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Abstract

This paper studies the existence and stability of weighted Nash equilibria for multiobjective popula-
tion games. By constructing a Nash’s mapping, the existence of weighted Nash equilibria is established.
Furthermore, via the generic continuity method, each weighted Nash equilibrium is shown to be stable for
most of multiobjective population games when weight combinations and payoff functions are simultaneously
perturbed. Besides, this leads to the stability of Nash equilibria for classical population games with the
perturbed payoff functions. These results play cornerstone role in the research concerning multiobjective
population games. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Multiobjective population games (MPGs) are population games with vector-valued payoffs. The clas-
sical population games [19] originate from Nash’s “mass-action” interpretation of equilibrium points in his
dissertation ([16]) and his related literatures [15, 17]. Population games serve as a general model for study-
ing strategic interactions among large numbers of agents, hence they are widely applied to modelling many
economic, social and technological environment in which large collections of small agents make strategically
interdependent decisions, such as network congestion, cultural integration and assimilation, etc.

Recently, population games and their applications have received increasing attention from an evolution-
ary point of view, see [2, 5, 7, 11, 18]. However, note that all the payoffs in the current researches still remain
single-objective. In other words, the payoffs in these researches are all real-valued. It is well-known that
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population games with vector-valued payoffs can be better applied in real world, however, such a related
study has not been reported until now. Hence, a generalization from the scalar case to multiple criteria is
one of our main tasks in this paper, it is both theoretically and practically significant for population games.

Moreover, the additive weight method and weighted solutions or equilibria are very prominent in vector
optimization and multiobjective games. Thus, the existence of weighted equilibria (or solutions) is a funda-
mental topic. Based on the existence of weighted equilibria, Wang and Yu [22, 28] proved the existence of
Pareto equilibria for multiobjective games under different conditions, respectively. Similarly, the existence
of Pareto equilibria is investigated for constrained multiobjective games by Ansari and Khan[1]. Related
literatures can be referred to [6, 12, 14, 20].

Besides, the stability of weighted Nash equilibria plays a significant role in vector optimization and
multiobjective games. Xiang [24] proved the stability of weighted solutions of vector optimization problems
with the perturbed payoff. Grounded on this result, Xiang [25] further studied the stability of efficient
solutions for vector optimization problems. Based on the stability of weighted Nash equilibria, Song and
Wang [21] showed the stability of Pareto-Nash equilibria for multiobjective generalized games with the
perturbation of payoff functions.

Inspired by [21, 24, 25], this paper aims to extend the single-objective population games to multiobjec-
tive ones, further investigate the existence and stability of weighted Nash equilibria for (MPGs), which is
fundamental to the coming future and better applications of (MPGs). These are exactly our contributions
in this paper.

In addition, it is well-known that in nonlinear science, the stability of solutions to a problem is essentially
converted into the continuity of the set of solutions, and this method has always attracted considerable
attention, see [8, 23]. And it is widely applied to the study on the stability of solutions to optimal theory;
variational inequality, game theory, general equilibrium theory, such as [9, 13, 21, 24–27].

In order to establish the stability of weighted Nash equilibria for (MPGs), we review the continuity
concerning set-valued mapping, referred to [3, 10].

Definition 1.1. If X and Y are two Hausdorff topological spaces and T : X → 2Y is a set-valued mapping,
then

(1) T is upper semi-continuous at x0 ∈ X if for each open set U ⊂ Y with U ⊃ T (x0), there exists an
open neighborhood O(x0) of x0 such that U ⊃ T (x) for each x ∈ O(x0);

(2) T is lower semi-continuous at x0 ∈ X if for each open set W ⊂ Y with W ∩ T (x0) 6= ∅, there exists an
open neighborhood O(x0) of x0 such that W ∩ T (x) 6= ∅ for each x ∈ O(x0);

(3) T is continuous at x0 ∈ X if T is both upper and lower semi-continuous at x0 ∈ X; T is continuous
on X if T is continuous at any point x ∈ X; and

(4) T is u.s.c.o. if T is upper semi-continuous on X and T (x) is compact for every x ∈ X.

The generic continuity of set-valued mappings with semi-continuity as below:

Lemma 1.2 ([8]). Let X be a Baire space and Y be a metric space, if T : X → 2Y is u.s.c.o., then there is
a dense residual set Q such that T is lower semi-continuous and then continuous on it.

The paper is organized as follows. Section 2 introduces the model of (MPGs) and the concept of weighted
Nash equilibrium for (MPGs). The existence of weighted Nash equilibria is discussed in Section 3. The
main result concerning the stability of weighted Nash equilibria for (MPGs) is established in Section 4.

2. Model and Weighted Nash equilibrium

Throughout this paper, for each positive integer k,

Rk+ =
{
a = (a1, . . . , ak) ∈ Rk : aj ≥ 0, j = 1, . . . , k

}
,

T k+ =
{
a = (a1, . . . , ak) ∈ Rk+ :

k∑
j=1

aj = 1
}
.
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Let a ∗ b be the inner product between two vectors a, b ∈ Rk.
In this paper, we consider (MPGs): let P = {1, . . . , P} be a society consisting of P ≥ 1 populations

of agents. Each population is a unit mass of a large but finite number of agents with the same strategies
set and the same payoff function. For each population p ∈ P, pure strategies set is Sp = {1, . . . , np}. Let
m =

∑
p∈P n

p equal the total number of pure strategies in all populations.

For each p ∈ P, the set of population states is denoted by Xp =
{
xp = (xp1, . . . , x

p
np) ∈ Rnp

+ :
∑np

i=1 x
p
i =

1
}

= 4np−1, where the nonnegative scalar xpi ∈ [0, 1] represents the share of members playing strategy
i ∈ Sp. The set of social states is denoted by X =

∏
p∈P X

p =
{
x = (x1, . . . , xP ) ∈ Rm : xp ∈ Xp

}
⊂ Rm,

in which the element x = (x1, . . . , xP ) ∈ X describes all populations’ behavior at once.
Additionally, we assume that agents in each population p ∈ P share kp objectives whenever they play a

strategy, and denoted by Gp = {1, . . . , kp}(kp ≥ 2) the set of finite behavioral objectives, thus the vector-
valued payoff function to each strategy i ∈ Sp is denoted by F pi = (F pi1, . . . , F

p
ikp) : X → Rk

p
, where F pij

represents the jth objective real-valued payoff corresponding to a strategy i ∈ Sp; F p = (F p1 , . . . , F
p
np)T :

X → Rn
pkp describes population p’s payoff functions for all strategies in Sp. Now let N =

∑
p∈P n

pkp,

the payoff functions F : X → RN is a map that assigns each social state a vector of payoffs, one for each
criterion corresponding to each strategy in each population. Since the sets of populations and strategies are
generally taken as fixed, (MPGs) is identified with its payoff functions F in the remainder of this paper.

From the above model, it is shown that the difference between (MPGs) and the classical population
games mainly lies in the dimensions of payoff functions to one strategy in each population. Precisely, agents
in each population all have at least a bi-objective payoff function to every strategy in (MPGs), while in the
classical population games, agents in a population merely have a single-objective payoff to a strategy. Thus,
(MPGs) include the classical population games as a special case where kp = 1 for all p ∈ P. Then (MPGs)
are more general than the single-objective ones, and we can imagine that the much wider applications of
(MPGs) will emerge in the near future.

For (MPG) F and for any λp ∈ Rkp+ , p ∈ P, define

(F pλ )i(x) = λp ∗ F pi (x), ∀x ∈ X,

it is said to be weighted payoff function at x ∈ X to a strategy i ∈ Sp corresponding to the weight λp ∈ Rkp+ .
Further, denoted by F pλ (x) = ((F pλ )1(x), · · · , (F pλ )np(x))T weighted payoff vector of population p; thus, the
weighted payoff functions of the whole society are written as Fλ(x) = (F 1

λ (x), · · · , FPλ (x)).
we propose the notion of weighted Nash equilibrium of F below.

Definition 2.1. A social state x̄ = (x̄1, . . . , x̄P ) ∈ X is called a weighted Nash equilibrium of F with respect
to a weight combination λ = (λ1, · · · , λP ) satisfying λp ∈ T kp+ (p ∈ P) if, for each p ∈ P and i ∈ Sp,

x̄pi > 0⇒ (F pλ )i(x̄) ≥ (F pλ )l(x̄), ∀l ∈ Sp.

And E(λ, F ) denotes the set of all the weighted Nash equilibria of F with respect to a weight combination
λ.

Remark 2.2.

(1) For p ∈ P, the element λpj of λp ∈ T kp+ is interpreted as the share distribution of members choosing
the jth objective; furthermore, the product λpjx

p
i represents the share of members who take the jth

objective as their main evaluation criterion when they choose a strategy i ∈ Sp.
(2) In particular, if kp = 1 for each p ∈ P, a weighted Nash equilibrium of (MPGs) reduces to a Nash

equilibrium of the classical population games.

3. Existence

In this section, we mainly study the existence of weighted Nash equilibria. For this purpose, we firstly
establish an equivalent description on weighted Nash equilibria for (MPGs).
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Lemma 3.1. Given a weight combination λ = (λ1, · · · , λP ) satisfying λp ∈ T k
p

+ for all p ∈ P. A social
state x̄ = (x̄1, . . . , x̄P ) ∈ E(λ, F ) if and only if for each p ∈ P, x̄p is an optimal solution of the following
optimization problem (Pλ):

(Pλ) : max
yp∈Xp

yp ∗ F pλ (x̄).

Proof. For a given weight combination λ = (λ1, · · · , λP ) with λp ∈ T kp+ (p ∈ P), suppose that x̄ ∈ E(λ, F ),
then for each p ∈ P and i ∈ Sp,

x̄pi > 0⇒ (F pλ )i(x̄) ≥ (F pλ )l(x̄), ∀l ∈ Sp.

Then it holds that
x̄pi [(F

p
λ )i(x̄)] ≥ x̄pi [(F

p
λ )l(x̄)], ∀l ∈ Sp.

Summed with respect to i ∈ Sp on both sides of the above inequality, note that
∑

i∈Sp x̄
p
i = 1, hence

x̄p ∗ (F pλ )(x̄) ≥ (F pλ )l(x̄), ∀l ∈ Sp.

For any yp = (yp1 , · · · , y
p
np) ∈ Xp, multiplied both sides of the above inequality by ypl and summed with

respect to l ∈ Sp, note that
∑

l∈Sp y
p
l = 1, then

x̄p ∗ (F pλ )(x̄) ≥ yp ∗ (F pλ )(x̄), ∀p ∈ P.

Thus for each p ∈ P, x̄p is an optimal solution to (Pλ).
Conversely, for each p ∈ P, if x̄p is an optimal solution to (Pλ), that is,

yp ∗ F pλ (x̄) ≤ x̄p ∗ F pλ (x̄), ∀yp ∈ Xp.

Since x̄p ∈ Xp = 4np−1, without loss of generality, assume that x̄pi > 0 for a certain i ∈ Sp, then for any
l ∈ Sp, we set

ŷp = (x̄p1, · · · , 0︸︷︷︸
i

, · · · , x̄pi + x̄pl︸ ︷︷ ︸
l

, · · · , x̄pnp).

Thus ŷp ∈ Xp, and the above inequalities further becomes

x̄pi [(F
p
λ )i(x̄)− (F pλ )l(x̄)] ≥ 0, ∀l ∈ Sp.

Since x̄pi > 0, it clearly implies that

(F pλ )i(x̄) ≥ (F pλ )l(x̄), ∀l ∈ Sp.

That is,
x̄pi > 0⇒ (F pλ )i(x̄) ≥ (F pλ )l(x̄), ∀l ∈ Sp.

Due to the arbitrariness of p ∈ P and i ∈ Sp, x̄ ∈ E(λ, F ). The proof is complete.

Referred to the idea of Nash’s constructive proof on the existence of equilibrium points for n-person
noncooperative games [17], the existence of weighted Nash equilibria is established for (MPGs) below.

Theorem 3.2. If F is continuous on X, then (MPG) F has at least one weighted Nash equilibrium for a
given weight combination λ = (λ1, · · · , λP ) with λp ∈ T kp+ for all p ∈ P.

Proof. For each population p ∈ P, define a mapping fp(x) = x̃p = (x̃p1, . . . , x̃
p
np) as follows:

x̃pi =
xpi + φpi (x)

1 +
∑np

i=1 φ
p
i (x)

, ∀i ∈ Sp,
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where φpi (x) = max{0,
∑kp

j=1 λ
p
jF

p
ij(x) −

∑np

i=1

∑kp

j=1 x
p
iλ

p
jF

p
ij(x)}. Clearly, x̃pi ≥ 0 and

∑n
i=1 x̃

p
i = 1, thus

x̃p = (x̃p1, . . . , x̃
p
np) ∈ Xp and fp is a continuous mapping from X to Xp by the continuity of F on X.

Further define
f(x) =

∏
p∈P

fp(x),

obviously, f : X → X is continuous. In addition, since X is compact and convex, followed from Brouwer’s
fixed point theorem, there is x̄ = (x̄1, · · · , x̄P ) ∈ X such that x̄ = f(x̄) =

∏
p∈P f

p(x̄), thus for all p ∈
P, x̄p = fp(x̄), that is,

x̄pi =
x̄pi + φpi (x̄)

1 +
∑np

i=1 φ
p
i (x̄)

, ∀i ∈ Sp.

We shall verify that such a fixed point x̄ = (x̄1, · · · , x̄P ) ∈ X is exactly a weighed Nash equilibrium of
F with respect to λ. For all p ∈ P, denote Ip(x̄) = {i ∈ Sp : x̄pi > 0}, clearly Ip(x̄) 6= ∅. For each i ∈ Ip(x̄),

if φpi (x̄) = max{0,
∑k

j=1 λ
p
jF

p
ij(x̄)−

∑np

i=1

∑kp

j=1 x̄
p
iλ

p
jF

p
ij(x̄)} > 0, then

kp∑
j=1

λpjF
p
ij(x̄) >

np∑
i=1

kp∑
j=1

x̄piλ
p
jF

p
ij(x̄),

simultaneously multiplied by x̄pi on both sides of the above inequality, then

x̄pi

kp∑
j=1

λpjF
p
ij(x̄) > x̄pi

np∑
i=1

kp∑
j=1

x̄piλ
p
jF

p
ij(x̄).

Notice that if i /∈ Ip(x̄), that is, x̄pi = 0, then it also holds

x̄pi

kp∑
j=1

λpjF
p
ij(x̄) = x̄pi

np∑
i=1

kp∑
j=1

x̄piλ
p
jF

p
ij(x̄).

Then summing together with respect to i ∈ Sp and noting that
∑np

i=1 x̄
p
i = 1, we get

np∑
i=1

kp∑
j=1

x̄piλ
p
jF

p
ij(x̄) >

np∑
i=1

kp∑
j=1

x̄piλ
p
jF

p
ij(x̄),

which is a contradiction, hence there must exist some i ∈ Ip(x̄) such that

max{0,
kp∑
j=1

λpjF
p
ij(x̄)−

np∑
i=1

kp∑
j=1

x̄piλ
p
jF

p
ij(x̄)} = 0,

thus
np∑
i=1

max{0,
kp∑
j=1

λpjF
p
ij(x̄)−

np∑
i=1

kp∑
j=1

x̄piλ
p
jF

p
ij(x̄)} = 0.

Therefore, for all i ∈ Sp, it holds

kp∑
j=1

λpjF
p
ij(x̄) ≤

np∑
i=1

kp∑
j=1

x̄piλ
p
jF

p
ij(x̄).

For any yp = (yp1 , . . . , y
p
np) ∈ Xp, since

ypi

kp∑
j=1

λpjF
p
ij(x̄) ≤ ypi

np∑
i=1

kp∑
j=1

x̄piλ
p
jF

p
ij(x̄),
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summing with respect to i ∈ Sp and due to
∑np

i=1 y
p
i = 1, we further have

np∑
i=1

kp∑
j=1

ypi λ
p
jF

p
ij(x̄) ≤

np∑
i=1

kp∑
j=1

x̄piλ
p
jF

p
ij(x̄),

this inequality is equivalent to
yp ∗ F pλ (x̄) ≤ x̄p ∗ F pλ (x̄), ∀yp ∈ Xp.

This shows that x̄p is an optimal solution to (Pλ). From Lemma 3.1, then such an x̄ ∈ X is a weighted
Nash equilibrium of F with respect to a given weight combination λ. The proof is complete.

In particular, by Remark 2.2 (2), the existence result of Nash equilibrium for classical population games
(Theorem 2.1.1 of [19]) is immediately derived from Theorem 3.2.

4. Stability

In this section, we investigate the stability of weighted Nash equilibria for (MPGs).
In this part, we assume that each objective is bound to be chosen as agents are generally bounded

rationality. Precisely, for a sufficiently small real constant δ > 0, each objective share satisfies λpj ≥ δ (j =

1, · · · , kp) for any weight vector λp = (λp1, · · · , λ
p
kp) ∈ T kp+ (p ∈ P).

Denoted by F = {c = (λ, F ) : F = (F 1, · · · , FP ) : X → RN is continuous and X is nonempty compact,
λ = (λ1, · · · , λP) : λp ∈ Tkp

+ , λ
p
j ≥ δ (δ > 0, kpδ < 1)}.

For any c = (λ, F ), c̃ = (λ̃, F̃ ) ∈ F , define

ρ(c, c̃) = max
x∈X

∑
p∈P
‖F p(x)− F̃ p(x)‖+ ‖λ− λ̃‖1,

where ‖λ− λ̃‖1 =
∑P

p=1

∑kp

j=1 |λk
p

j − λ̃k
p

j |. Clearly, ρ is a metric on F and (F , ρ) is a complete metric space.
For any c = (λ, F ) ∈ F , the collection of all weighted Nash equilibria E(c) 6= ∅ from Theorem 3.2, thus

E : F → 2X is a nonempty set-valued mapping. We show that E is upper-continuous and compact-valued
below.

Lemma 4.1. E : F → 2X is u.s.c.o..

Proof. Firstly, we show that for each c = (λ, F ) ∈ F , E(c) is compact. Since E(c) ⊂ X and X is compact,
it suffices to show that E(c) is closed for each c = (λ, F ) ∈ F . Let {xn} ⊂ E(c) be a sequence with
xn → x, we need to show that x ∈ E(c). Suppose that x /∈ E(c) = E(λ, F ), then there is some p ∈ P
and i ∈ Sp with xpi > 0 but (Fλ)pi (x) < maxl∈Sp(Fλ)pl (x). Since xn → x, we have (xn)pi → xpi and
(xn)pi > 0 for sufficiently large positive integer n due to xpi > 0. As Fλ is continuous at x, we meanwhile
have (Fλ)pi (x

n) → (Fλ)pi (x) and maxl∈Sp(Fλ)pl (x
n) → maxl∈Sp(Fλ)pl (x). As (Fλ)pi (x) < maxl∈Sp(Fλ)pl (x),

then (Fλ)pi (x
n) < maxl∈Sp(Fλ)pl (x

n) for sufficiently large positive integer n. Therefore, xn /∈ E(c), however,
this contradicts the assumption {xn} ⊂ E(c). Hence E(c) is closed and further compact since E(c) ⊂ X
and X is compact.

Subsequently, we show that E is upper semi-continuous on F . Suppose that E is not upper-continuous
at c = (λ, F ) ∈ F , then there exists an open set U ⊂ X with U ⊃ E(c), and there is a sequence cn = (λn, Fn)
satisfying cn = (λn, Fn) → c = (λ, F ) such that there exists one sequence xn ∈ E(λn, Fn) for any positive
integer n, yet xn /∈ U . Because of xn ∈ E(λn, Fn) ⊂ X and the compactness of X, without loss of generality,
we assume that xn → x. Following from xn /∈ U , we obtain x /∈ U and thus x /∈ E(c) = E(λ, F ), namely,
even xpi > 0 for some i ∈ Sp and p ∈ P, but (Fλ)pi (x) < maxl∈Sp(Fλ)pl (x).

In fact, according to the continuity of F on X, then there is a constant M > 0 such that |F pij(x)| ≤M ,

hence
∑kp

j=1 |F
p
ij(x)| ≤Mkp. As (λn, Fn)→ (λ, F ), then it simultaneously holds that λn → λ and Fn → F .
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Thus, for sufficiently small real number ε > 0, there is sufficiently large positive integer L such that we
simultaneously obtain ‖(Fn)p(xn)− F p(xn)‖ < ε/(3kp) and ‖(λn)p − λp‖1 < ε/(3Mkp) for any n > L.

Therefore, for the above i ∈ Sp and p ∈ P with xpi > 0,

|(Fnλn)pi (x
n)− (Fλ)pi (x)| = |(λn)p ∗ (Fn)pi (x

n)− λp ∗ F pi (x)| = |
kp∑
j=1

(λn)pj (F
n)pij(x

n)−
kp∑
j=1

λpjF
p
ij(x)|

≤ |
kp∑
j=1

(λn)pj (F
n)pij(x

n)−
kp∑
j=1

(λn)pjF
p
ij(x

n)|

+ |
kp∑
j=1

(λn)pjF
p
ij(x

n)−
kp∑
j=1

(λn)pjF
p
ij(x)|+ |

kp∑
j=1

(λn)pjF
p
ij(x)−

kp∑
j=1

λpjF
p
ij(x)|

≤ ‖(Fn)p(xn)− F p(xn)‖
kp∑
j=1

|(λn)|pj + ‖F p(xn)− F p(x)‖
kp∑
j=1

|λn|pj

+ ‖(λn)p − λp‖1
kp∑
j=1

|F pij(x)|

≤ kpε/(3kp) + kpε/(3kp) +Mkpε/(3Mkp) = ε.

This shows that (Fnλn)pi (x
n)→ (Fλ)pi (x) as n→∞.

Similarly, we have maxl∈Sp(Fnλn)pl (x
n)→ maxl∈Sp(Fλ)pl (x) as n→∞.

On the other hand, taking into account xn → x and xpi > 0 but (Fλ)pi (x) < maxl∈Sp(Fλ)pl (x), we
then have (xn)pi > 0 and (Fnλn)pi (x

n) < maxl∈Sp(Fnλn)pl (x
n) for sufficiently large positive integer n, this

shows xn /∈ E(λn, Fn), which contradicts the fact xn ∈ E(λn, Fn) = E(cn) for any positive integer n.
Consequently, E is upper semi-continuous on F . The proof is complete.

Notice that, in general, the set of weighted Nash equilibria E(c) = E(λ, F ) need not be lower semi-
continuous on F . The following example shows this point.

Example 4.2. Consider a bi-objective single population game F with two strategies: let its state space
be X = [0, 1] × [0, 1] and for any x ∈ X, population payoff vector be F (x) = (F1(x), F2(x))T , where
F1(x) =

(
F11(x), F12(x)

)
= (1, 2), F2(x) =

(
F21(x), F22(x)

)
= (3, 0).

For a given c = (λ0, F ) ∈ F , where the combination λ0 = (12 ,
1
2) ∈ Λ̄, its weighted payoff

Fλ(x) =
(
(Fλ)1(x), (Fλ)2(x)

)T
= (

3

2
,
3

2
)T ,

clearly, the set of weighted Nash equilibria E(c) = [0, 1]× [0, 1].
However, there exists a perturbed sequence cm = (λm, Fm) ∈ F , where the perturbed weight combination

is given as λm = (12 + 1
m ,

1
2 −

1
m), and the perturbed payoff vector is Fm(x) =

(
Fm1 (x), Fm2 (x)

)T
, concretely,

Fm1 (x) =
(
Fm11(x), Fm12(x)

)
= (1 + 1

m , 2 + 2
m), Fm2 (x) =

(
Fm21(x), Fm22(x)

)
= (3 + 1

m ,
2
m). Clearly, cm =

(λm, Fm)→ c = (λ0, F ) as m→∞. And the corresponding weighted payoff functions equal

(Fmλm)(x) =
(
(Fmλm)1(x), (Fmλm)2(x)

)T
,

where (Fmλm)1(x) = (12 + 1
m)(1 + 1

m) + (12 −
1
m)(2 + 2

m), and (Fmλm)2(x) = (12 + 1
m)(3 + 1

m) + 2
m(12 −

1
m). Then

the resulting set of weighted Nash equilibria is E(cm) = E(λm, Fm) = {(0, 1)} as (Fmλm)2(x) > (Fmλm)1(x).
Nevertheless, for a special weighted Nash equilibrium {(1, 0)} ∈ E(c), we can choose a small enough

neighborhood N (1, 0); no matter how close cm = (λm, Fm) is to c = (λ0, F ), {(0, 1)} ∩ N (1, 0) = ∅.
Therefore, E is not lower semi-continuous at c = (λ0, F ).
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Combining the fact that E is u.s.c.o. on F with Fort’s Theorem (Lemma 1.2), the stability result
of weighted Nash equilibria is obtained under both weight combinations and perturbed payoff functions
simultaneously as follows:

Theorem 4.3. There is a dense residual set Q ⊂ F such that E : F → 2X is lower semi-continuous and
then continuous on it.

Proof. Since (F , ρ) is complete and E : F → 2X is u.s.c.o. from Lemma 4.1, then by Fort’s Theorem
(Lemma 1.2), there is a dense residual set Q ⊂ F such that E is lower semi-continuous and then continuous
on it. The proof is complete.

Remark 4.4. Theorem 4.3 indicates that in the sense of Baire’s category, each weighted Nash equilibrium
most of (MPG) F is stable against the perturbation of both weight combinations and payoff functions.

Moreover, Theorem 4.3 includes a special case in which only payoff functions are perturbed while weight
combinations are fixed. Let

F = {F : F = (F 1, · · · , FP ) : X → RN is continuous and X is nonempty compact},
and it is equipped with the maximum norm.

Corollary 4.5. Given a weight combination λ = (λ1, · · · , λP ) with λp ∈ T kp+ (p ∈ P), each weighted Nash
equilibrium of most of (MPG) F ∈ F is stable under perturbed payoff functions.

Furthermore, suppose that kp = 1 and λp = 1 for each p ∈ P, let

F = {F : F = (F 1, · · · , FP ) : X → Rm is continuous and X is nonempty compact},

and it is still equipped with the maximum norm.
By Corollary 4.5 and Remark 2.2 (2), we further obtain the stability of Nash equilibria of classical

population games below:

Corollary 4.6. Each Nash equilibrium of most of population games F ∈ F is stable under perturbed payoff
functions F .

In addition, notice that weighted Nash equilibria of (MPGs) are distinguished from the weighted solutions
to multiobjective optimization problems [24] even when (MPGs) contain only one population with a single
strategy. The following example shows this point.

Example 4.7. Consider a bi-objective single population game F with only one strategy: that is, P =
{1}, s1 = {1}, k = 2. Then its resulting state space is X̃ = [0, 1], and for any x ∈ X̃, let population payoff

vector be F (x) = (F1(x), F2(x))T =
(
x2

2 + 1, 2− x
)T

.
Given a weight vector λ = (13 ,

2
3) ∈ Λ̄, its associated weighted payoff is

Fλ(x) =
1

3
(
x2

2
+ 1) +

2

3
(2− x).

By Definition 2.1, each x̄ ∈ (0, 1] is a weighted Nash equilibrium with respect to the weight vector λ = (13 ,
2
3).

However, corresponding to this population game F and X̃, the bi-objective optimization problem is

max
x∈X̃

F (x) = (F1(x), F2(x))T =
(x2

2
+ 1, 2− x

)T
;

furthermore, the resulting weighted optimization problem with respect to the given weight vector λ = (13 ,
2
3)

is

max
x∈X̃

Fλ(x) =
1

3
(
x2

2
+ 1) +

2

3
(2− x),

it is easy to check that there is a unique weighted solution x̄ = 0 to this problem. Nevertheless, it is not a
weighted Nash equilibrium of F .
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To a certain extent, Example 4.7 further reveals that the existence and stability of weighted Nash
equilibria of (MPGs) are new and distinguished from [24].

5. Conclusion

In this paper, the stability of weighted Nash equilibria for (MPGs) are established. As a fundamental
topic for (MPGs), the existence of weighted Nash equilibria is first proven by constructing a Nash’s mapping.
Moreover, by the method of generic continuity, the stability of weighted Nash equilibria is obtained when
weight combinations and payoff functions are simultaneously perturbed. These results lead to the existence
and stability property of Nash equilibria of classical population games with respect to the perturbed payoff
functions. All the obtained results are essential to the future research for (MPGs), which are new and
different from the literature by means of an example (see Example 4.7).
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