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Abstract

This paper acquires soliton solutions of the potential KAV (PKdV) equation and the (341)-dimensional
Burgers equation (BE) by the two variables (%, é) expansion method (EM). Obtained soliton solutions

are designated in terms of kink, bell-shaped solitary wave, periodic and singular periodic wave solutions.
These solutions may be useful and desirable to explain some nonlinear physical phenomena. (©2016 All
rights reserved.
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1. Introduction

In applied sciences, each physical event can be modeled mathematically. Nonlinear partial differential
equations (NPDEs) have an important place for solution of problems in mechanic and geometry of the
surface work. So, it is important to have information about general solutions of these type of problems.

*Corresponding author
Email addresses: ftchier@ksu.edu.sa (Fairouz Tchier), ieinan@yahoo.com (Ibrahim E. Inan),
matematikci_23@yahoo.com.tr (Yavuz Ugurlu), minc@firat.edu.tr (Mustafa Inc), dumitru@cankaya.edu.tr (Dumitru
Baleanu)

Received 2016-04-08



F. Tchier, I. E. Inan, Y. Ugurlu, M. Inc, D. Baleanu, J. Nonlinear Sci. Appl. 9 (2016), 5029-5040 5030

There is no general method to obtain general solutions of NPDEs. It is generally used many transforma-
tion methods. These transformation methods are used to convert NPDEs to ODEs. Most of these methods
are based on finding balance term with balancing of the highest order linear and nonlinear term with the
help of the homogeneous balance method. Hence, these type methods only use for NPDEs. Some of these
methods are: tanh methods [3} [4, [I1] 12} 19], Exp-function method [7], Jacobi elliptic function method [5],

%I—EM [13] and the two variables (%, é)—EM 8].

/

%—expansion method firstly was presented by Wang et al. in 2008. This method contains an auxil-

7 ’ . . i I\ %
iary equation as G + AG + puG = 0 and includes a solution series as Zi\i 0 @i (%) . Later, Guo and

Zhou introduced to extended %I—EM [6] inspired by the %I—EM in 2010. They used a solution series as

M G/ 1 G/ 1—1 1 G'/ 2 . . X
ao+ Y o1 4 @ (ﬁ> + b; (@> o1+ m <@> for same auxiliary equation. They obtained more

different solutions by using the extended %—EM. Finally, Lii et al. improved the generalized %—EM [9].

AN
They chose auxiliary equation as f' = ho+ h1 f + ha f2 4+ ha f2 and used solution series as ag+ Zf\i 1@ (f7> .

Therefore, they found more solutions.

Recently, Li et al. [8] have presented the two variables (%, é)—EM They used auxiliary equation as

G" (€) + AG (€) — ;= 0 and considered solutions series as Zf\io a; " + Zi‘il bt~ for ¢ = %, Y= 2.
According to the studies in the literature, the solutions obtained by this method are more general from

solutions which are obtained by using the %— expansion method, the extended %— and the generalized

%—EMS. To see these differences, we refer the reader to [I6H1S].
In this study, we obtain hyperbolic, periodic and rational solutions for the PKdV equation [I4], the

. . . G 1
(3+1)-dimensional BE [2] by the two variables <?, @)—EM.

2. An analysis of the method

/

We give a simple illustration of the (%, %)—EM Let us consider the ODE

1!

G (&) +AG (&) = p, (2.1)
where ¢ = %/, Y= é, then we acquire

¢ =~ = A P =0 (2.2)
Step 1. If A < 0, we have the solution of Eq. (2.1))

G (&) = Ay sinh (\/—7/\5) + Ay cosh (\/_7)\§> n g?

where A; and As are arbitrary constants. Thus, we acquire

—-A

~ N+ 2 (6 —2up + A) (2:3)

,po

where o = A2 — A2,
Step 2. If A > 0, we write the solution of Eq. ({2.1])

G (§) = Ay sin (\55) + Aj cos (ﬁg) + %,
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and therefore,
-
2 2
= -2 A).
P Mo — 2 ((f) ) + )

Step 3. If A = 0, we obtain the solution of Eq. (2.1))
G () = 5+ Aig + As,

and therefore,
1

- A%-zuAg(

Now, let us illustrate how this method works. Therefore, let us consider an NLPDE is given by

P2 ¢* —2ump) .
Q (U, Uty Uy, Ugg, Utt, ) = 0)

where u = u (z,t) is an unknown function. By using the transformation u (x,t) = u (§), £ = x — V't then we
get a nonlinear ODE for u (£)

Q, = (u, ul,u”, ) =0. (2.4)
Assume that the solutions of Eq. (2.4) can be expressed by a polynomial ¢ and v as follows:

u() = Z a;i¢' + Z bid'4p, (2.5)
i=0 i=1

where a; (i =0,1,...,M) and b; (i = 1, ..., M) are constants to be determined later. M is a positive integer
that can be determined by balancing the highest order derivative and with the highest nonlinear terms in Eq.

(2.4). Substitute Eq. (2.5)) into Eq. (2.4]) along with Eq. (2.2) and Eq. (2.3), the Eq. (2.4) can be converted

into a polynomial in ¢ and 1. Equating the coefficients of each power of ¢'7 to zero yields a system of
algebraic equation for a;, b;, V, u and A. We solve this algebraic equation with the aid of Mathematica 7.0.
Thus, we obtain the general solutions in terms of the hyperbolic functions for A < 0. We acquire the general
solutions in terms of the trigonometric functions for A > 0 and we have the general solutions in terms of the
rational function for A = 0.

3. Applications

Example 3.1. The potential KdV equation has the form
up + 3u926 + Upge = 0. (3.1)
If we use u (z,t) =u (), { =z — Vi, Eq. becomes
—Vu' +3 (ul>2 +u =0, (3.2)
where V is velocity of soliton. We acquire balance M = 1. Thus, we choose a solution of Eq. as

w(§) = ao +ar1p (&) + b1y (€) . (3.3)

Case 1.1. For \ < 0, substituting Eq. (3.3 into Eq. (3.2) and by using Eq. (2.2) and Eq. (2.3), we acquire
the system for ag, a1, b1, 1,0, A and V. These systems are

1
a1 A% p? — 7203a§vu2 =0,

pwr+ A

1
2 2412
CZIV)\—2(11)\ +3(11)\ —+ m
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1 1
_CL1V/.L + 5@1)\M — 6@%)\“ — mﬁalAﬂg —+ mGa%)\/f’ = 0,

1 1
b1V — BbiA + 6a1bi A + ————12b)\p? — —————12a;b) \p? = 0,
N2+ 20- 'u2 20-

A +A
1 1
2 242 2 2 2 _
a1V—8a1)\+6a1)\—m3b1)\ +m3a1>\ﬂ —m3a1>\ﬂ —O, (34)
1
2 2 _
12@1/.L — 6CLLU —+ m(;blAlU/ = O,
6a1 + 3af L 3a=0
Som e = e ey oA = 0
! 601 A\ + ! 6a1b1 A 0
a =
1

1
6b1 A+ ﬂﬁalbl)\Qu =0,

+ A
—6b1 + 6a1b1 = 0.
We obtain the roots of Eq. (3.4 with the aid of Mathematica as

2+ N0

1
a=1 A0 b=tV —No, V=X @+ Mo #0 (3.5)

Substituting Eq. (3.5)) into Eq. (3.3), we acquire the following solutions of Eq. (3.1]):
Family 1.1.

w(z.t) = ap + (Al\/jACOSh (\/—7)\5) + Ay/—sinh (\/—7)\6)>
Aj sinh (\/TAS) + As cosh (\/—7)\5) + & (3.6)
e !
VA Aj sinh (V=) + Az cosh (V=AE) + 4
where 0 = A3 — A% and € =z + M\t
Setting A1 =0, A2 > 0 and x4 = 0 in Eq. , we have the hyperbolic solution
u(z,t) =ag £ ;\/—7)\0’ sech (\/—7)\ (x + At)) +v—Xtanh (\/j (z+ At)) . (3.7)

Setting Ao =0, A1 >0 and p =0 in Eq. (3.6]), we obtain the hyperbolic solution
1
u(xz,t) = ag + vV —Acoth (\/—)\ (x + /\t)) + $1V —Aocsch (\/—)\ (x + /\t)) .
1

Case 1.2. For \ > 0, substituting Eq. (3.3 into Eq. (3.2) and by using Eq. (2.2) and Eq. (2.3), we acquire
the system for ag, a1, b1, i, 0, A and V. These systems are

1 1 1
2 242 2 2y 2 _
a1V — 8a1 A + 6ai A + EPEN /\20361)\ R )\203(11)\# + EPEN /\203a1)\u =0,

1
arlVA— 2a1)\2 + 3a%)\2 — 5 3a1)\2u2 + ﬁ?)a%)?u? =0,

TR + Ao

1 1
2 3 2y ,,3
—a1Vp+ 5ai Adp — 6ajAp + —5——— 2 6a Au Y. 6a7 A’ =0,
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1
b1V — 5bi A + 6a1bi A — 1200 M + ————12a1b1 \pu® = 0,
20 — 2 20

1
—p? A + A
1

2, _
SR b ATy =10,

(T T —
LAH —uZ + N0

1
12 —6atp — —5———6b2Au =0
aip app 2 25 1 K )

+A

1

mel)\ﬂ - 20-60;1[)1)\,” =0

1
TR

1
—601 + 3@% + ng%)\ == O,
- g

+ A
—6b1 + 6a1b1 = 0.

We have the roots of Eq. (3.8) with the aid of Mathematica as

1
ar=1, A#0, blzi\ﬁ\/—/ﬂ—i—)\%, V==X 2+X\0c#0.

Thus, we acquire the following solutions of Eq. (3.1]).
Family 1.2.

A1V cos (ﬁﬁ) — Asv/Asin (ﬁg)
Ay sin (ﬁf) + As cos (ﬁf) + 4

N V=12 + N0 1
VA Aj sin (\ﬁ\f) + As cos (\Fz\ﬁ) +

u(z,t) =ag +

I

>=

where 0 = A3 + A3 and £ = z + .
Setting A1 =0, Ay > 0 and p =0 in Eq. (3.9)), we find the trigonometric solution

u(x,t) =ap+ Ai\/%sec (\f)\(x + /\t)> — VA tan (\/X(l‘—l— /\t)> .

2

Setting Ao =0, A1 >0 and p =0 in Eq. (3.9)), we have the trigonometric solution

1

u(z,t) = ag + VAcot (\f/\(a: + At)) + A—\/)\Jcsc (\F/\(x + At)) :
1

Case 1.3. For A = 0, we acquire the following system:

1
bV — 121>+ —————12a1b 2:0,
1 A%—2A2M 14 A%—QAg,u 101

1
- —3a?u% =0,
A2 — 2450 A2 — 24,0

1 1
_ Vv [ 3 - 6 2,3 =0
Ry T S sy TP

1
——6bjuy — ————6a1b1u =0
A% OV 1K A% Y ajo1p )

2 1 2
12&1M — 6(11# — m(ﬂ)lu = 0,

(3.8)

(3.9)

(3.10)
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—6a1 + 3a3 + 302 =0,

1
A2 — 245
—6by + 6a1b; = 0.
We have the roots of Eq. (3.10)) with the aid of Mathematica as

ar =1, by ==4/A}—240u, V=0, AT —245u#0.

Family 1.3 It is impossible to write solution of Eq. (3.1]) because V' = 0.

Remark 3.2. Wang et al. [I4] obtained the singular 1-soliton solution by using the ansatz method for Eq.

(3.1). Also, they found hyperbolic and trigonometric solutions by the aid of %—expansion method. Our
solutions (3.6) and (3.9)) are different from their solutions (17) and (18), and more general.

Example 3.3. Let us consider the (3+1)-dimensional BE of the form,
U — 2Uly — 20Uy — 2WU; — Ugy — Uyy — Uzz = 0,

Uy — vy = 0, (3.11)
Uy — wy = 0.

If we use u (z,t) =u (), { =z — Vt, Eq. becomes

V' — 2w — 200 — 2w — 30 = 0,

u' —v' =0, (3.12)
u —w' = 0.

From Eq. , we have
u(§) =aop+ a1 (§) + b (§),

w(§) =co+c19(§) +diy (§), (3.13)
v (&) =eo+e19 (&) + fi ().

Case 2.1. For A < 0, we acquire the following another systems:
1 1
2a0a1)\ + 2a100)\ + 2@160)\ + a1V)\ — 73b1)\2u + 720,1[)1/\2/1
w2+ No w? + N0
2a1d1/\2u + 5

+ A
1
7 g 2N =0,

1

* w2+ N2o

— 301 A+ 2a101 A 4+ 2a1d1 A 4 2a1 f1 A — 2apa1pt — 2a1cop — 2a1epp — ar Vi + 6b1)\,u2

W+ No

1 1
darbi \p® — ——5—dardi \i® — ——5—4a1 frip® = 0, (3.14)
u o ol o

R + A +A

1
12+ \2o

1

1 2
20_2b1d1)\ - ,[1127

2WIN? — ——— 201 fL1A\2 =
1 2 pvp Lf1 0,

6a X + 2a%/\ + 2a109\ + +2a1e4\ —

2apb1 + 2bico + 2b1eg + b1V 4+ 9a1u — Qa%,u —2a1c10 — 2a1e1 0+ 46%)\,u

w? 4+ N2o

1
4b1di A ————4b1 fiAp =0
+ 11M+M2+/\20 1fidp =0,

w? 4+ Mo
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1
2apa1 + 2a1c0 + 2a1e0 + a1V — 722(”1)1)\”
o

pw? 4+ Ao + A
1
mQCllfl/\M =0,

b1+ —
10

+ 2a1di A+ — By

w2+ Xo

1 1
2 —
20_ 2b1d1)\ - m2b1f1A = 0,

1
52\ — ————
p2 4+ X201 2 A + A
—6b1 4+ 4a1by + 2bicy + 2a1dy + 2bie; + 2a1 f1 = 0.
We find the roots of Eq. (3.14) with the aid of Mathematica as

1 1
ag = ag, a1 = 5751 = iﬁvf,lﬂ — Mo,

1
dy = £——=+/—pu2 — N0, 3.15
1 2\5 2 ( )

1
JJ1=t2—=V—p? — Mo,
bil 5y %

A#£0, V=-=2(ap+co+eo), MS—F)\ZMU#O.

Substituting Eq. (3.15)) into Eq. (3.13]), we obtain the following solutions of Eq. (3.11]).
Family 2.1.

—b6a; + 2a% + 2a1c1 + 2a1e1 —

Co = Co, 1 =

€0 = €o, €1 =

o= N =

D= an + 1 A1v/=Xcosh (V=XE) + Aav/—Asinh (V=)
u(z,y,2,t) = ag 2 Aj sinh (\/jf) + Aj cosh (\/jf) + &
L VoV 1
2v/\ Ay sinh (V=) + A cosh (V=) + 47

| <A1mcosh (V=€) + Ayy/—Xsinh (ﬁf))

' I 7t = +3
vy = ot g | T (VoAe) + A cosh (V) +

VPN 1 10
2V Apsinh (V=XE) + Az cosh (V=XE) + K ‘

2

L VR0 1
2v/\ Ajq sinh (\/jﬁ) + As cosh (\/jﬁ) i §a

where 0 = A2 — A2 and E =z +y+ 2 +2(ag +co + eo) t.
Setting A1 =0, Ay >0 and =0 in Eq. (3.16)), we have the hyperbolic solution

u(z,y,2,t) =ag+ ;msech <m5> + %\/TAtanh (ﬁf) ,

w(x,y,z,t) =c —l—l Arv/=X cosh (vVV=XE) + Agy/—Xsinh (v=XE)
yYs 2y 0 Al sinh (\/_7)\5) +A2 cosh (\/—7)\5) +%

v(z,y,2,t) = ey £ 22\/—7/\Jsech (ﬁ{) + %\/TAtanh (ﬁ{) ,

w(x,y,z,t) =co* 1;\/—7)\0'8(%}1 (\/35) + %\/TAtanh (\/—7){) .
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Setting As =0, A; > 0 and = 0 in Eq. (3.16)), we obtain the hyperbolic solutions

u(x,y,z,t) =ap + %\/TAcoth (\/—7)\5) + L\/—7)\<7(:S(3h <\/—7/\§) ,

24,
v(z,y,2,t) = ey + %\/jcoth (\/—7){) + 21141\/—)\acsch (\/—7)\6> , (3.17)

w(x,y,z,t) =co+ %\/jcoth (\/—7){) + 2ih\/—)\acsch (ﬁg) .

Case 2.2. For A > 0, substituting Eq. (3.13)) into Eq. (3.12)) and by using Eq. (2.2)) and Eq. (2.3), it yields
a set of algebraic equations for ag, a1, b1, co, c1,d1, €9, €1, f1, 4,0, A and V. These systems are

1 1
2apa1 A + 2a1co\ + 2a1ep) VAt ———-3b Ny — ————2a1b \?
aga1A + 2a1C0A + 2a1€0A + ay +—M2+>\20 1AT —2 1 A0 a101A™ 1
1
- 201 Ny — ————2 Nu=0
e e LT ey e arfix’p =0,
— 31 A + 2a1b1 A + 2a1d1 A + 2a1 fLA — 2apa1pp — 2a1cop — 2a1e0p — a1V — ﬁ(f“)bl)\,u2
—u? + Mo
1 2 1 2 1 2
T g M T e AN g e =0,
1
— 6&1A + 2@%)\ + 2@101)\ + +2(11€1>\ + m2b%>\2
1
— dINF ———— 2 1N =0
+—M2+)\20 1dy +—M2+>\20 1f1 :
1 1
2&0&1 "‘2@100 +26L1€0 —l—a1V—|— mgbl)\ﬂ— m4albl)\u (318)
1 1
— ————2a1d1 Ay — ——5—2 Au =20
ey el LR ey G arfidp =0,
—6ay + 242 + 2a;¢1 + 2a1e +¥2b2/\+¥2b d )\+¥2b fAA=0

—6b1 + 4a1by + 2bic1 + 2a1dy + 2brer + 2a1 f1 — a1 A+ e A =0,

aip —eip =0,
—bi+ f1 =0,
—a; +e; =0,

—a1 A+ A=0,
ajp—cipp =0,
—b1+dy =0,
—a1 +c; =0.

We find the roots of Eq. (3.18)) with the aid of Mathematica as

1 1
ap = ap, ai =5 by :iﬁv—/ﬂ-F)\QUa
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1 1
= =—, dy== =2+ N2 1
c=¢c, =35 & o w + Ao, (3.19)
1 1
€ =¢ € =5 f1=i2ﬁv—u2+/\20,

AN£0, V=-2(ag+co+e), p*+\uo#0.

Substituting Eq. (3.19) into Eq. (3.13)), we acquire the following solutions of Eq. (3.11]).
Family 2.2

1 (A1\f)\cos (\55) — AoV Asin (\f){))
u(x7yazat):a0+§ ]

Aj sin <\A§) + As cos <ﬁ§) + 4
L R .

2V A sin (ﬁg) + Ay cos (ﬁg) e
( ) 1 A1V cos (\Fz\f) — AV Asin (ﬁf)
v xay7zat = 60+ ~
2\ A sin <ﬁ§> + Aj cos <ﬁ§) + &
L VoA Ne ! (3.20)
2v/\ Aj sin (\f)\ﬁ) + As cos <\[\£) + §’
( ) 1 Ale)\cos (ﬁﬁ) — Agﬁsin (ﬁf)
w(x,y,2,t) =co+ =
2\ A sin (ﬁg) + A cos (ﬁg) + &
LV —p? 4+ X0 1
2v/\ A sin (ﬁg) + A cos (\F)\ﬁ) + %7
where 0 = A2 + A2 and E =z +y+ 2 +2(ag +co + eo) t.
Setting A; =0, A2 > 0 and p = 0 in Eq. (3.20)), we have the trigonometric solutions
1 1
u(z,y,z,t) =ag+ Q—AZ\/ Ao sec (ﬁf) — iﬁtan (\f)\f) ,
1 1
v(x,y,z,t) =€+ 2A2\/)\asec (\5\5) — §\f)\tan (\F)\f) )
1 1
w(x,y,2,t) =co* ﬂ\/ Ao sec <\f)\§> — i\F)\tan (\A{) )
2
Setting Ao =0, A1 >0 and u =0 in Eq. (3.20)), we have the trigonometric solutions
u(z,y,2,t) =ap+ }\F)\cot (ﬁ{) + L\//\acsc (\&5)
) ) b 2 2A1 )
v(z,y,2,t) = ey + 1\F)\co‘c <\A§) + L\/ Ao csc <\F/\§) , (3.21)
2 24,

w(z,y,2,t) =co+ %\f)\cot (\f/\g) + 211411\/%056 (\5{) .
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Case 2.3. For \ = 0, we acquire the algebraic system

1 1
-2 -2 -2 — a1V — —————6b1 i + —————4a by i
apaifl — 2a1Copt — 2a1€op — A1V [ A2 245 14+ A2 24 a101 4

1 1
+ 5 —Aardyp® + —————4a1 fip? =0,
AZ =2 App T AT oy,

1
2a0by + 2b 2b b1V + a1 p — 2aip — 2 -2 — ——————4bj
a0y + 201co + 201€0 + 01V + a1 — 2674 — 2a1c1p4 — 2a1e1 4 A2 2450 g

1
4b1d1)\,u — 1427451]01)\# = 0,
1

A2 _24sp — 245y

1
2apga1 + 2a1c9 + 2a1e9 + a1V + 3b1p — 142726“()1”
1

1
A% — 2A2M — 2142/,1/

1
e Yadyp— -2 —0,
FEIT Y aidipt 2= 2o ay fip

2b1f1 + Qb% +

1 1 1
A% - 2A2,LL A% - QAQ,U, A% - 2A2u
— 6b1 + 4a1b1 4 2b1cy + 2a1d1 + 2breq + 2a1 f1 = 0,

—6a; + Za% + 2a1c1 + 2a1e1 +

ap — ey =0,
—b1+d; =0,
—a;+c¢1 =0,
aipp— cipp =0,
—by + f1 =0,
—ai; +e1 =0.

We find the roots of Eq. (3.22)) with the aid of Mathematica as

1 7

; bl = j:§ A% - 2A2N7
1 7

, dp = :l:§ A% - 2A2/.L,
1 7

) fl ::l:§ A%—2A2H,

AN£0, V=-2(ap+co+e), Aipu—240u*#0.
Substituting Eq. (3.23) into Eq. (3.13]), we obtain the rational solutions

| =

ap = ag, ai =

Co = Co, C1 =

€0 = €0, €1 =

N = Ny

1

2b1dy =

1 1
Y, 2, 1) = ag + + A1)+ =4/ A2 — 24
Y (e i L A 2“(@8+Aﬁ+Aﬂ

1

1 1
Y, 2, ) = eg + + A+ =4/ A2 - 24
vnm s =t e ey ay) WA T VA 2“(@9+Aﬁ+Aﬁ

1 1 1
s Y at: + +A + - A2—2A
w(@,y,2t) = co 2(%§2+Alg+Az)(“5 D+ gVA 2“(@8+Aﬁ+Aﬁ

where { =z +y+ 2+ 2 (ag+ co + ep) t.

0,

)

)
)

(3.22)

(3.23)
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Remark 3.4. Lu et al. [10] obtained the exact solutions of Eq. (3.11]) by using the first integral method.
Their solutions (56) and (61) only contain type of tan and tanh solutions. Also, we have type of coth, csch,
sech, cot, sec and rational solutions.

Remark 3.5. Dai and Wang [I] found the exact solutions of Eq. (3.11)) by using the Exp-function method.
Their solutions (43) and (44) are similar to our solutions (3.17)) and (3.21)), respectively. Also, we obtained
rational solutions of Eq. (3.11]).

Remark 3.6. Wazwaz [15] obtained the single soliton solutions, multiple regular and singular kink solutions
of Eq. (3.11)) by using the tanh-coth method and Hirota’s bilinear method. We acquired Wazwaz’s solutions
similar and rational solutions of Eq. (3.11]).

Remark 3.7. All solutions obtained in this paper have been satisfied with Mathematica 7.0 by putting them

back into the original Eq. (3.1) and (3.11)).

4. Conclusions

In this study, the two variables (%, é)—EM is successfully applied to KdV equation and the (3+1)-

dimensional BE. We obtain traveling wave solutions of these equations by using the two variables (%, é)—

EM. This method can be used to search for the traveling wave solutions of the other NPDEs. As one of the
different sides of this method, algebraic equations system is simpler. Furthermore, this method gives more
different solutions compared to the other analytical methods and can be applied to the variable coefficients
or fractional differential equations. Therefore, many mathematicians work on this method.

Acknowledgment

This research project was supported by a grant from the ”"Research Center of the Center for Female
Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University.

References

[1] C. Q. Dai, Y.Y. Wang, New exact solutions of the (3+1)-dimensional Burgers system, Phys. Lett. A, 373 (2009),
181-187.

[2] C. Q. Dai, F. B. Yu, Special solitonic localized structures for the (3 + 1)-dimensional Burgers equation in water
waves, Wave Motion, 51 (2014), 52-59.

[3] S. A. Elwakil, S. K. El-labany, M. A. Zahran, R. Sabry, Modified extended tanh-function method for solving
nonlinear partial differential equations, Phys. Lett. A, 299 (2002), 179-188.

[4] E. Fan, Eztended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000),
212-218. [

[5] Z. Fu, S. Liu, S. Liu, Q. Zhao, New Jacobi elliptic function expansion and new periodic solutions of monlinear
wave equations, Phys. Lett. A, 290 (2001), 72-76.

[6] S. Guo, Y. Zhou, The extended (%)-empansion method and its applications to the Whitham-Broer-Kaup-like
equations and coupled Hirota-Satsuma KdV equations, Appl. Math. Comput., 215 (2010), 3214-3221.

[7] J. H. He, X. H. Wu, Ezp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006),
700-708. [

[8] L. Li, E. Li, M. Wang, The (G’ /G, 1/G)-expansion method and its application to travelling wave solutions of the
Zakharov equations, Appl. Math. J. Chinese Univ. Ser. B, 25 (2010), 454-462.

[9] H. L. Lii, X. Q. Liu, L. Niu, A generalized (G'/G)-ezpansion method and its applications to nonlinear evolution
equations, Appl. Math. Comput., 215 (2010), 3811-3816.

[10] B. Lu, H. Q. Zhang, F. D. Xie, Travelling wave solutions of nonlinear partial equations by using the first integral
method, Appl. Math. Comput., 216 (2010), 1329-1336.

[11] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Amer. J. Phys., 60 (1992), 650-654.

[12] E. J. Parkes, B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear
evolution equations, Comput. Phys. Commun., 98 (1996), 288-300.

[13] M. Wang, X. Li, J. Zhang, The (%)—ezpansion method and travelling wave solutions of nonlinear evolution
equations in mathematical physics, Phys. Lett. A, 372 (2008), 417-423.



F. Tchier, I. E. Inan, Y. Ugurlu, M. Inc, D. Baleanu, J. Nonlinear Sci. Appl. 9 (2016), 5029-5040 5040

[14] G. W. Wang, T. Z. Xu, G. Ebadi, S. Johnson, A. J. Strong, A. Biswas, Singular solitons, shock waves, and other
solutions to potential KdV equation, Nonlinear Dynam., 76 (2014), 1059-1068.

[15] A. M. Wazwaz, Multiple soliton solutions and multiple singular soliton solutions for the (3 + 1)-dimensional
Burgers equations, Appl. Math. Comput., 204 (2008), 942-948. [3.6

[16] E. M. E. Zayed, M. A. M. Abdelaziz, The two-variable (G'/G,1/G)-expansion method for solving the nonlinear
KdV-mKdV equation, Math. Probl. Eng., 2012 (2012), 14 pages.

[17] E. M. E. Zayed, K. A. E. Alurtfi, The (G'/G,1/G)-expansion method and its applications for solving two higher
order nonlinear evolution equations, Math. Probl. Eng., 2014 (2014), 20 pages.

[18] E. M. E. Zayed, S. A. Hoda Ibrahim, M. A. M. Abdelaziz, Traveling wave solutions of the nonlinear (3 + 1)-
dimensional Kadomtsev-Petviashvili equation using the two variables (G'/G,1/G)-expansion method, J. Appl.
Math., 2012 (2012), 8 pages.

[19] X.Zheng, Y. Chen, H. Zhang, Generalized extended tanh-function method and its application to (141)-dimensional
dispersive long wave equation, Phys. Lett. A, 311 (2003), 145-157.



	1 Introduction
	2 An analysis of the method
	3 Applications
	4 Conclusions

