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Abstract

In this paper, we state the Lie derivative of normal connection on a submanifold M of the Riemannian
manifold M. By this vein, we introduce the Lie derivative of the normal curvature tensor on M and give
some relations between the normal curvature tensor on M and curvature tensor on M in the sense of the
Lie derivative of normal connection. As an application, we give some detailed description of the normal
curvature tensor on M whether M is a hypersubface. (©2016 All rights reserved.
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1. Introduction

The Lie derivative on differential forms is important operation. This is a generalization of the notion
of directional derivative of a function. The Lie differentiation theory plays an important role in studying
automorphisms of differential geometric structures. Moreover, the Lie derivative also is an essential tool in
the Riemannian geometry. The Lie derivative of forms and its application was investigated by many authors
(see [2H4, [6H8), [10] and the references given therein).

In 2010, Sultanov used the Lie derivative of the linear connection to study the curvature tensor and the
sorsion tensor on linear algebras [§]. In 2012, by invoking the Lie derivative of forms on the Riemannian
n—dimensional manifold, the authors of [I] constructed the Lie derivative of the currents on Riemannian
manifolds and given some applications on Lie groups. Recently, B. C. Van and T. T. K. Ha studied some
properties of the Lie derivative of the linear connection V, the conjugate derivative dy with the linear
connection and using them for searching the curvature, the torsion of a space R™ along the linear flat
connection V [9].

The main goal of the present work is to investigate some properties on the Lie derivative of the normal
connection V* and of the normal curvature tensor R on the submanifold M. We give some relations
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between the normal curvature tensor on M and curvature tensor on M in the sense of the Lie derivative of
normal connection. As an application, we give some detailed description of the normal curvature tensor on
M whether M is a hypersubface.

2. Preliminaries

Let M be an n-dimensional submanifold of an m—dimensional Riemannian manifold M equipped with
a Riemannian metric g. We denote the vector space of all smooth vector fields on M and M by B(M) and
‘3(1\7 ), respectively. We denote %, 7, and 7+ are the Levi-Civita, induced Levi-Civita induced normal
connections in M. , M, and the normal bundle 91(M) of M, respectively. We use the inner product notation
(,) (or -) for both the metrics g of M and the induced metric g on the submanifold M.

At each p € M, the ambient tangent space Tp]\7 splits as an orthogonal direct sum 7, p]\7 =T,M @ N,M,

where N,M = (T,M ) is the normal space at p with respect to the inner product § on T,M. The set

N(M) = |J NpM is called the normal bundle of M. If X, Y are vector fields in B(M ), we can extend them
peEM

to vector fields on M , apply the ambient covariant derivative operator % and then decompose at points of
M to get

VxY = (VxY) + (vxY)h (2.1)
The Gauss and Weingarten formulas are given respectively by (see [5], pp. 135)
VxY = vxY +0(X,Y)and Yy N = —AyX + V¥ N (2.2)

for all X,Y € B(M) and N € (M), where o is the second fundamental form of M from B(M) x B(M)
to M(M) given by N
o(X,Y) = (TxV), (2.3)

where X and Y are extended arbitrarily to M and the shape operator Ay : X — AnX for all X €
B(M), N € N(M).
The Weingarten equation is given by (see [5], pp. 136)

(VxN,Y) == (N,o(X,Y)), (2.4)
Thus, o is the second fundamental form related to the shape operator A by
(0(X,Y),N)=(AnNX,Y). (2.5)
The equation of Gauss is given by (see [5], pp. 136)

R(X,Y,Z,W)=R(X,Y,Z,W) - (c(X,W),0(Y,2)) + (c(X, Z),o(Y,W)) (2.6)

for all X,Y,Z,W € B(M), where R and R are the Riemann curvature tensors of M and M, respectively.
The curvature tensor R* of the normal bundle of M is defied by

RY(X,Y)N = vx vy N — vy Vx N — Vixy N (2.7)
for any X, Y € B(M) and N € M(M). If R+ = 0, then the normal connection 7+ of M is said to be flat.

1 —
The mean curvature vector H is given by H = —trace(c). The submanifold M is totally geodesic in M
n

if 0 =0, and minimal if H = 0.
Let N € 9(M), the Weingarten map hy : B(M) — B(M) is given by

() =~ (VxN) (2.8)
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for all X € B(M). We easily get the following properties of the Weingarten mapping hy
hn (X +Y) =hy (X)+hn (Y), hy (9X) = phy (X) (2.9)

and
hy (pX).Y =phy (V). X (2.10)
for all X,Y € B(M), ¢ € F(M).
Next, we define the derivative of the Weingarten mapping hy. The map
Vxhy 1 B(M) — B(M)
Y= (Vxhn)(Y) = Vx(hn(Y)) = hn(VxY)

is called the derivative of hy along a vector field X.
Now, we define the Weingarten normal mapping and the derivative of the map h]lv along a vector field
X.

(2.11)

hy = B(M) — N(M)
X = hy(X) = vxN

is called the Weingarten normal mapping. We get the following properties (2.13)), (2.14) of Weingarten
normal mapping hJJ\-,

(2.12)

hy (X +Y) =hy (X) +hy (V) VX, Y € B(M). (2.13)
hy (X) = phy (X) VX € B(M), Vg € F(M). (2.14)
Let N, K € M(M) and ¢ € §(M), we obtain
hﬁJrK = hy + hi, and héN = ohy. (2.15)
Next, the derivative of the mapping hﬁ along a vector field X is the mapping
Vx hy o B(M) = N(M) (2.16)
Y = (Vxhy)(Y) = vx (hy(Y)) — hy(7xY).

We easily get the mapping h]J\} and v/ Xh]%, are modular homomorphics.

3. Main results
We begin at introducing the concept of Lie derivative of the normal vector field along a vector field.
Definition 3.1. Suppose that X € B(M). The mapping
Ly : (M) — N(M)
N LN = [X,N]* = (§XN - §NX)L
is called the Lie derivative of the normal vector field N along a vector field X.
Definition 3.2. Given X € B(M) and V+ is the normal connection on M. The mapping
LV B(M) x N(M) — N(M)
(Y, N) o (LEV4) (Y, N) = LE(VEN) = Vi N — VELEN)

is called the Lie derivative of the normal connection V- along a vector field X.
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For any X,Y € B(M), we have
Lixyy = LxoLy — LyoLx. (3.2)

Let X,Y € B(M) and N € DM(M). By using the definition on the Lie derivative of the normal connection,

we obtain
L%, V| N = LE(VEN) = VH(LEN)

= Vi N + (L V5 (V. V).
Using this fact, we have the following formula,
Proposition 3.3. If X,Y € B(M), then
L[LXMVL = L% (LyVY) — L (Lx V).
Proof. Suppose that Z € B(M) and N € DN(M), we have
(L% (Ly V) (2,N) = L&((LFV*) (2, N)) = (1494 (1X, 2], N) = (L$V*) (2, LEN)
= Lx(L VéN)) — Lx(Vz(LyN)) = Lx (ViyzN)
5 aN) + Vix Ly N) + Viyx N
VZ(LXN)) + Vz(Ly(LxN)) + V[Yz] (LxN)
= Ly (Ly(VzN)) — LX(V[YZ] ) — LY(V[X 21N)
— LA(VH(LEN)) — LE(VH(LLN)) + Vi (LEN)
+ Viyz(LxN) + V7 (Ly (Lx N)) + Viyx. 2 V-

v (
Ly (Vix
L%/(
v

Similarity, we have
(L#(I% V) (2, N) = LK (VEN)) = LV V) = L (T 5 N)
— LE(VELEN)) - L (VE(LEN) + V(L5 N)
+ Vix 7Ly N) + Vz(Lx (Ly N)) + Vix jy 2 V-
Therefore,
(Lx(LyVINZ,N) = (Ly(Lx VI))Z,N) = Lix y|(VZN) = VZ(Lix y)N) = Vi,V
- <L§(7Y]Vl) (Z,N),¥Z € B(M),N € N(M).

So that Lfk’y]vl = L&(L{;VL) — L%/(L)L(VL). This proves the proposition. O
Definition 3.4. Let X € B(M) and R* be the curvature tensor of the normal bundle of M. The mapping
LR :B(M) x B(M) x W(M) — N(M)

(Y. Z,N) = (LxR*)(Y.Z.N)

is called the Lie derivative of the normal curvature tensor along a vector field X on M, where Lg-(Rl is given
by

(LxRY)(Y,Z,N) = Lx(R*(Y, Z,N)) — R*(LxY,Z,N) — R*(Y,LxZ,N) — R*(Y,Z,LxN).  (3.3)

The following theorem gives a description the formula between the Lie derivative of the normal curvature
tensor R and of the normal connection V+ along a vector field X on the submanifold M.
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Theorem 3.5. The Lie derivative of the normal curvature tensor R and of the normal connection V+
along a vector field X on M satisfy the following identity.

(LXRH)(Y, 2,N) = = (L5 V*) (1Y, 2], N) + (L5 (Y, VEN)
(3.4)
- (7))« (v N ) - 95 ( (137) )
for all X,Y,Z € B(M), for all N € N(M).
Proof. Using the definition of the normal curvature tensor R, it follows that
LL(R(Y, 7, N)) = Ik (VH(VEN) ) - Lk (VE(VEN)) - 14 (V4 N)

RH(LxY,Z,N) = Vixy|VZN = VzVix y|N = Vi y; 2V,

RH(Y,LxZ,N) = VyVix N = Vix 21V¥N = Viy.ix 21N,

RE(Y, Z, LAN) = ViV, (LXN) — VLV (L ) Vi (L)L(N) .

By the identity
[X7 [Y, ZH = [[XvY}vZ] + [K [X7 ZH

we obtain
~LEVE N + Vi y, 2N + VN + Vi <L§(N>
[LX (V[m ) VixyzN = Vivg ( lNﬂ
=~ (L&V*) (v, 20, N).
Furthermore,

L (v%/(v%zv)) — Vi VEN = V$V 5N — V$V4 (L)i(N)
= L% (VA VEN)) + (L VE) (v, VEN) = Ly (947, VEN))
+ V¥ (LE(VEN)) = Vi (Vi) - Vi (V2 (14N))
- (L)L(VL) (Y, VLN) + Vi [L)L( (v%zv) ~Vix N V3 (L;%N)]
- (L)L(VL) (Y, VLN) + v#( (L)L(VL) (Z, N)) .
On the other hand, we have
Lk (vé(vﬁv)) + Vi g VEN + V5V N + VEV$ (L)L(N)

= L% (VA(VEN)) + Lk (VE(VEN)) - (LXVH) (2, V3 W)

- V5 (LX(V$N)) + viv[x y[N + V5V (LX)
- (L)L(Vl> Z,VEN) - [(LX(V‘#N)) Viy N - Vi (L)L(N)}
- (L)L(VL) < (L)L(vi) (v, N)).

The obtained relations imply the identity

(L¥RY)(Y,Z,N) = L%(R*(Y,Z,N)) — R*(LxY,Z,N) — R*(Y,LxZ,N) — R*(Y, Z, L% N)
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- (L)i(vi) (IY, Z],N) + <L§<vi> (Y, VEN) - (L;%VL) (Z,VLN)
+ V(L2 V) (2, N) = VE((L2 V) (v, N)).
This proves the theorem. O
Definition 3.6. Given X € B(M) and N € N(M). The mapping
Lyhy : B(M) — N(M)
Yo (Lhy) () = L (h&(Y) = b (X, Y))
is called the Lie derivative of the the Weingarten normal mapping hﬁ along a vector field X.

The following theorem gives relation between the curvature tensors R on M and the normal curvature
R+ on M.

Theorem 3.7. For any X,Y € B(M),N € M(M), the following equation holds
R(X,Y,N) = R-(X,Y,N) = (Vxhn ) (V) + (Vyhn ) (X) = hopn (X) +hoiy V), (35)

where R and R are the Riemann curvature tensors of M and M, respectively, % and 7+ are the Levi-Civita,
induced Levi-Civita induced normal connections in M and the normal bundle ‘JI(M) ofM respectively.

Proof. For any X,Y € B(M), N € 9(M), applying equations (22), (@7), [£:8) and (Z11), we have
E(X7 Y,N)= %X(%YN) %Y(VXN) - V[X,Y]N
—hn(Y) + V¥ N) = Uy (= hv(X) + V% N) = (= hn (X, Y]) + Vix V)
Vx (hv(YV)) + Vx (V¥ N) + y (hn (X))
%Y( V)l( N) +hn([X,Y]) — V[Xy]N
= —Vx (hn(Y) + Vy (hn(X)) + hn (X, Y]) + Vx (V3 N)
vy (Vx N) - V[XY
= %X (hn(Y)) + Ty (hn (X)) + Ay (VXY> —hy (%YX)
—hgin(X) + V% V¥ N+ hg iy (Y) = Uy Vx N = Vg N
- [VX(hN ) = hn (VXYH + [Vy(hN(X)) —hn (%YX)}
+vx vy N - vy vx N - V[X,Y]N —hgin(X) 4+ hgn(Y)
— (Vxhn) (V) + (Vyhn) (X) + RE(XY,N) = by (X) + gy (V)
= RY(X,Y,N) = (Vxchn ) (V) + (Vvhn ) (X) = hgp (X) + hgpy (V).
This proves the theorem. O

We now consider in case M is the hypersubface in M and let N be an unit normal vector field on M ,
then the normal connection 7+ of M is said to be flat. Hence, from Theorem it is easy to obtain the
following corollary.

Corollary 3.8. If M 1is the hypersubface in M and N is an unit normal vector field on M, then we have
R(X,Y,N) = (Vyhw ) (X) = (xhn ) (V) (3.6)

for any X,Y € B(M).
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Proof. Since N is an unit normal vector field on the hypersubface M, we have

(N,N) =1
= X [(N,N)] =0for all X € B(M),

= <%XN,N> — 0 for all X € B(M),
= ((VxN)" + VEN, V) =0 for all X € B(M),
= (VEN,N) =0 for all X € B(M),
= V%N =0 for all X € B(M). (3.7)
Hence, R*+(X,Y, N) = 0. Therefore, by using Theorem we have
R(X,Y,N) = RE(X,Y,N) = (Vxhn ) (V) + (Vyhn ) (X) = hopn (X) + gy (V)
= (Vv ) (X) = (Txchw ) (V).
O

The following proposition gives a description the Lie derivative of the curvature tensor R along a vector
field X on an hypersubface in M.

Proposition 3.9. Let M be an hypersubface in M and N be an unit normal vector field on M. The
following equation holds

(LX§> (Y,Z,N) = (LX (%sz» Y) - (LX (%yhiv)) (Z) + (%[X,Y}hN> (2)
~ (Vpxzhn) (V) = RV, Z, L% N)
for any XY, Z € B(M).
Proof. Since N is an unit normal vector field on the hypersubface M, thus, by using equation , we have
R(X,Y,N) = (Vyhw ) (X) = (Txhx) (V).
Hence,
(LxR)(Y,Z,N) = Lx(R(Y,Z,N)) — R([X,Y],Z,N) — R(Y,[X, Z],N) — R(Y, Z, L{ N)
= Lx ((v7hv) ) = Lx ((9vhv) (2)
— (Vzh ) (1X,Y]) + (Vixyihn ) (2)
— (Vixghn ) (V) + (Vvhn) (X, 2)) = R(Y, Z, L N)
=[x ((Vzhw) ) = (Vzhw ) (1X,YD)]
— [2x ((vvhn) (2)) = (V) (1. 2)]
+ (Vixwhn) (2) = (Vixzhn ) (V) = ROV, Z, L N)
= (Lx (V2hn)) () = (Ex (Vvhn) ) (2) + (Vi) (2)
- (%[X,Z}hN) (V) = R(Y, Z, LxN).

This proves the proposition. O
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The following theorem gives a description relation between the curvature tensor on M and the normal
curvature tensor on M.

Theorem 3.10. For any X,Y € B(M) and for any N, K € M(M) we have following formula
R(X,Y,N,K) = RY(X,Y,N,K) — (hx X, hx'Y) + (hxY, hy X). (3.8)

Proof. Let X, Y € B(M) and N, K € 9%(M). Applying the Theorem and equations (2.4)) and (2.8)), we
obtain

R(X,Y,N,K) = <1§(X, Y, N),K>
= <RL(X7YV7N)7K> - <(%XhN) (Y)7K> + <(%YhN> (X)aK>
- <hv¢N (X) K> + <hv§N (Y) K>
= RYXY, N K) = (V) (V), K ) +
— RY(X,Y,N,K) — <€X (hy (V) — hy (%XY) K>
+ <%y (hy (X)) — hy (%X) K>
= RY(X,Y,N,K) — (Vx (hy (Y)) + o (X, hy (V) , K)
+ (v (VXY) + hy (0 (X,Y)), K) + (Vy (hn (X)) + 0 (Y, hy (X)), K)
— (v (Vy X) + hy (0 (Y, X)), K)
= RY(X,Y,N,K) — (0 (X,hy (Y)), K) + (hx (0 (X,Y)), K)
+ (o (Y, hy (X)), K) — (hn (0 (Y, X)), K)
= R (X,Y,N,K) = {0 (X,hn (Y)), K) + (o (Y, hn (X)) , K)
= RYX,Y,N,K) — (hg X,hnY) + (hgY,hyX) .
This proves the theorem. O

The following corollary gives a description between the curvature tensor R and the Weingarten mapping
on the hypersubface in M.

Corollary 3.11. If M is the hypersubface in M and N is an unit normal vector field on M, then we have
R(X,Y,N,K) = (hg¥,hyX) — (hg X, hnY) (3.9)
for any X,Y € B(M), K € W(M).

Proof. Since N is an unit normal vector field on the hypersubface M, thus, applying equation (3.7) we
obtain V%N = 0 for all X € B(M). Thus, R(X,Y, N) = 0. Therefore,

RH(X,Y, N, K) = (R*(X,Y,N), K ) = 0.
Hence, applying Theorem [3.10, we obtain
R(X,Y,N,K) = (hgV,hnX) — (hg X, hyY).
O

Definition 3.12. Let ¢ : B(M) — N(M) be a modular homomorphic. Then the conjugate derivative dy1 ¢
with the normal connection V1 of ¢ is defined by

(dyrp) (X,Y) = Vxo (V) = Vye (X) =@ (X, Y])V XY, Z € B(M). (3.10)
Then, the map dy1y : B(M) x B(M) — N(M) is the bilinear antisymmetric mapping.
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The following theorem gives a description the formula between the Lie derivative of the normal curvature
tensor and the conjugate derivative dy . with the normal connection V' on the hypersubface in M.

Theorem 3.13. Given M is the hypersubface in M and N is an unit normal vector field on M. The
following equation holds

(L)L(Rl) (Y,Z,N) = (dthL N) (Y, Z) (3.11)
for any X,Y,Z € B(M).

Proof. Since N is an unit normal vector field on the hypersubface M, thus, applying equation (3.7) we
obtain V%N = 0 for all X € B(M). Thus, R*(X,Y,N) =0VX,Y € B(M).
On the other hand, from the definition of the Lie derivative of the normal curvature tensor, we have

(LxRY)(Y,Z,N) = L%x(R*(Y,Z,N)) — R*(LxY,Z,N) — R*(Y,LxZ,N) — R*(Y, Z, LxN)
= —RY(Y,Z,L%N).

Hence, for any X,Y, Z € B(M), we obtain

(dvlhﬁX,N])( Z) = vy(hLlN )
BRI
:RL(Y,Z,LXN)

- <L§RL> (Y, Z,N).

So that, (LxR*) (Y, Z,N) = (dvj_ hLHV) (Y, Z) . This proves the theorem. O

The following example gives an example of the Lie derivative of the normal curvature tensor on the
subface M in R3.

Example 3.14. Consider the subface M in R? determined by

r:R? - R3
(u, 0) = 7(u, v)

and the unit normal vector of M is given by

R, AR,
[ A R’

N —
where R, = 8%7’ (u,v) and R, = %r (u,v). For all X € B(M), we consider the mapping
hLJ-N B(M) — N(M)
Y= hLJ-N( ) = (fl ‘|’f2)-N
if Y = f1.Ry + fo.R,. Then we have
(LXRL) (R, Ro, N) = (dw hLLN> (Ru, Ry)
= =V&, (1 + f2)-N) + Vi, ((fi + f2)-N) + by ([Ru, o))
~(fi + )VEN + (fi + 2)VE,N + hiy (R Rol) = 0
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