆ Y are nonempty compact
convex subsets, and C ⊂ Z is a nonempty closed convex cone with apex at the origin. Let (P0, dP0) stands
for a metric space of data of (GSVQEP). For p = (F, S, T ) ∈ P0, the set Γ(p) of solutions of p ∈ P0 is
nonempty, and the following conditions are satisfied:

(i) the set-valued mappings S : K → 2K and T : K → 2D are continuous with nonempty compact convex
values;

(ii) the set-valued mapping F : K ×D ×K → Z is lower semicontinuous.

Then, Γ(p) : P0 → 2K×D is u.s.c..

Proof. Since K×D is compact, by Lemma 2.2, we only need to show that Γ is a closed mapping, that is, to
show that for any pn ∈ P, n = 1, 2, 3, . . . with pn → p, and for any (xn, yn) ∈ Γ(pn) with (xn, yn) → (x, y),
we have (x, y) ∈ Γ(p). Since (xn, yn) ∈ Γ(pn), we obtain yn ∈ Tn(xn), xn ∈ Sn(xn) and

Fn(xn, yn, u) ⊂ C ∀u ∈ Sn(xn). (4.3)

Since pn → p, we get that supx∈K h(Sn(x), S(x))→ 0. It means that for arbitrary ε > 0, there exists an
integer n1 such that when n ≥ n1, we have

sup
x∈K

h(Sn(x), S(x)) <
1

2
ε. (4.4)

Since S is upper semicontinuous, for the same ε, there exists an integer n2 such that when n ≥ n2, we
have

S(xn) ⊂ {x′ ∈ K|d(x′, S(x)) <
1

2
ε}. (4.5)

Let N = max{n1, n2}. By (4.4) and (4.5), when n ≥ N , we get that

Sn(xn) ⊂ {x′ ∈ K| d(x′, S(xn)) <
1

2
ε}

⊂ {x′ ∈ X| d(x′, S(x)) < ε}.

Since xn ∈ Sn(xn) and xn → x, by Lemma 4.3, we get that x ∈ S(x). By using the same argument as above,
it is easy to see that y ∈ T (x). Then, to prove (x, y) ∈ Γ(p), we only need to prove that

F (x, y, v) ⊂ C ∀v ∈ S(x). (4.6)

Suppose that (4.6) is not true, we have that there exists v ∈ S(x) such that

F (x, y, v) 6⊂ C.

It means that there exist v ∈ S(x) and z ∈ F (x, y, v) such that z 6∈ C. Since S is lower semicontinuous at
x, xn → x and v ∈ S(x), by Lemma 2.3, we have that there exists vn ∈ S(xn) such that vn → v. Since
pn → p, if necessary, we can choose a subsequence {Snk

} of {Sn} such that

sup
x∈K

h(Snk
(x), S(x)) <

1

k
.
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It follows that

h(Snk
(xnk

), S(xnk
)) <

1

k
.

This implies that there exists v
′
nk
∈ Snk

(xnk
) (k = 1, 2, . . .), such that

‖v′nk
− vnk

‖ < 1

k
.

Since

‖v′nk
− v‖ ≤ ‖v′nk

− vnk
‖+ ‖vnk

− v‖

≤ 1

k
+ ‖vnk

− v‖,

we have that ‖v′nk
− v‖ → 0, when k → ∞. It means that v′nk

→ v. As (xn, yn) → (x, y), we can choose a
subsequence (xnk

, ynk
) with (xnk

, ynk
)→ (x, y). Since F is lower semicontinuous, (xnk

, ynk
, vnk

)→ (x, y, v)
and z ∈ F (x, y, v), by Lemma 2.3, we get that there exists znk

∈ F (xnk
, ynk

, vnk
), such that znk

→ z. Since
pn → p, we have that

sup
(x′,y′,v′)∈K×D×K

h(Fn(x′, y′, v′), F (x′, y′, v′))→ 0.

By using the same argument as above, it is easy to get that there exists z
′
nk
∈ Fnk

(xnk
, ynk

, vnk
) (k = 1, 2, . . .)

such that z
′
nk
→ z. By (4.3), we obtain that z ∈ C, which contradicts z 6∈ C. Therefore,

F (x, y, v) ⊂ C ∀v ∈ S(x).

It means that (x, y) ∈ Γ(p). Furthermore, Γ is a closed mapping.

Now we establish the sufficient condition of Hadamard-type well-posedness for a (GSVQEP).

Theorem 4.6. Let X, Y and Z be metric spaces, K ⊆ X and D ⊆ Y be nonempty compact convex subsets,
and C ⊂ Z be a nonempty closed convex cone with apex at the origin. For any p = (F, S, T ) ∈ P0, assume
that the set Γ(p) of solutions of p ∈ P0 is nonempty and the following conditions are satisfied:

(i) the set-valued mappings S : K → 2K and T : K → 2D are continuous mappings with nonempty
compact convex values;

(ii) the set-valued mapping F : K ×D ×K → Z is lower semicontinuous.

Then, the problem p is generalized Hadamard well-posed.

Proof. By Lemmas 4.2 and 4.5, the conclusion naturally holds.

Remark 4.7. If the problem p has a unique solution, it is easy to verify that Theorem 4.6 implies p is
Hadamard well-posed too.

Corollary 4.8. Let X, Y and Z be metric spaces, K ⊆ X and D ⊆ Y be nonempty compact convex subsets,
and C ⊂ Z be a nonempty closed convex cone with apex at the origin. For any p = (F, S, T ) ∈ P0, assume
that the following conditions are satisfied:

(i) for all (x, y) ∈ K ×D, F (x, y, S(x)) ⊂ C;

(ii) the set-valued mappings S : K → 2K and T : K → 2D are continuous mappings with nonempty
compact convex values;

(iii) for all (y, z) ∈ D ×K, the mapping −F (., y, z) is naturally quasi-convex on K;

(iv) F : K ×D ×K → Z is lower semicontinuous.

Then, the problem p is generalized Hadamard well-posed.

Proof. By Theorem 3.2 and Theorem 4.6, the conclusion naturally holds too.
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