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1. Introduction

In 1964, Perov extended the classical Banach contraction principle for contraction mappings on spaces

endowed with vector-valued metrics [7]. For some contributions to this topic, we refer to [2, 3, 6].

Let X be a non-empty set and Rm is the set of all m-tuples of real numbers. If α, β ∈ Rm, α =

(α1, α2, . . . , αm)T , β = (β1, β2, . . . , βm)T and c ∈ R, then by α ≤ β (resp., α < β) we mean αi ≤ βi (

resp., αi < βi) for i ∈ {1, 2, . . . ,m} and by α ≤ c we mean that αi ≤ c for i ∈ {1, 2, . . . ,m}. A mapping

d : X ×X → Rm is called a vector-valued metric on X if the following properties are satisfied:

(d1) d(x, y) ≥ 0 for all x, y ∈ X; if d(x, y) = 0, then x = y;
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(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

A set X equipped with a vector-valued metric d is called a generalized metric space and, it is denoted

by (X, d). The notions that are defined in the generalized metric spaces are similar to those defined in usual

metric spaces.

Throughout this paper we denote the non-empty closed subsets of X by Cl(X), the set of all m ×m
matrices with non-negative elements by Mm,m(R+), the zero m ×m matrix by 0̄ and the identity m ×m
matrix by I, and note that A0 = I.

A matrix A is said to be convergent to zero if and only if An → 0 as n→∞ (see [13]).

Theorem 1.1 ([3]). Let A ∈Mm,m(R+). The followings are equivalent.

(i) A is convergent towards zero;

(ii) An → 0 as n→∞;

(iii) the eigenvalues of A are in the open unit disc, that is, |λ| < 1, for every λ ∈ C with det(A− λI) = 0;

(iv) the matrix I −A is nonsingular and

(I −A)−1 = I +A+ · · ·+An + · · · ; (1.1)

(v) Anq → 0 and qAn → 0 as n→∞, for each q ∈ Rm.

Remark 1.2. Some examples of matrix convergent to zero are

(a) any matrix A :=

(
a a
b b

)
, where a, b ∈ R+ and a+ b < 1;

(b) any matrix A :=

(
a b
a b

)
, where a, b ∈ R+ and a+ b < 1;

(c) any matrix A :=

(
a b
0 c

)
, where a, b, c ∈ R+ and max{a, c} < 1.

For other examples and considerations on matrices which converge to zero, see [8] and [12].

Theorem 1.3 ([7]). Let (X, d) be a complete generalized metric space and the mapping f : X → X with the
property that there exists a matrix A ∈Mm,m(R+) such that d(f(x), f(y)) ≤ Ad(x, y) for all x, y ∈ X. If A
is a matrix convergent towards zero, then

(1) Fix(f) = {x∗};

(2) the sequence of successive approximations {xn} such that, xn = fn(x0) is convergent and it has the limit
x∗, for all x0 ∈ X.

On other hand Jachymski [4], generalized the Banach contraction principle on a complete metric space

endowed with a graph. He introduced the notion of Banach G-contraction as follows:

Definition 1.4 ([4]). Let (M,d) be a metric space, let 4 be the diagonal of the Cartesian product M ×M ,
and let G be a directed graph such that the set V of its vertices coincides with M and the set E of its edges
contains loops; that is, E ⊇ 4. Assume that G has no parallel edges. A mapping f : M → M is called a
Banach G-contraction if
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(i) x, y ∈ X ((x, y) ∈ E ⇒ (fx, fy) ∈ E);

(ii) there exists α, 0 < α < 1 such that, x, y ∈ X, (x, y) ∈ E ⇒ d(fx, fy) ≤ αd(x, y).

Definition 1.5 ([4]). A mapping f : M → M is called G-continuous, if for each sequence {xn} in M with
xn → x and (xn, xn+1) ∈ E for each n ∈ N, we have fxn → fx.

For some other interesting extensions of Banach G-contraction we refer to [1, 5, 9–11, 14].

2. Main results

Throughout this section, (X, d) is a generalized metric space and we will denote G = (V,E) as a directed

graph such that the set V of its vertices coincides with X and the set E of its edges contains loops; that is,

E ⊇ 4, where 4 is the diagonal of the Cartesian product X ×X.

Theorem 2.1. Let (X, d) be a complete generalized metric space endowed with the graph G and let f : X →
X be an edge preserving mapping with A,B ∈Mm,m(R+) such that

d(fx, fy) ≤ Ad(x, y) +Bd(y, fx) (2.1)

for all (x, y) ∈ E. Assume that the following conditions hold:

(i) the matrix A converges toward zero;

(ii) there exists x0 ∈ X such that (x0, fx0) ∈ E;

(iii) (a) f is G-continuous;
or (b) for each sequence {xn} ∈ X such that xn → x and (xn, xn+1) ∈ E for all n ∈ N, we have
(xn, x) ∈ E for all n ∈ N.

Then f has a fixed point. Moreover, if for each x, y ∈ Fix(f), we have (x, y) ∈ E and A + B converges to
zero then we have a unique fixed point.

Proof. By hypothesis (ii), we have (x0, fx0) ∈ E. Take x1 = fx0. From (2.1), we have

d(x1, x2) = d(fx0, fx1) ≤ Ad(x0, x1) +Bd(x1, fx0)

= Ad(x0, x1). (2.2)

As f is edge preserving mapping, then (x1, x2) ∈ E, again from (2.1), we have

d(x2, x3) = d(fx1, fx2) ≤ Ad(x1, x2) +Bd(x2, fx1)

≤ A2d(x0, x1), (by using (2.2)).

Continuing in the same way, we get a sequence {xn} ⊆ X, such that xn = fxn−1, (xn−1, xn) ∈ E and

d(xn, xn+1) ≤ And(x0, x1), ∀ n ∈ N.

Now for each n,m ∈ N. By using the triangular inequality we get

d(xn, xn+m) ≤
n+m−1∑
i=n

d(xi, xi+1)

≤
n+m−1∑
i=n

Aid(x0, x1)

≤ An

( ∞∑
i=0

Ai

)
d(x0, x1)

= An(I −A)−1d(x0, x1).
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Letting n → ∞ in the above inequality we get, d(xn, xn+m) → 0, since A is converging towards zero.
Thus, the sequence {xn} is a Cauchy sequence. As X is complete. Then there exists x∗ ∈ X, such that
xn → x∗. If hypothesis (iii.a) holds. Then we have fxn → fx∗, that is xn+1 → fx∗. Thus, fx∗ = x∗. If
(iii.b) holds, then we have (xn, x

∗) ∈ E ∀n ∈ N. From (2.1), we have

d(xn+1, fx
∗) = d(fxn, fx

∗) ≤ Ad(xn, x
∗) +Bd(x∗, fxn) = Ad(xn, x

∗) +Bd(x∗, xn+1).

Letting n → ∞, in the above inequality, we get d(x∗, fx∗) = 0. This shows that x∗ = fx∗. Further
assume that x, y ∈ Fix(f) and (x, y) ∈ E, then by (2.1), we have

d(x, y) ≤ Ad(x, y) +Bd(x, y).

That is,
(I − (A+B))d(x, y) ≤ 0.

Since the matrix I − (A+B) is nonsingular, then d(x, y) = 0. Thus, we have Fix(f) = {x}.

Remark 2.2. If we assume that E = X ×X and B = 0, then above theorems reduces to Theorem 1.3.

Example 2.3. Let X = R2 be endowed with a generalized metric defined by d(x, y) =

(
|x1 − y1|
|x2 − y2|

)
for

each x = (x1, x2), y = (y1, y2) ∈ R2. Define the operator

f : R2 → R2, f(x, y) =

{(
2x
3 −

y
3 + 1, y3 + 1

)
for (x, y) ∈ X with x ≤ 3(

2x
3 −

y
3 + 1,−5x

3 + y
3 + 1

)
for (x, y) ∈ X with x > 3.

If we take f(x, y) = (f1(x, y), f2(x, y)), where

f1(x, y) =
2x

3
− y

3
+ 1,

and

f2(x, y) =

{
y
3 + 1 if x ≤ 3

−5x
3 + y

3 + 1 if x > 3,

then it is easy to see that

|f1(x1, x2)− f1(y1, y2)| ≤
2

3
|x1 − y1|+

1

3
|x2 − y2|,

and

|f2(x1, x2)− f2(y1, y2)| ≤

{
1
3 |x2 − y2| if x1, y1 ≤ 3
5
3 |x1 − y1|+

1
3 |x2 − y2| otherwise,

for each (x1, x2), (y1, y2) ∈ X. Define the graph G = (V,E) such that V = R2 and E = {((x1, x2), (y1, y2)) :
x1, x2, y1, y2 ∈ [0, 3]} ∪ {(z, z) : z ∈ R2}. Now for each (x, y) ∈ E, we have

d(fx, fy) =

(
|f1(x1, x2)− f1(y1, y2)|
|f2(x1, x2)− f2(y1, y2)|

)
≤
(

2
3

1
3

0 1
3

)(
|x1 − y1|
|x2 − y2|

)
= Ad(x, y).

Moreover, it is easy to see that all the other conditions of Theorem 2.1 hold. Thus, f has a fixed point,
that is x = fx = (f1x, f2x), where x = (1.5, 1.5).

Theorem 2.4. Let X be a non-empty set endowed with the graph G and two generalized metrics d, ρ. Let
f : (X, ρ)→ (X, ρ) be an edge preserving mapping with A,B ∈Mm,m(R+) such that

ρ(fx, fy) ≤ Aρ(x, y) +Bρ(y, fx) ∀ (x, y) ∈ E. (2.3)

Assume that the following conditions hold:
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(i) the matrix A converges towards zero;

(ii) there exists x0 ∈ X such that (x0, fx0) ∈ E;

(iii) f : (X, d)→ (X, d) is a G-contraction;

(iv) there exists C ∈ Mm,m(R+) such that d(fx, fy) ≤ Cρ(x, y), whenever, there exists a path between x
and y;

(v) (X, d) is complete generalized metric space.

Then f has a fixed point. Moreover, if for each x, y ∈ Fix(f), we have (x, y) ∈ E and A + B converges to
zero then we have a unique fixed point.

Proof. By hypothesis (ii), we have (x0, fx0) ∈ E. Take x1 = fx0. From (2.3), we have,

ρ(x1, x2) = ρ(fx0, fx1) ≤ Aρ(x0, x1) +Bρ(x1, fx0)

= Aρ(x0, x1).

As f is edge preserving, then (x1, x2) ∈ E. Again from (2.3), we have

ρ(x2, x3) = ρ(fx1, fx2) ≤ Aρ(x1, x2) +Bρ(x2, fx1)

= A2ρ(x0, x1).

Continuing in the same way we get a sequence {xn} in X such that xn = fxn−1, (xn−1, xn) ∈ E, and

ρ(xn, xn+1) ≤ Anρ(x0, x1) ∀n ∈ N.

Now we will show that {xn} is a Cauchy sequence in (X, ρ). By using the triangular inequality, we have

ρ(xn, xn+m) ≤
n+m−1∑
i=n

ρ(xi, xi+1)

≤
n+m−1∑
i=n

Aiρ(x0, x1)

≤ An

( ∞∑
i=0

Ai

)
ρ(x0, x1)

= An(I −A)−1ρ(x0, x1).

Since A converges towards zero. Thus {xn} is a Cauchy sequence in (X, ρ). By the construction of
sequence, for each n,m ∈ N, we have a path between xn and xn+m. Now, by using hypothesis (iv), we have

d(xn+1, xn+m+1) = d(fxn, fxn+m)

≤ Cρ(xn, xn+m)

≤ C[An(I −A)−1ρ(x0, x1)].

This shows that {xn} is also a Cauchy in (X, d). As (X, d) is complete, there exists x∗ ∈ X, such that
xn → x∗. By hypothesis (iii) we get limn→∞ d(fxn, fx

∗) = 0. As xn+1 = fxn for each n ∈ N. Thus, x∗ is a
fixed point of f . Further assume that x, y ∈ Fix(f) and (x, y) ∈ E, then by (2.3), we have

ρ(x, y) ≤ Aρ(x, y) +Bρ(y, x).

That is,
(I − (A+B))ρ(x, y) ≤ 0.

Since, the matrix I − (A+B) is nonsingular, then ρ(x, y) = 0. Thus, we have Fix(f) = {x}.
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Example 2.5. Let X = (0,∞) be endowed with generalized metrics ρ and d defined by

ρ(x, y) =

(
|x− y|
|x− y|

)
and d(x, y) =



(
|x− y|+ 1

|x− y|+ 1

)
if x or y or both x, y ∈ (0, 1)(

0

0

)
if x =y ∈ (0, 1)(

|x− y|
|x− y|

)
otherwise

for each x, y ∈ X. Define the operator

f : X → X, fx =
x+ 12

4
.

Define the graph G = (V,E) such that V = X and E = {(x, y) : x, y ≥ 1} ∪ {(z, z) : z ∈ X}. It is easy
to see that f satisfies (2.3) with

A =

(
1
4 0
0 1

4

)
, B =

(
0 0
0 0

)
,

and all the other conditions of Theorem 2.4 hold. Thus, f has a fixed point.

Theorem 2.6. Let (X, d) be a complete generalized metric space endowed with the graph G and let F : X →
Cl(X) be a multi-valued mapping with A,B ∈ Mm,m(R+), such that for each (x, y) ∈ E and u ∈ Fx, there
exists v ∈ Fy satisfying

d(u, v) ≤ Ad(x, y) +Bd(y, u). (2.4)

Assume that the following conditions hold:

(i) the matrix A converges towards zero;

(ii) there exist x0 ∈ X and x1 ∈ Fx0 such that (x0, x1) ∈ E;

(iii) for each u ∈ Fx and v ∈ Fy with d(u, v) ≤ Ad(x, y) we have (u, v) ∈ E whenever (x, y) ∈ E;

(iv) for each sequence {xn} in X such that xn → x and (xn, xn+1) ∈ E for all n ∈ N, we have (xn, x) ∈ E
for all n ∈ N.

Then F has a fixed point.

Proof. By hypothesis (ii), we have x0 ∈ X and x1 ∈ Fx0 with (x0, x1) ∈ E. From (2.4), for (x0, x1) ∈ E,
we have x2 ∈ Fx1 such that

d(x1, x2) ≤ Ad(x0, x1) +Bd(x1, x1)

= Ad(x0, x1). (2.5)

By hypothesis (iii) and (2.5), we have (x1, x2) ∈ E. Again from (2.4), for (x1, x2) ∈ E and x2 ∈ Fx1, we
have x3 ∈ Fx2 such that

d(x2, x3) ≤ Ad(x1, x2) +Bd(x2, x2)

≤ A2d(x0, x1), ( by using (2.5)).

Continuing in the same way, we get a sequence {xn} in X such that xn ∈ Fxn−1, (xn−1, xn) ∈ E and

d(xn, xn+1) ≤ And(x0, x1), ∀ n ∈ N.
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For each n,m ∈ N. By using the triangular inequality we get,

d(xn, xn+m) ≤
n+m−1∑
i=n

d(xi, xi+1)

≤
n+m−1∑
i=n

Aid(x0, x1)

≤ An

( ∞∑
i=0

Ai

)
d(x0, x1)

= An(I −A)−1d(x0, x1).

Since the matrix A converges towards 0. Thus the sequence {xn} is a Cauchy sequence in X. As X is
complete. Then there exists x∗ ∈ X, such that xn → x∗. By hypothesis (iv) we have (xn, x

∗) ∈ E, for each
n ∈ N. From (2.4), for (xn, x

∗) ∈ E and xn+1 ∈ Fxn we have w∗ ∈ Fx∗ such that

d(xn+1, w
∗) ≤ Ad(xn, x

∗) +Bd(x∗, xn+1).

Letting n→∞ in the above inequality, we get d(x∗, w∗) = 0, that is, x∗ = w∗. Thus x∗ ∈ Fx∗.

Example 2.7. Let X = R2 be endowed with a generalized metric defined by d(x, y) =

(
|x1 − y1|
|x2 − y2|

)
for

each x = (x1, x2), y = (y1, y2) ∈ R2. Define the operator

F : R2 → Cl(R2), F (x1, x2) =

{{
(0, 0), (x1

3 ,
x2
3 )
}

for x1, x2 ≥ 0

{(0, 0), (x1 + 1, x2 + 1)} otherwise.

Define the graph G = (V,E) such that V = R2 and E = {((x1, x2), (y1, y2)) : x1, x2, y1, y2 ≥ 0}∪{(z, z) :
z ∈ R2}. It is easy to see that F satisfies (2.4) with

A =

(
1
3 0
0 1

3

)
, B =

(
0 0
0 0

)
,

and all the other conditions of Theorem 2.6 hold. Thus, F has a fixed point.

Theorem 2.8. Let X be a non-empty set endowed with the graph G and two generalized metrics d, ρ. Let
F : X → Cl(X) be a multi-valued mapping with A,B ∈Mm,m(R+), such that for each (x, y) ∈ E and u ∈ Fx
there exists v ∈ Fy satisfying

ρ(u, v) ≤ Aρ(x, y) +Bρ(y, u). (2.6)

Assume that the following conditions hold:

(i) the matrix A converges towards zero;

(ii) there exist x0 ∈ X and x1 ∈ Fx0 such that (x0, x1) ∈ E;

(iii) for each u ∈ Fx and v ∈ Fy with ρ(u, v) ≤ Aρ(x, y) we have (u, v) ∈ E whenever (x, y) ∈ E;

(iv) (X, d) is complete generalized metric space;

(v) there exists C ∈Mm,m(R+) such that d(x, y) ≤ Cρ(x, y), whenever, there exists a path between x and
y;

(vi) for each sequence {xn} in X such that xn → x and (xn, xn+1) ∈ E for each n ∈ N, we have (xn, x) ∈ E
for all n ∈ N.
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Then F has a fixed point.

Proof. By hypothesis (ii), we have x0 ∈ X and x1 ∈ Fx0 such that (x0, x1) ∈ E. From (2.6), for (x0, x1) ∈ E
and x1 ∈ Fx0, we have x2 ∈ Fx1 such that

ρ(x1, x2) ≤ Aρ(x0, x1) +Bρ(x1, x1)

= Aρ(x0, x1).

By hypothesis (iii) and above inequality, we have (x1, x2) ∈ E. Again from (2.6) for (x1, x2) ∈ E, and
x2 ∈ Fx1, we have x3 ∈ Fx2 such that

ρ(x2, x3) ≤ Aρ(x1, x2) +Bρ(x2, x2)

≤ A2ρ(x0, x1).

Continuing in the same way, we get a sequence {xn} ∈ X such that xn ∈ Fxn−1, (xn−1, xn) ∈ E and

ρ(xn, xn+1) ≤ Anρ(x0, x1) for each n ∈ N.

Now, we will show that {xn} is a Cauchy sequence in (X, ρ). Let n,m ∈ N, then by using the triangular
inequality we get

ρ(xn, xn+m) ≤
n+m−1∑
i=n

ρ(xi, xi+1)

≤
n+m−1∑
i=n

Aiρ(x0, x1)

≤ An

( ∞∑
i=0

Ai

)
ρ(x0, x1)

= An(I −A)−1ρ(x0, x1).

(2.7)

Since the matrix A converges towards zero. Thus {xn} is a Cauchy sequence in (X, ρ). Clearly, for each
m,n ∈ N there exists a path between xn and xn+m. By using the hypothesis (v) we get,

d(xn, xn+m) ≤ Cρ(xn, xn+m)

≤ C[An−1(I −A)−1ρ(x0, x1)], ( by using (2.7)).

Thus, {xn} is also a Cauchy sequence in (X, d). As (X, d) is complete, there exists x∗ ∈ X, such that
xn → x∗. By hypothesis (vi) we have (xn, x

∗) ∈ E for each n ∈ N. From (2.4), for (xn, x
∗) ∈ E and

xn+1 ∈ Fxn we have w∗ ∈ Fx∗ such that

ρ(xn+1, w
∗) ≤ Aρ(xn, x

∗) +Bρ(x∗, xn+1).

Letting n→∞ in the above inequality we get ρ(x∗, w∗) = 0. This implies that x∗ ∈ Fx∗.

Example 2.9. Let X = (0,∞) be endowed with generalized metrics ρ and d defined by

ρ(x, y) =

(
|x− y|
|x− y|

)
and d(x, y) =



(
|x− y|+ 1

|x− y|+ 1

)
if x or y or both x, y ∈ (0, 1)(

0

0

)
if x =y ∈ (0, 1)(

|x− y|
|x− y|

)
otherwise
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for each x, y ∈ X. Define the operator

F : X → Cl(X), F (x) =

{{
x+5
4 , x+4

3

}
for x ≥ 1{

1
n : n ≤ b 1xc

}
otherwise.

Define the graph G = (V,E) such that V = X and E = {(x, y) : x, y ≥ 1} ∪ {(z, z) : z ∈ X}. It is easy
to see that F satisfies (2.6) with

A =

(
1
3 0
0 1

3

)
, B =

(
0 0
0 0

)
,

and all the other conditions of Theorem 2.8 hold. Thus, F has a fixed point.

Conclusion

Perov [7] generalized the notion of a metric space by introducing the notion of a vector valued metric

space, he called such a space a generalized metric space. He extended the Banach contraction principle for

mappings defined on generalized metric spaces. On the other hand, Jachymski [4] generalized the Banach

contraction principle by assuming that the contraction condition holds for all the pair of points that form

the edges of the graph G (as defined in the Definition 1.4). In this paper, we combine the above two

generalizations to give a new generalization of Banach contraction principle. As a result, our theorems

contain the results of Perov and Jachymski as special cases.
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