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Abstract

In this paper, we introduce and analyze a multi-step hybrid steepest-descent algorithm by combining Ko-
rpelevich’s extragradient method, viscosity approximation method, hybrid steepest-descent method, Mann’s
iteration method and gradient-projection method (GPM) with regularization in the setting of infinite-
dimensional Hilbert spaces. Strong convergence was established. c©2016 All rights reserved.
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H and PC be the metric projection
of H onto C. Let S : C → H be a nonlinear mapping on C. We denote by Fix(S) the set of fixed points
of S and by R the set of all real numbers. A mapping S : C → H is called L-Lipschitz continuous (or
L-Lipschitzian) if there exists a constant L ≥ 0 such that ‖Sx−Sy‖ ≤ L‖x− y‖,∀x, y ∈ C. In particular, if
L = 1 then S is called a nonexpansive mapping; if L ∈ [0, 1) then S is called a contraction. Let A : C → H
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be a nonlinear mapping on C. We consider the following variational inequality problem (VIP): find a point
x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.1)

The solution set of VIP (1.1) is denoted by VI(C,A).
In 1976, Korpelevich [26] proposed an iterative algorithm for solving the VIP (1.1) in Euclidean space

Rn, which is known as the extragradient method. Subsequently, many authors improved it in various ways;
see e.g., [9–11, 15, 19, 27, 28] and references therein.

On the other hand, let C and Q be nonempty closed convex subsets of infinite-dimensional real Hilbert
spaces H and H, respectively. The split feasibility problem (SFP) is to find a point x∗ with the property:

x∗ ∈ C and Ax∗ ∈ Q, (1.2)

where A ∈ B(H,H) and B(H,H) denotes the family of all bounded linear operators from H to H. We
denote by Γ the solution set of the SFP (1.2). In 1994, the SFP (1.2) was first introduced by Censor
and Elfving [22], in finite-dimensional Hilbert spaces, for modeling inverse problems which arise from phase
retrievals and in medical image reconstruction.

Assume that the SFP (1.2) is consistent, that is, the solution set Γ of the SFP (1.2) is nonempty. Let f :
H → R be a continuous differentiable function. The minimization problem minx∈C f(x) := ‖Ax−PQAx‖2/2
is ill-posed. In 2010, Xu [35] considered the following Tikhonov regularization problem:

min
x∈C

fα(x) :=
1

2
‖Ax− PQAx‖2 +

1

2
α‖x‖2,

where α > 0 is the regularization parameter. Very recently, by combining the gradient-projection method
with regularization and extragradient method due to Nadezhkina and Takahashi [27], Ceng, Ansari and Yao
[12] proposed a Mann type extragradient-like algorithm, and proved that the sequences generated by the
proposed algorithm converge weakly to a common solution of the SFP (1.2) and the fixed point problem of
a nonexpansive mapping.

On the other hand, let S and T be two nonexpansive self-mappings on a nonempty closed convex subset
C of a real Hilbert space H. In 2009, Yao, Liou and Marino [40, Theorem 3.2] considered the following
hierarchical variational inequality problem (HVIP): find hierarchically a fixed point of T , which is a solution
to the VIP for monotone mapping I − S; namely, find x̃ ∈ Fix(T ) such that

〈(I − S)x̃, p− x̃〉 ≥ 0, ∀p ∈ Fix(T ). (1.3)

The solution set of the HVIP (1.3) is denoted by f. It is not hard to check that solving the HVIP (1.3)
is equivalent to the fixed point problem of the composite mapping PFix(T )S, that is, find x̃ ∈ C such that
x̃ = PFix(T )Sx̃. They introduced and analyzed an iterative algorithm for solving the HVIP (1.3).

Furthermore, let ϕ : C → R be a real-valued function, A : H → H be a nonlinear mapping and
Θ : C × C → R be a bifunction. In 2008, Peng and Yao [28] introduced the following generalized mixed
equilibrium problem (GMEP) of finding x ∈ C such that

Θ(x, y) + ϕ(y)− ϕ(x) + 〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.4)

We denote the set of solutions of GMEP (1.4) by GMEP(Θ , ϕ,A). The GMEP (1.4) is very general in the
sense that it includes, as special cases, optimization problems, variational inequalities, minimax problems,
Nash equilibrium problems in noncooperative games and others. The GMEP is further considered and
studied; see e.g., [7, 9, 13–15, 19].

It was assumed in [28] that Θ : C×C → R is a bifunction satisfying conditions (A1)-(A4) and ϕ : C → R
is a lower semicontinuous and convex function with restriction (B1) or (B2):

(A1) Θ(x, x) = 0 for all x ∈ C;
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(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for any x, y ∈ C;

(A3) Θ is upper-hemicontinuous, that is, for each x, y, z ∈ C,

lim sup
t→0+

Θ(tz + (1− t)x, y) ≤ Θ(x, y);

(A4) Θ(x, ·) is convex and lower semicontinuous for each x ∈ C;

(B1) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊂ C and yx ∈ C such that for any
z ∈ C \Dx, Θ(z, yx) + ϕ(yx)− ϕ(z) + 1

r 〈yx − z, z − x〉 < 0;

(B2) C is a bounded set.

In addition, let B be a single-valued mapping of C into H and R be a multivalued mapping with
D(R) = C. Consider the following variational inclusion: find a point x ∈ C such that

0 ∈ Bx+Rx. (1.5)

We denote by I(B,R) the solution set of the variational inclusion (1.5). Let a set-valued mapping R :
D(R) ⊂ H → 2H be maximal monotone. We define the resolvent operator JR,λ : H → D(R) associated
with R and λ by JR,λx = (I + λR)−1x, ∀x ∈ H, where λ is a positive number. In 1998, Huang [25]
studied problem (1.5) in the case where R is maximal monotone and B is strongly monotone and Lipschitz
continuous with D(R) = C = H. Subsequently, Zeng, Guu and Yao [45] further studied problem (1.5) in
the case which is more general than Huang’s one [25].

In this paper, we introduce and analyze a multi-step hybrid steepest-descent algorithm by combin-
ing Korpelevich’s extragradient method, viscosity approximation method, hybrid steepest-descent method,
Mann’s iteration method and gradient-projection method (GPM) with regularization in the setting of
infinite-dimensional Hilbert spaces. It is proven that under appropriate assumptions the proposed algo-
rithm converges strongly to a solution of the SFP (1.2) with constraints of several problems: finitely many
GMEPs, finitely many variational inclusions and the fixed point problem of an infinite family of nonexpan-
sive mappings. Our results improve, extend and develop the corresponding results in the literature; see e.g.,
[40, Theorems 3.1 and 3.2] and [12, Theorem 3.2]. Recent results in this directions can be also found, e.g.,
in [1, 2, 4, 5, 8, 16, 17, 20, 21, 32, 33, 37–39, 42–44].

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product and norm are
denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H. We write
xn ⇀ x (resp. xn → x) to indicate that the sequence {xn} converges weakly (resp. strongly) to x.
Moreover, we use ωw(xn) to denote the weak ω-limit set of {xn}, that is, ωw(xn) := {x ∈ H : xni ⇀
x for some subsequence {xni} of {xn}}. The metric projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈ H, the unique point PCx ∈ C such that ‖x− PCx‖ = infy∈C ‖x− y‖.

Definition 2.1. Let T be a mapping with domain D(T ) ⊂ H and range R(T ) ⊂ H. Then T is said to be

(i) monotone if 〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ D(T );

(ii) β-strongly monotone if 〈Tx− Ty, x− y〉 ≥ η‖x− y‖2,∀x, y ∈ D(T ), for some β > 0;

(iii) ν-inverse-strongly monotone if 〈Tx− Ty, x− y〉 ≥ ν‖Tx− Ty‖2, ∀x, y ∈ D(T ), for some ν > 0.

It is clear that if T is ν-inverse-strongly monotone, then T is monotone and 1
ν -Lipschitz continuous.

Moreover, one also has that, for all u, v ∈ D(T ) and λ > 0,

‖(I − λT )u− (I − λT )v‖2 ≤ ‖u− v‖2 + λ(λ− 2ν)‖Tu− Tv‖2. (2.1)

So, if λ ≤ 2ν, then I − λT is a nonexpansive mapping. Next, some important properties of projections are
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gathered in the following proposition.

Proposition 2.2 ([24]). For given x ∈ H and z ∈ C:

(i) z = PCx ⇔ 〈x− z, y − z〉 ≤ 0, ∀y ∈ C;

(ii) z = PCx ⇔ ‖x− z‖2 ≤ ‖x− y‖2 − ‖y − z‖2, ∀y ∈ C;

(iii) 〈PCx− PCy, x− y〉 ≥ ‖PCx− PCy‖2, ∀y ∈ H.

Definition 2.3. A mapping T : H → H is said to be firmly nonexpansive if 2T − I is nonexpansive, or
equivalently, if T is 1-inverse strongly monotone (1-ism); alternatively, T is firmly nonexpansive if and only
if T is expressed as T = (I + S)/2, where S is nonexpansive on H.

Proposition 2.4 ([18]). Assume that Θ : C × C → R satisfies (A1)-(A4) and let ϕ : C → R be a proper
lower semicontinuous and convex function. Assume that either (B1) or (B2) holds. For r > 0 and x ∈ H,

define a mapping T
(Θ ,ϕ)
r : H → C as follows:

T (Θ ,ϕ)
r (x) = {z ∈ C : Θ(z, y) + ϕ(y)− ϕ(z) +

1

r
〈y − z, z − x〉 ≥ 0,∀y ∈ C}

for all x ∈ H. Then the following hold:

(i) for each x ∈ H, T (Θ ,ϕ)
r (x) is nonempty and single-valued;

(ii) T
(Θ ,ϕ)
r is firmly nonexpansive, that is,

‖T (Θ ,ϕ)
r x− T (Θ ,ϕ)

r y‖2 ≤ 〈T (Θ ,ϕ)
r x− T (Θ ,ϕ)

r y, x− y〉

for any x, y ∈ H;

(iii) Fix(T
(Θ ,ϕ)
r ) = MEP(Θ , ϕ);

(iv) MEP(Θ , ϕ) is closed and convex;

(v) ‖T (Θ ,ϕ)
s x− T (Θ ,ϕ)

t x‖2 ≤ s−t
s 〈T

(Θ ,ϕ)
s x− T (Θ ,ϕ)

t x, T
(Θ ,ϕ)
s x− x〉 for all s, t > 0 and x ∈ H.

Definition 2.5. A mapping T : H → H is said to be an averaged mapping if it can be written as the
average of the identity I and a nonexpansive mapping, that is, T ≡ (1 − α)I + αS where α ∈ (0, 1) and
S : H → H is nonexpansive. More precisely, when the last equality holds, we say that T is α-averaged.
Thus firmly nonexpansive mappings (in particular, projections) are 1

2 -averaged mappings.

Proposition 2.6 ([6]). Let T : H → H be a given mapping.

(i) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(ii) If T is ν-ism, then for γ > 0, γT is ν
γ -ism.

(iii) T is averaged if and only if the complement I−T is ν-ism for some ν > 1/2. Indeed, for α ∈ (0, 1), T
is α-averaged if and only if I − T is 1

2α -ism.

Proposition 2.7 ([6, 23]). Let S, T, V : H → H be given operators.

(i) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is averaged and V is nonexpansive, then T is
averaged.

(ii) T is firmly nonexpansive if and only if the complement I − T is firmly nonexpansive.
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(iii) If T = (1−α)S+αV for some α ∈ (0, 1) and if S is firmly nonexpansive and V is nonexpansive, then
T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the mappings {Ti}Ni=1

is averaged, then so is the composite T1 ···TN . In particular, if T1 is α1-averaged and T2 is α2-averaged,
where α1, α2 ∈ (0, 1), then the composite T1T2 is α-averaged, where α = α1 + α2 − α1α2.

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma 2.8 ([31]). Let X be a real inner product space. Then the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ X.

Lemma 2.9 ([31]). Let H be a real Hilbert space. Then the following hold:

(a) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 for all x, y ∈ H;

(b) ‖λx+ µy‖2 = λ‖x‖2 + µ‖y‖2 − λµ‖x− y‖2 for all x, y ∈ H and λ, µ ∈ [0, 1] with λ+ µ = 1.

Let {Tn}∞n=1 be an infinite family of nonexpansive self-mappings on C and {ρn}∞n=1 be a sequence of
nonnegative numbers in [0, 1]. For any n ≥ 1, define a self-mapping Wn on C as follows:

Un,n+1 = I,

Un,n = ρnTnUn,n+1 + (1− ρn)I,

· · ·
Un,k = ρkTkUn,k+1 + (1− ρk)I,
· · ·
Un,2 = ρ2T2Un,3 + (1− ρ2)I,
Wn = Un,1 = ρ1T1Un,2 + (1− ρ1)I.

(2.2)

Such a mapping Wn is called the W -mapping generated by Tn, Tn−1, ..., T1 and ρn, ρn−1, ..., ρ1.

Lemma 2.10 ([30]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Tn}∞n=1 be
a sequence of nonexpansive self-mappings on C such that

⋂∞
n=1 Fix(Tn) 6= ∅ and let {ρn} be a sequence in

(0, θ] for some θ ∈ (0, 1). Then, for every x ∈ C and k ≥ 1 the limit limn→∞ Un,kx exists.

Remark 2.11 ([41], Remark 3.1). It can be known from Lemma 2.10 that if D is a nonempty bounded subset
of C, then for ε > 0 there exists n0 ≥ k such that for all n > n0, supx∈D ‖Un,kx− Ukx‖ ≤ ε.
Remark 2.12 ([41]). Utilizing Lemma 2.10, we define a mapping W : C → C by Wx = limn→∞Wnx =
limn→∞ Un,1x, ∀x ∈ C. Such a W is called the W -mapping generated by T1, T2, ... and ρ1, ρ2, .... Since Wn

is nonexpansive, W : C → C is also nonexpansive. If {xn} is a bounded sequence in C, then from Remark
2.12, one can show that limn→∞ ‖Wnxn −Wxn‖ = 0.

Lemma 2.13 ([30]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Tn}∞n=1 be
a sequence of nonexpansive self-mappings on C such that

⋂∞
n=1 Fix(Tn) 6= ∅, and let {ρn} be a sequence in

(0, θ] for some θ ∈ (0, 1). Then, Fix(W ) =
⋂∞
n=1 Fix(Tn).

Lemma 2.14 ([24]). (Demiclosedness principle). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let S be a nonexpansive self-mapping on C. Then I −S is demiclosed. That is, whenever {xn} is
a sequence in C weakly converging to some x ∈ C and the sequence {(I − S)xn} strongly converges to some
y, it follows that (I − S)x = y. Here I is the identity operator of H.

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some notations. Let
λ be a number in (0, 1] and let µ > 0. Associating with a nonexpansive mapping T : C → H, we define the
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mapping T λ : C → H by T λx := Tx− λµF (Tx), ∀x ∈ C, where F : H → H is an operator such that, for
some positive constants κ, η > 0, F is κ-Lipschitzian and η-strongly monotone on H; that is, F satisfies the
condition that for all x, y ∈ H,

‖Fx− Fy‖ ≤ κ‖x− y‖ and 〈Fx− Fy, x− y〉 ≥ η‖x− y‖2.

Lemma 2.15 ([36], Lemma 3.1). T λ is a contraction provided 0 < µ < 2η
κ2

; that is,

‖T λx− T λy‖ ≤ (1− λτ)‖x− y‖, ∀x, y ∈ C,

where τ = 1−
√

1− µ(2η − µκ2) ∈ (0, 1].

Lemma 2.16 ([34]). Let {an} be a sequence of nonnegative real numbers satisfying the property:

an+1 ≤ (1− sn)an + snbn + tn, ∀n ≥ 1,

where {sn} ⊂ (0, 1] and {bn} are such that

(i)
∑∞

n=1 sn =∞;

(ii) either lim supn→∞ bn ≤ 0 or
∑∞

n=0 |snbn| <∞;

(iii)
∑∞

n=1 tn <∞ where tn ≥ 0, for all n ≥ 1.

Then limn→∞ an = 0.

Recall that a set-valued mapping T : D(T ) ⊂ H → 2H is called monotone if for all x, y ∈ D(T ), f ∈ Tx
and g ∈ Ty imply that 〈f − g, x − y〉 ≥ 0. A set-valued mapping T is called maximal monotone if
T is monotone and (I + λT )D(T ) = H for each λ > 0, where I is the identity mapping of H. We
denote by G(T ) the graph of T . It is known that a monotone mapping T is maximal if and only if, for
(x, f) ∈ H ×H, 〈f − g, x− y〉 ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx. Next we provide an example to
illustrate the concept of maximal monotone mapping. Let A : C → H be a monotone, k-Lipschitz-continuous
mapping and let NCv be the normal cone to C at v ∈ C, that is, NCv = {u ∈ H : 〈v − p, u〉 ≥ 0, ∀p ∈ C}.
Define

T̃ v =

{
Av +NCv, if v ∈ C,
∅, if v 6∈ C.

Then, T̃ is maximal monotone (see [29]) such that 0 ∈ T̃ v ⇐⇒ v ∈ VI(C,A).
Let R : D(R) ⊂ H → 2H be a maximal monotone mapping. Let λ, µ > 0 be two positive numbers.

Lemma 2.17 ([3]). There holds the resolvent identity

JR,λx = JR,µ

(µ
λ
x+ (1− µ

λ
)JR,λx

)
, ∀x ∈ H.

Remark 2.18. For λ, µ > 0, there holds the following relation

‖JR,λx− JR,µy‖ ≤ ‖x− y‖+ |λ− µ|
(

1

λ
‖JR,λx− y‖+

1

µ
‖x− JR,µy‖

)
, ∀x, y ∈ H. (2.3)

In terms of Huang [25] (see also [45]), there holds the following property for the resolvent operator
JR,λ : H → D(R).

Lemma 2.19. JR,λ is single-valued and firmly nonexpansive, that is,

〈JR,λx− JR,λy, x− y〉 ≥ ‖JR,λx− JR,λy‖2, ∀x, y ∈ H.

Consequently, JR,λ is nonexpansive and monotone.
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Lemma 2.20 ([10]). Let R be a maximal monotone mapping with D(R) = C. Then for any given λ >
0, u ∈ C is a solution of problem (1.5) if and only if u ∈ C satisfies

u = JR,λ(u− λBu).

Lemma 2.21 ([45]). Let R be a maximal monotone mapping with D(R) = C and let B : C → H be a strongly
monotone, continuous and single-valued mapping. Then for each z ∈ H, the equation z ∈ (B + λR)x has a
unique solution xλ for λ > 0.

Lemma 2.22 ([10]). Let R be a maximal monotone mapping with D(R) = C and B : C → H be a monotone,
continuous and single-valued mapping. Then (I + λ(R + B))C = H for each λ > 0. In this case, R + B is
maximal monotone.

3. Main Results

We now state and prove the main result of this paper. Let H be a real Hilbert space and f : H → R be
a function. Then the minimization problem minx∈C f(x) := 1

2‖Ax−PQAx‖
2 is ill-posed. Xu [35] considered

the following Tikhonov’s regularization problem:

min
x∈C

fα(x) :=
1

2
‖Ax− PQAx‖2 +

1

2
α‖x‖2,

where α > 0 is the regularization parameter. It is clear that the gradient∇fα = ∇f+αI = A∗(I−PQ)A+αI
is (α+ ‖A‖2)-Lipschitz continuous.

We are now in a position to state and prove the main result in this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let M,N be two
positive integers. Let Θk be a bifunction from C ×C to R satisfying (A1)-(A4) and ϕk : C → R∪{+∞} be
a proper lower semicontinuous and convex function with restriction (B1) or (B2), where k ∈ {1, 2, ...,M}.
Let Ri : C → 2H be a maximal monotone mapping and let Ak : H → H and Bi : C → H be µk-inverse
strongly monotone and ηi-inverse strongly monotone, respectively, where k ∈ {1, 2, ...,M}, i ∈ {1, 2, ..., N}.
Let S : H → H be a nonexpansive mapping and V : H → H be a ρ-contraction with coefficient ρ ∈
[0, 1). Let {Tn}∞n=1 be a sequence of nonexpansive self-mappings on C and {ρn} be a sequence in (0, θ]
for some θ ∈ (0, 1). Let F : H → H be κ-Lipschitzian and η-strongly monotone with positive constants
κ, η > 0 such that 0 ≤ γ < τ and 0 < µ < 2η

κ2
where τ = 1 −

√
1− µ(2η − µκ2). Assume that Ω :=⋂∞

n=1 Fix(Tn) ∩
⋂M
k=1 GMEP(Θk, ϕk, Ak) ∩

⋂N
i=1 I(Bi, Ri) ∩ Γ 6= ∅. Let {λn} ⊂ [a, b] ⊂ (0, 2

‖A‖2 ), {αn} ⊂
(0,∞) with

∑∞
n=1 αn < ∞, {εn}, {δn}, {βn}, {γn}, {σn} ⊂ (0, 1) with βn + γn + σn = 1, and {λi,n} ⊂

[ai, bi] ⊂ (0, 2ηi), {rk,n} ⊂ [ck, dk] ⊂ (0, 2µk) where i ∈ {1, 2, ..., N} and k ∈ {1, 2, ...,M}. For arbitrarily
given x1 ∈ H, let {xn} be a sequence generated by

un = T (ΘM ,ϕM )
rM,n

(I − rM,nAM )T
(ΘM−1,ϕM−1)
rM−1,n (I − rM−1,nAM−1) · · ·T (Θ1,ϕ1)

r1,n (I − r1,nA1)xn,

vn = JRN ,λN,n
(I − λN,nBN )JRN−1,λN−1,n

(I − λN−1,nBN−1) · · · JR1,λ1,n(I − λ1,nB1)un,

yn = βnxn + γnPC(I − λn∇fαn)vn + σnWnPC(I − λn∇fαn)vn,

xn+1 = εnγ(δnV xn + (1− δn)Sxn) + (I − εnµF )yn, ∀n ≥ 1,

(3.1)

where ∇fαn = αnI +∇f and Wn is the W -mapping generated by (2.2). Suppose that

(C1) limn→∞ εn = 0,
∑∞

n=1 εn =∞ and limn→∞
1
εn
|1− δn−1

δn
| = 0;

(C2) lim supn→∞
δn
εn
<∞, limn→∞

1
εn
| 1δn −

1
δn−1
| = 0 and limn→∞

1
δn
|1− εn−1

εn
| = 0;
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(C3) limn→∞
θn

εnδn
= 0, limn→∞

|βn−βn−1|
εnδn

= 0 and limn→∞
|γn−γn−1|

εnδn
= 0;

(C4) limn→∞
|λi,n−λi,n−1|

εnδn
= 0 and limn→∞

|rk,n−rk,n−1|
εnδn

= 0 for i = 1, 2, ..., N and k = 1, 2, ...,M ;

(C5) limn→∞
|λn−λn−1|

εnδn
= 0, limn→∞

|λnαn−λn−1αn−1|
εnδn

= 0 and limn→∞
αn
δn

= 0;

(C6) 0 < lim infn→∞ βn ≤ lim supn→∞(βn + σn) < 1 and lim infn→∞ σn > 0.

Then we have:

(i) limn→∞
‖xn+1−xn‖

δn
= 0;

(ii) ωw(xn) ⊂ Ω;

(iii) {xn} converges strongly to a solution x∗ of the SFP (1.2), which is a unique solution in Ω to the HVIP

〈(µF − γS)x∗, p− x∗〉 ≥ 0, ∀p ∈ Ω .

Proof. First of all, observe that µη ≥ τ ⇔ κ ≥ η, and

〈(µF − γS)x− (µF − γS)y, x− y〉 ≥ (µη − γ)‖x− y‖2, ∀x, y ∈ H.

Since 0 ≤ γ < τ and κ ≥ η, we know that µη ≥ τ > γ and hence the mapping µF − γS is (µη− γ)-strongly
monotone. Moreover, it is clear that the mapping µF − γS is (µκ + γ)-Lipschitzian. Thus, there exists a
unique solution x∗ in Ω to the VIP

〈(µF − γS)x∗, p− x∗〉 ≥ 0, ∀p ∈ Ω .

That is, {x∗} = VI(Ω , µF − γS). Now, we put

∆k
n = T (Θk,ϕk)

rk,n
(I − rk,nAk)T

(Θk−1,ϕk−1)
rk−1,n (I − rk−1,nAk−1) · · ·T (Θ1,ϕ1)

r1,n (I − r1,nA1)xn

for all k ∈ {1, 2, ...,M} and n ≥ 1,

Λin = JRi,λi,n(I − λi,nBi)JRi−1,λi−1,n
(I − λi−1,nBi−1) · · · JR1,λ1,n(I − λ1,nB1)

for all i ∈ {1, 2, ..., N}, ∆0
n = I and Λ0

n = I, where I is the identity mapping on H. Then we have that
un = ∆M

n xn and vn = ΛNn un.
In addition, in terms of condition (C6), we may assume, without loss of generality, that {βn} ⊂

[c, d] ⊂ (0, 1). Now, we show that PC(I − λ∇fα) is ζ-averaged for each λ ∈
(

0, 2
α+‖A‖2

)
, where ζ =(

2 + λ(α+ ‖A‖2)
)
/4 ∈ (0, 1). Indeed, since ∇f = A∗(I − PQ)A is 1

‖A‖2 -ism, it is easy to see that

(α+ ‖A‖2)〈∇fα(x)−∇fα(y), x− y〉 ≥ ‖∇fα(x)−∇fα(y)‖2.

Hence, it follows that ∇fα = αI + A∗(I − PQ)A is 1
α+‖A‖2 -ism. Thus, by Proposition 2.6 (ii), λ∇fα is

1
λ(α+‖A‖2) -ism. From Proposition 2.6 (iii), the complement I−λ∇fα is λ(α+‖A‖2)

2 -averaged. Therefore, noting

that PC is 1
2 -averaged and utilizing Proposition 2.7 (iv), we obtain that for each λ ∈ (0, 2

α+‖A‖2 ), PC(I −
λ∇fα) is ζ-averaged with ζ =

(
2 + λ(α+ ‖A‖2)

)
/4 ∈ (0, 1). This shows that PC(I−λ∇fα) is nonexpansive.

Taking into account that {λn} ⊂ [a, b] ⊂ (0, 2
‖A‖2 ) and αn → 0, we get

lim sup
n→∞

2 + λn(αn + ‖A‖2)
4

≤ 2 + b‖A‖2

4
< 1.
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Without loss of generality, we may assume that ζn := 2+λn(αn+‖A‖2)
4 < 1 for each n ≥ 1. So, PC(I−λn∇fαn)

is nonexpansive for each n ≥ 1. Since lim supn→∞
λn(αn+‖A‖2)

2 ≤ b‖A‖2
2 < 1, it is known similarly that

I − λn∇fαn is nonexpansive for each n ≥ 1. Next, we divide the rest of the proof into several steps.

Step 1. We prove that {xn} is bounded. Indeed, take a fixed p ∈ Ω arbitrarily. Utilizing (2.1) and
Proposition 2.4 (ii) we have

‖un − p‖ ≤ ‖∆M−1
n xn −∆M−1

n p‖ ≤ · · · ≤ ‖∆0
nxn −∆0

np‖ = ‖xn − p‖. (3.2)

Utilizing (2.1) and Lemma 2.19 we have

‖vn − p‖ = ‖ΛNn un − ΛNn p‖ ≤ ‖ΛN−1n un − ΛN−1n p‖ ≤ · · · ≤ ‖Λ0
nun − Λ0

np‖ = ‖un − p‖. (3.3)

Combining (3.2) and (3.3), we have
‖vn − p‖ ≤ ‖xn − p‖. (3.4)

For simplicity, put tn = PC(I − λn∇fαn)vn for each n ≥ 0. Note that PC(I − λ∇f)p = p for λ ∈ (0, 2
‖A‖2 ).

Hence, from (3.4), it follows that

‖tn − p‖ ≤ ‖PC(I − λn∇fαn)vn − PC(I − λn∇fαn)p‖+ ‖PC(I − λn∇fαn)p− PC(I − λn∇f)p‖
≤ ‖vn − p‖+ λnαn‖p‖ ≤ ‖xn − p‖+ λnαn‖p‖.

(3.5)

Since Wnp = p for all n ≥ 1 and Wn is a nonexpansive mapping, we obtain from (3.1) and (3.5) that

‖yn − p‖ ≤ βn‖xn − p‖+ γn‖tn − p‖+ σn‖Wntn − p‖
≤ βn‖xn − p‖+ (γn + σn) (‖xn − p‖+ λnαn‖p‖)
≤ ‖xn − p‖+ λnαn‖p‖.

(3.6)

Utilizing Lemma 2.16, we deduce from (3.1), (3.6), {λn} ⊂ [a, b] ⊂ (0, 2
‖A‖2 ) and 0 ≤ γ < τ that for all n ≥ 1

‖xn+1 − p‖ ≤ εn ‖δn(γV xn − µFp) + (1− δn)(γSxn − µFp)‖
+ ‖(I − εnµF )yn − (I − εnµF )p‖
≤ εn [δn(γρ‖xn − p‖+ ‖γV p− µFp‖+ (1− δn)(γ‖xn − p‖+ ‖γSp− µFp‖)]

+(1− εnτ)‖yn − p‖
≤ εnγ‖xn − p‖+ εn max {‖γV p− µFp‖, ‖γSp− µFp‖}

+(1− εnτ)‖xn − p‖+ αnb‖p‖
≤ max

{
‖xn − p‖, ‖γV p−µFp‖τ−γ , ‖γSp−µFp‖τ−γ

}
+ αnb‖p‖.

By induction, we get

‖xn+1 − p‖ ≤ max

{
‖x1 − p‖,

‖γV p− µFp‖
τ − γ

,
‖γSp− µFp‖

τ − γ

}
+

n∑
j=1

αjb‖p‖

for all n ≥ 1. Thus, {xn} is bounded (due to
∑∞

n=1αn <∞) and so are the sequences {tn}, {un}, {vn},
and {yn}.

Step 2. We prove that limn→∞
‖xn+1−xn‖

δn
= 0.

Indeed, utilizing (2.1) and (2.3), we obtain that

‖vn+1 − vn‖ =
∥∥ΛNn+1un+1 − ΛNn un

∥∥
≤
∥∥∥JRN ,λN,n+1

(I − λN,n+1BN )ΛN−1n+1 un+1 − JRN ,λN,n+1
(I − λN,nBN )ΛN−1n+1 un+1

∥∥∥
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+
∥∥∥JRN ,λN,n+1

(I − λN,nBN )ΛN−1n+1 un+1 − JRN ,λN,n
(I − λN,nBN )ΛN−1n un

∥∥∥
≤ |λN,n+1 − λN,n|

(
‖BNΛN−1n+1 un+1‖+ M̃

)
+
∥∥∥ΛN−1n+1 un+1 − ΛN−1n un

∥∥∥
≤ · · ·

≤ |λN,n+1 − λN,n|
(
‖BNΛN−1n+1 un+1‖+ M̃

)
+ |λN−1,n+1 − λN−1,n|

(
‖BN−1ΛN−2n+1 un+1‖+ M̃

)
(3.7)

+ · · ·+ |λ1,n+1 − λ1,n|
(
‖B1Λ0

n+1un+1‖+ M̃
)

+
∥∥Λ0

n+1un+1 − Λ0
nun

∥∥
≤ M̃0

N∑
i=1

|λi,n+1 − λi,n|+ ‖un+1 − un‖,

where

sup
n≥1
{ 1

λN,n+1

∥∥∥JRN ,λN,n+1
(I − λN,nBN )ΛN−1n+1 un+1 − (I − λN,nBN )ΛN−1n un

∥∥∥
+

1

λN,n

∥∥∥(I − λN,nBN )ΛN−1n+1 un+1 − JRN ,λN,n
(I − λN,nBN )ΛN−1n un

∥∥∥} ≤ M̃
for some M̃ > 0 and supn≥0

{∑N
i=1 ‖BiΛ

i−1
n+1un+1‖+ M̃

}
≤ M̃0 for some M̃0 > 0.

Utilizing Proposition 2.4 (ii), (v), we deduce that

‖un+1 − un‖ = ‖∆M
n+1xn+1 −∆M

n xn‖
≤ ‖T (ΘM ,ϕM )

rM,n+1
(I − rM,n+1AM )∆M−1

n+1 xn+1 − T (ΘM ,ϕM )
rM,n

(I − rM,nAM )∆M−1
n+1 xn+1‖

+ ‖T (ΘM ,ϕM )
rM,n

(I − rM,nAM )∆M−1
n+1 xn+1 − T (ΘM ,ϕM )

rM,n
(I − rM,nAM )∆M−1

n xn‖

≤ |rM,n+1 − rM,n|[‖AM∆M−1
n+1 xn+1‖+ ‖∆M−1

n+1 xn+1 −∆M−1
n xn‖

+
1

rM,n+1
‖T (ΘM ,ϕM )

rM,n+1
(I − rM,n+1AM )∆M−1

n+1 xn+1 − (I − rM,n+1AM )∆M−1
n+1 xn+1‖]

≤ · · ·
≤ |rM,n+1 − rM,n|[‖AM∆M−1

n+1 xn+1‖

+
1

rM,n+1
‖T (ΘM ,ϕM )

rM,n+1
(I − rM,n+1AM )∆M−1

n+1 xn+1

− (I − rM,n+1AM )∆M−1
n+1 xn+1‖] + · · ·+ |r1,n+1 − r1,n|[‖A1∆0

n+1xn+1‖

+
1

r1,n+1
‖T (Θ1,ϕ1)

r1,n+1
(I − r1,n+1A1)∆

0
n+1xn+1 − (I − r1,n+1A1)∆

0
n+1xn+1‖]

+ ‖∆0
n+1xn+1 −∆0

nxn‖

≤ M̃1

M∑
k=1

|rk,n+1 − rk,n|+ ‖xn+1 − xn‖,

(3.8)

where M̃1 > 0 is a constant such that for each n ≥ 1

M∑
k=1

[‖Ak∆k−1
n+1xn+1‖+

1

rk,n+1
‖T (Θk,ϕk)

rk,n+1
(I − rk,n+1Ak)∆

k−1
n+1xn+1 − (I − rk,n+1Ak)∆

k−1
n+1xn+1‖] ≤ M̃1.

Furthermore, we define yn = βnxn + (1− βn)wn for all n ≥ 1. It follows that

wn+1 − wn =
γn+1(tn+1 − tn) + σn+1(Wn+1tn+1 −Wntn)

1− βn+1

+ (
γn+1

1− βn+1
− γn

1− βn
)tn + (

σn+1

1− βn+1
− σn

1− βn
)Wntn.

(3.9)
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Taking into account the nonexpansivity of Wn, Tk and Un,k, from (2.2) we get

‖Wn+1tn+1 −Wntn‖ ≤ ‖tn+1 − tn‖+
n+1∏
j=1

ρj‖Tn+1tn − tn‖. (3.10)

By the nonexpansivity of PC(I − λn∇fαn) we have

‖tn+1 − tn‖ ≤ ‖vn+1 − vn‖+ |λn+1αn+1 − λnαn|‖vn‖+ |λn+1 − λn|‖∇f(vn)‖. (3.11)

Hence it follows from (3.7)-(3.11) and {ρn} ⊂ (0, θ] ⊂ (0, 1) that

‖wn+1 − wn‖ ≤
γn+1‖tn+1 − tn‖+ σn+1‖Wn+1tn+1 −Wntn‖

1− βn+1
+ | γn+1

1− βn+1
− γn

1− βn
|‖tn‖

+ | σn+1

1− βn+1
− σn

1− βn
|‖Wntn‖

≤ ‖tn+1 − tn‖+ | γn+1

1− βn+1
− γn

1− βn
|(‖tn‖+ ‖Wntn‖) +

n+1∏
j=1

ρj‖Tn+1tn − tn‖

≤ ‖vn+1 − vn‖+ |λn+1αn+1 − λnαn|‖vn‖+ |λn+1 − λn|‖∇f(vn)‖

+ | γn+1

1− βn+1
− γn

1− βn
|(‖tn‖+ ‖Wntn‖) + θn+1‖Tn+1tn − tn‖

≤ M̃0

N∑
i=1

|λi,n+1 − λi,n|+ M̃1

M∑
k=1

|rk,n+1 − rk,n|+ ‖xn+1 − xn‖

+ |λn+1αn+1 − λnαn|‖vn‖+ |λn+1 − λn|‖∇f(vn)‖

+ | γn+1

1− βn+1
− γn

1− βn
|(‖tn‖+ ‖Wntn‖) + θn+1‖Tn+1tn − tn‖.

(3.12)

Note that

yn+1 − yn = βn(xn+1 − xn) + (1− βn)(wn+1 − wn) + (βn+1 − βn)(xn+1 − wn+1).

It follows from (3.12) that

‖yn+1 − yn‖ ≤ βn‖xn+1 − xn‖+ (1− βn)‖wn+1 − wn‖+ |βn+1 − βn|‖xn+1 − wn+1‖

≤ ‖xn+1 − xn‖+ M̃0

N∑
i=1

|λi,n+1 − λi,n|+ M̃1

M∑
k=1

|rk,n+1 − rk,n|

+
|γn+1 − γn|(1− βn) + γn|βn+1 − βn|

1− βn+1
(‖tn‖+ ‖Wntn‖) + |λn+1αn+1 − λnαn|‖vn‖

+ |λn+1 − λn|‖∇f(vn)‖+ θn+1‖Tn+1tn − tn‖+ |βn+1 − βn|‖xn+1 − wn+1‖

≤ ‖xn+1 − xn‖+ M̃2

( N∑
i=1

|λi,n+1 − λi,n|+
M∑
k=1

|rk,n+1 − rk,n|+ |γn+1 − γn|

+ |βn+1 − βn|+ |λn+1αn+1 − λnαn|+ |λn+1 − λn|+ θn+1
)
,

(3.13)

where supn≥1

{
‖xn+1 − wn+1‖+ ‖tn‖+‖Wntn‖

1−d + ‖vn‖+ ‖∇f(vn)‖+ ‖Tn+1tn − tn‖+ M̃0 + M̃1

}
≤ M̃2 for

some M̃2 > 0.
On the other hand, we define zn := δnV xn + (1 − δn)Sxn for all n ≥ 1. Then it is known that

xn+1 = εnγzn + (I − εnµF )yn for all n ≥ 1. Simple calculations show that

zn+1 − zn = (δn+1 − δn)(V xn − Sxn) + δn+1(V xn+1 − V xn) + (1− δn+1)(Sxn+1 − Sxn),

xn+2 − xn+1 = (εn+1 − εn)(γzn − µFyn) + εn+1γ(zn+1 − zn) + (I − λn+1µF )yn+1 − (I − λn+1µF )yn.
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Since V is a ρ-contraction with coefficient ρ ∈ [0, 1) and S is a nonexpansive mapping, we conclude that

‖zn+1 − zn‖ ≤ |δn+1 − δn|‖V xn − Sxn‖+ δn+1‖V xn+1 − V xn‖
+ (1− δn+1)‖Sxn+1 − Sxn‖
≤ |δn+1 − δn|‖V xn − Sxn‖+ δn+1ρ‖xn+1 − xn‖

+ (1− δn+1)‖xn+1 − xn‖
= (1− δn+1(1− ρ))‖xn+1 − xn‖+ |δn+1 − δn|‖V xn − Sxn‖,

which together with (3.13) and 0 ≤ γ < τ , implies that

‖xn+2 − xn+1‖ ≤ |εn+1 − εn|‖γzn − µFyn‖+ εn+1γ‖zn+1 − zn‖
+ ‖(I − εn+1µF )yn+1 − (I − εn+1µF )yn‖
≤ |εn+1 − εn|‖γzn − µFyn‖+ εn+1γ

[
(1− δn+1(1− ρ))‖xn+1 − xn‖

+ |δn+1 − δn|‖V xn − Sxn‖
]

+ (1− εn+1τ)
[
‖xn+1 − xn‖

+ M̃2

( N∑
i=1

|λi,n+1 − λi,n|+
M∑
k=1

|rk,n+1 − rk,n|+ |γn+1 − γn|

+ |βn+1 − βn|+ |λn+1αn+1 − λnαn|+ |λn+1 − λn|+ θn+1
)]

≤ (1− εn+1(τ − γ))‖xn+1 − xn‖+ M̃3

{ N∑
i=1

|λi,n+1 − λi,n|

+
M∑
k=1

|rk,n+1 − rk,n|+ |εn+1 − εn|+ |δn+1 − δn|

+ |βn+1 − βn|+ |γn+1 − γn|+ |λn+1αn+1 − λnαn|+ |λn+1 − λn|+ θn+1
}
,

where supn≥0

{
‖γzn − µFyn‖+ ‖V xn − Sxn‖+ M̃2

}
≤ M̃3 for some M̃3 > 0. Consequently,

‖xn+1 − xn‖
δn

≤ (1− εn(τ − γ))
‖xn − xn−1‖

δn
+ M̃3

{ N∑
i=1

|λi,n − λi,n−1|
δn

+
M∑
k=1

|rk,n − rk,n−1|
δn

+
|εn − εn−1|

δn
+
|δn − δn−1|

δn
+
|βn − βn−1|

δn
+
|γn − γn−1|

δn

+
|λn+1αn+1 − λnαn|

δn
+
|λn+1 − λn|

δn
+
θn+1

δn

}
≤ (1− εn(τ − γ))

‖xn − xn−1‖
δn−1

+ εn(τ − γ) · M̃4

τ − γ
{ 1

εn
| 1

δn
− 1

δn−1
|+

N∑
i=1

|λi,n − λi,n−1|
εnδn

+

M∑
k=1

|rk,n − rk,n−1|
εnδn

+
1

δn
|1− εn−1

εn
|+ 1

εn
|1− δn−1

δn
|+ |βn − βn−1|

εnδn
+
|γn − γn−1|

εnδn

+
|λnαn − λn−1αn−1|

εnδn
+
|λn − λn−1|

εnδn
+

θn

εnδn

}
,

(3.14)

where supn≥1

{
‖xn − xn−1‖+ M̃3

}
≤ M̃4 for some M̃4 > 0. From conditions (C1)-(C5) it follows that∑∞

n=0 εn(τ − γ) =∞ and

lim
n→∞

M̃4

τ − γ
{ 1

εn
| 1

δn
− 1

δn−1
|+

N∑
i=1

|λi,n − λi,n−1|
εnδn

+
M∑
k=1

|rk,n − rk,n−1|
εnδn

+
1

δn
|1− εn−1

εn
|
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+
1

εn
|1− δn−1

δn
|+ |βn − βn−1|

εnδn
+
|γn − γn−1|

εnδn
+
|λnαn − λn−1αn−1|

εnδn

+
|λn − λn−1|

εnδn
+

θn

εnδn

}
= 0.

Thus, utilizing Lemma 2.17, we immediately conclude that limn→∞ ‖xn+1 − xn‖/δn = 0. So, from δn → 0
it follows that limn→∞ ‖xn+1 − xn‖ = 0.

Step 3. We prove that limn→∞ ‖xn − un‖ = 0, limn→∞ ‖xn − vn‖ = 0, limn→∞ ‖vn − tn‖ = 0 and
limn→∞ ‖tn −Wtn‖ = 0. Indeed, by Lemmas 2.8 and 2.9 (b), from (3.1), (3.4)-(3.5) and 0 ≤ γ < τ one has

‖yn − p‖2 = ‖βn(xn − p) + (1− βn)(
γntn + σnWntn

1− βn
− p)‖2

= βn‖xn − p‖2 + γn‖tn − p‖2 + σn‖Wntn − p‖2 −
γnσn

1− βn
‖tn −Wntn‖2

− βn
1− βn

‖yn − xn‖2

≤ βn‖xn − p‖2 + (1− βn)(‖xn − p‖+ λnαn‖p‖)2 −
γnσn

1− βn
‖tn −Wntn‖2

− βn
1− βn

‖yn − xn‖2

≤ (‖xn − p‖+ λnαn‖p‖)2 −
γnσn

1− βn
‖tn −Wntn‖2 −

βn
1− βn

‖yn − xn‖2,

(3.15)

and hence

‖xn+1 − p‖2 =
∥∥εn[δn(γV xn − γV p) + (1− δn)(γSxn − γSp)]
+ (I − εnµF )yn − (I − εnµF )p

+ εn[δn(γV p− µFp) + (1− δn)(γSp− µFp)]
∥∥2

≤
[
εn(1− δn(1− ρ))γ‖xn − p‖+ (1− εnτ)‖yn − p‖

]2
+ 2εnδn〈(γV p− µFp), xn+1 − p〉+ 2εn(1− δn)〈(γSp− µFp), xn+1 − p〉

≤ εnγ
2

τ
‖xn − p‖2 + (1− εnτ)

[
(‖xn − p‖+ αnb‖p‖)2 −

γnσn
1− βn

‖tn −Wntn‖2

− βn
1− βn

‖yn − xn‖2
]

+ 2εnδn〈(γV p− µFp), xn+1 − p〉+ 2εn(1− δn)〈(γSp− µFp), xn+1 − p〉

≤ (1− εn
τ2 − γ2

τ
)(‖xn − p‖+ αnb‖p‖)2 −

γnσn(1− εnτ)

1− βn
‖tn −Wntn‖2

− βn(1− εnτ)

1− βn
‖yn − xn‖2

+ 2εnδn〈(γV p− µFp), xn+1 − p〉+ 2εn(1− δn)〈(γSp− µFp), xn+1 − p〉,

(3.16)

which together with {βn} ⊂ [c, d] ⊂ (0, 1), immediately yields

γnσn(1− εnτ)

1− c
‖tn −Wntn‖2 +

c(1− εnτ)

1− c
‖yn − xn‖2

≤ (‖xn − xn+1‖+ αnb‖p‖)(‖xn − p‖+ ‖xn+1 − p‖+ αnb‖p‖)
+ 2εnδn‖γV p− µFp‖‖xn+1 − p‖+ 2εn‖γSp− µFp‖‖xn+1 − p‖.

In terms of (C6), we find that lim infn→∞ γnσn ≥ 0. Since εn → 0, δn → 0, αn → 0, ‖xn+1 − xn‖ → 0 and
{xn} is bounded, we have

lim
n→∞

‖tn −Wntn‖ = 0 and lim
n→∞

‖yn − xn‖ = 0. (3.17)
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Noting that
yn − xn =γn(tn − xn) + σn(Wntn − xn)

=(1− βn)(tn − xn) + σn(Wntn − tn),

we conclude from (3.17) and {βn} ⊂ [c, d] ⊂ (0, 1) that as n→∞,

(1− d)‖tn − xn‖ ≤ ‖(1− βn)(tn − xn)‖ ≤ ‖yn − xn‖+ ‖Wntn − tn‖ → 0. (3.18)

Observe that
‖∆k

nxn − p‖2 ≤ ‖xn − p‖2 + rk,n(rk,n − 2µk)‖Ak∆k−1
n xn −Akp‖2, (3.19)

‖Λinun − p‖2 ≤ ‖xn − p‖2 + λi,n(λi,n − 2ηi)‖BiΛi−1n un −Bip‖2 (3.20)

for i ∈ {1, 2, ..., N} and k ∈ {1, 2, ...,M}. Combining (3.5), (3.15), (3.19) and (3.20), we get

‖yn − p‖2 ≤ βn‖xn − p‖2 + (1− βn)‖tn − p‖2

≤ βn‖xn − p‖2 + (1− βn)(‖vn − p‖+ λnαn‖p‖)2

≤ βn‖xn − p‖2 + (1− βn)‖Λinun − p‖2 + αnb‖p‖(2‖vn − p‖+ αnb‖p‖)
≤ βn‖xn − p‖2 + (1− βn)

[
‖un − p‖2 + λi,n(λi,n − 2ηi)‖BiΛi−1n un −Bip‖2

]
+ αnb‖p‖(2‖vn − p‖+ αnb‖p‖)
≤ ‖xn − p‖2 + (1− βn)

[
rk,n(rk,n − 2µk)‖Ak∆k−1

n xn −Akp‖2

+ λi,n(λi,n − 2ηi)‖BiΛi−1n un −Bip‖2
]

+ αnb‖p‖ (2‖vn − p‖+ αnb‖p‖) ,

(3.21)

which immediately leads to

(1− βn)
[
rk,n(2µk − rk,n)‖Ak∆k−1

n xn −Akp‖2 + λi,n(2ηi − λi,n)‖BiΛi−1n un −Bip‖2
]

≤ ‖xn − yn‖(‖xn − p‖+ ‖yn − p‖) + αnb‖p‖(2‖vn − p‖+ αnb‖p‖).

Since {βn} ⊂ [c, d] ⊂ (0, 1), {λi,n} ⊂ [ai, bi] ⊂ (0, 2ηi), {rk,n} ⊂ [ck, dk] ⊂ (0, 2µk), i ∈ {1, 2, ..., N}, k ∈
{1, 2, ...,M} and {vn}, {xn}, {yn} are bounded sequences, from (3.17) and αn → 0 we have

lim
n→∞

‖Ak∆k−1
n xn −Akp‖ = 0 and lim

n→∞
‖BiΛi−1n un −Bip‖ = 0 (3.22)

for all k ∈ {1, 2, ...,M} and i ∈ {1, 2, ..., N}.
Furthermore, by Proposition 2.4 (ii) and Lemma 2.9 (a) we have

‖∆k
nxn − p‖2 ≤ 〈(I − rk,nAk)∆k−1

n xn − (I − rk,nAk)p,∆k
nxn − p〉

≤ 1

2
(‖∆k−1

n xn − p‖2 + ‖∆k
nxn − p‖2 − ‖∆k−1

n xn −∆k
nxn − rk,n(Ak∆k−1

n xn −Akp)‖2),

which implies that

‖∆k
nxn − p‖2 ≤ ‖xn − p‖2 − ‖∆k−1

n xn −∆k
nxn‖2 + 2rk,n‖∆k−1

n xn −∆k
nxn‖‖Ak∆k−1

n xn −Akp‖. (3.23)

By Lemma 2.9 (a) and Lemma 2.20, we obtain

‖Λinun − p‖2 ≤ 〈(I − λi,nBi)Λi−1n un − (I − λi,nBi)p,Λinun − p〉

≤ 1

2
(‖xn − p‖2 + ‖Λinun − p‖2 − ‖Λi−1n un − Λinun − λi,n(BiΛ

i−1
n un −Bip)‖2),

which immediately leads to

‖Λinun − p‖2 ≤ ‖xn − p‖2 − ‖Λi−1n un − Λinun‖2 + 2λi,n‖Λi−1n un − Λinun‖‖BiΛi−1n un −Bip‖. (3.24)
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Combining (3.21) and (3.24) we conclude that

‖yn − p‖2 ≤ ‖xn − p‖2 − (1− βn)‖Λi−1n un − Λinun‖2 + 2λi,n‖Λi−1n un − Λinun‖‖BiΛi−1n un −Bip‖
+ αnb‖p‖(2‖vn − p‖+ αnb‖p‖),

which yields

(1− βn)‖Λi−1n un − Λinun‖2 ≤ ‖xn − yn‖(‖xn − p‖+ ‖yn − p‖) + 2λi,n‖Λi−1n un − Λinun‖‖BiΛi−1n un −Bip‖
+ αnb‖p‖(2‖vn − p‖+ αnb‖p‖).

Since {βn} ⊂ [c, d] ⊂ (0, 1), {λi,n} ⊂ [ai, bi] ⊂ (0, 2ηi), i = 1, 2, ..., N , and {un}, {xn} and {yn} are bounded
sequences, we deduce from (3.17), (3.22) and αn → 0 that

lim
n→∞

‖Λi−1n un − Λinun‖ = 0, ∀i ∈ {1, 2, ..., N}. (3.25)

Also, combining (3.3), (3.21) and (3.23) we deduce that

‖yn − p‖2 ≤ ‖xn − p‖2 − (1− βn)‖∆k−1
n xn −∆k

nxn‖2 + 2rk,n‖∆k−1
n xn −∆k

nxn‖‖Ak∆k−1
n xn −Akp‖

+ αnb‖p‖(2‖vn − p‖+ αnb‖p‖),

which yields

(1− βn)‖∆k−1
n xn −∆k

nxn‖2 ≤ ‖xn − yn‖(‖xn − p‖+ ‖yn − p‖)
+ 2rk,n‖∆k−1

n xn −∆k
nxn‖‖Ak∆k−1

n xn −Akp‖
+ αnb‖p‖(2‖vn − p‖+ αnb‖p‖).

Since {βn} ⊂ [c, d] ⊂ (0, 1), {rk,n} ⊂ [ck, dk] ⊂ (0, 2µk) for k = 1, 2, ...,M , and {vn}, {xn}, {yn} are bounded
sequences, we deduce from (3.17), (3.22) and αn → 0 that

lim
n→∞

‖∆k−1
n xn −∆k

nxn‖ = 0, ∀k ∈ {1, 2, ...,M}. (3.26)

Hence from (3.25) and (3.26) we obtain that as n→∞,

‖xn − un‖ ≤ ‖∆0
nxn −∆1

nxn‖+ ‖∆1
nxn −∆2

nxn‖+ · · ·+ ‖∆M−1
n xn −∆M

n xn‖ → 0, (3.27)

‖un − vn‖ ≤ ‖Λ0
nun − Λ1

nun‖+ ‖Λ1
nun − Λ2

nun‖+ · · ·+ ‖ΛN−1n un − ΛNn un‖ → 0. (3.28)

Thus, from (3.27) and (3.28) we obtain

‖xn − vn‖ ≤ ‖xn − un‖+ ‖un − vn‖ → 0 as n→∞, (3.29)

which together with (3.18), attains

‖tn − vn‖ ≤ ‖tn − xn‖+ ‖xn − vn‖ → 0 as n→∞. (3.30)

In addition, it is clear that ‖tn−Wtn‖ ≤ ‖tn−Wntn‖+‖Wntn−Wtn‖. Thus, we conclude from Remark
2.12, (3.17) and the boundedness of {tn} that

lim
n→∞

‖tn −Wtn‖ = 0. (3.31)

Step 4. We prove that ωw(xn) ⊂ Ω . Indeed, since H is reflexive and {xn} is bounded, there exists at
least a weak convergence subsequence of {xn}. Hence it is known that ωw(xn) 6= ∅. Now, take an arbitrary
w ∈ ωw(xn). Then there exists a subsequence {xni} of {xn} such that xni ⇀ w. From (3.18), (3.25)-(3.27)
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and (3.29) we have that uni ⇀ w, vni ⇀ w, tni ⇀ w, Λmni
uni ⇀ w and ∆k

ni
xni ⇀ w, where m ∈ {1, 2, ..., N}

and k ∈ {1, 2, ...,M}. Utilizing Lemma 2.14, we deduce from tni ⇀ w and (3.31) that w ∈ Fix(W ) =
∩∞n=1Fix(Tn) (due to Lemma 2.13). Next, we claim that w ∈

⋂N
m=1 I(Bm, Rm)∩

⋂M
k=1 GMEP(Θk, ϕk, Ak). As

a matter of fact, repeating the same arguments as those of w ∈
⋂N
m=1 I(Bm, Rm)∩

⋂M
k=1 GMEP(Θk, ϕk, Ak)

in Step 4 of the proof of [15, Theorem 3.1], we obtain the desired assertion. Thus, w ∈
⋂∞
n=1 Fix(Tn) ∩⋂M

k=1 GMEP(Θk, ϕk, Ak) ∩
⋂N
m=1 I(Bm, Rm).

Furthermore, let us define

T̃ v =

{
∇f(v) +NCv, if v ∈ C,
∅, if v 6∈ C,

where NCv = {u ∈ H : 〈v − x, u〉 ≥ 0, ∀x ∈ C}. Then, T̃ is maximal monotone and 0 ∈ T̃ v if and only if
v ∈ VI(C,∇f); see [29]. By standard argument we can show that w ∈ T̃−10 and hence, w ∈ VI(C,∇f) = Γ .
Consequently, w ∈ Ω . This shows that ωw(xn) ⊂ Ω .

Step 5. We prove that xn → x∗ where {x∗} = VI(Ω , γS − µF ).
Indeed, take an arbitrary w ∈ ωw(xn). Then there exists a subsequence {xni} of {xn} such that xni ⇀ w.

Utilizing (3.16), we obtain that for all p ∈ Ω

‖xn+1 − p‖2 ≤ (‖xn − p‖+ αnb‖p‖)2 + 2εnδn〈(γV p− µFp), xn+1 − p〉
+ 2εn(1− δn)〈(γSp− µFp), xn+1 − p〉,

which implies that

〈(µF − γS)p, xn − p〉 ≤ 〈(µF − γS)p, xn − xn+1〉+ 〈(µF − γS)p, xn+1 − p〉

≤ ‖(µF − γS)p‖‖xn − xn+1‖+
(‖xn − p‖+ αnb‖p‖)2 − ‖xn+1 − p‖2

2εn(1− δn)

+
δn

1− δn
〈(γV − µF )p, xn+1 − p〉.

(3.32)

Since lim supn→∞
δn
εn

< ∞, αn
δn
→ 0 and ‖xn−xn+1‖

δn
→ 0 (due to Step 2), from (3.32) we get 〈(µF −

γS)p, w − p〉 ≤ lim sup
n→∞

〈(µF − γS)p, xn − p〉 ≤ 0, ∀p ∈ Ω . Since µF − γS is (µη − γ)-strongly monotone

and (µκ + γ)-Lipschitz continuous, by Minty’s Lemma [24] we know that w ∈ VI(Ω , µF − γS). Noticing
{x∗} = VI(Ω , µF − γS), we have w = x∗. Thus, ωw(xn) = {x∗}; that is, xn ⇀ x∗. Finally, we prove that
limn→∞ ‖xn − x∗‖ = 0. Indeed, utilizing (3.16) with p = x∗, we get

‖xn+1 − x∗‖2 ≤ (1− εn
τ2 − γ2

τ
)(‖xn − x∗‖+ αnb‖x∗‖)2 + 2εnδn‖(γV − µF )x∗‖‖xn+1 − x∗‖

+ 2εn(1− δn)〈(γS − µF )x∗, xn+1 − x∗〉

≤ (1− εn
τ2 − γ2

τ
)‖xn − x∗‖2 + εn

τ2 − γ2

τ
· 2τ

τ2 − γ2
[δn‖(γV − µF )x∗‖‖xn+1 − x∗‖

+ (1− δn)〈(γS − µF )x∗), xn+1 − x∗〉] + αnb‖x∗‖(2‖xn − x∗‖+ αnb‖x∗‖).

Note that
∑∞

n=1 αnb‖x∗‖(2‖xn − x∗‖+ αnb‖x∗‖) <∞,
∑∞

n=1 εn
τ2−γ2
τ =∞, and

lim
n→∞

2τ

τ2 − γ2
[
δn‖(γV − µF )x∗‖‖xn+1 − x∗‖+ (1− δn)〈(γS − µF )x∗, xn+1 − x∗〉

]
= 0.

So, applying Lemma 2.17 we derive limn→∞ ‖xn − x∗‖ = 0.

Remark 3.2. The scheme (3.9) in [12, Theorem 3.2] is extended to develop our scheme (3.1) for the SFP
(1.2) with constraints of finite many GMEPs, finite many variational inclusions and the fixed point problem
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of nonexpansive mappings {Tn}∞n=1. Under the lack of the assumptions similar to those in [40, Theorem
3.2], e.g., {xn} is bounded, Fix(T )∩ intC 6= ∅ and ‖x− Tx‖ ≥ kDist(x,Fix(T )), ∀x ∈ C for some k > 0, the
sequence {xn} generated by (3.1) converges strongly to a point x∗ ∈ Ω , which is a unique solution of the
HVIP (over the fixed point set of nonexpansive mappings {Tn}∞n=1), that is, 〈(µF−γS)x∗, p−x∗〉 ≥ 0,∀p ∈ Ω .

Recalling the argument process of Theorem 3.1, we can also derive the following

Theorem 3.3. In Theorem 3.1, if the conditions (C1)-(C6) are replaced by the following ones (C1)-(C5):

(C1) limn→∞ δn = 0, limn→∞ εn = 0 and
∑∞

n=1 εn =∞;

(C2)
∑∞

n=2 |εn − εn−1| <∞ or limn→∞
εn−1

εn
= 1;

(C3)
∑∞

n=2(
∑N

i=1 |λi,n − λi,n−1|+
∑M

k=1 |rk,n − rk,n−1|) <∞ or

lim
n→∞

(

N∑
i=1

|λi,n − λi,n−1|+
M∑
k=1

|rk,n − rk,n−1|)/εn = 0;

(C4)
∑∞

n=2(|δn − δn−1|+ |βn − βn−1|+ |γn − γn−1|+ |λn − λn−1|) <∞ or

lim
n→∞

(|δn − δn−1|+ |βn − βn−1|+ |γn − γn−1|+ |λn − λn−1|)/εn = 0;

(C5) lim infn→∞ σn > 0 and 0 < lim infn→∞ βn ≤ lim supn→∞(βn + σn) < 1.

Then {xn} converges strongly to a solution x∗ of the SFP provided ‖xn+1 − xn‖ + αn = o(εn), which is a
unique solution in Ω to the HVIP: 〈(µF − γS)x∗, p− x∗〉 ≥ 0, ∀p ∈ Ω.
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