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Abstract

In this paper, we study qualitative properties and periodic nature of the solutions of the difference

equation
b2
n—4
Tp+l = ATp—g + ——————, n=0,1,..,
CTp—q + dr,_g
where the initial conditions x_g, x_g, T_7, T_¢, T_5, T_4, T_3, T_9, T_1, g are arbitrary positive real
numbers and a, b, ¢, d are constants. Also we obtain the form of solutions of some special cases of this

equation. (©2016 All rights reserved.
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1. Introduction
This paper deals with the solution behaviour of the difference equation

= + s =0,1 (1.1)
Tn4l = ATn—4 CTrg + d.%'n_g’ n=4u1l,.., .
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where the initial conditions x_g, x_g, z_7, *_6, T—5, T_4, T_3, T_2, T_1, To are arbitrary positive real
numbers and a, b, ¢, d are constants. Also we obtain the form of solution of some special cases.

The study and solution of nonlinear rational recursive sequence of high order is quite challenging and
rewarding because some prototypes for the development of the solution and global behavior of nonlinear
difference equation come from the results of non-linear difference equations and there is increasingly a
lot of interest in studying these equations. Furthermore, diverse nonlinear trend occurring in science and
engineering can be modeled by such equations and the solution about such equations offer prototypes towards
the development of the theory, see for example [10-32, [43].

A. El-Moneam and Alamoudy [§] examined the positive solutions of the equation in terms of its period-
icity, boundedness and the global stability. The considered difference equation is given by

brn_1+ ctp_o+ frn_s+rTn_4a
dx, 1+ exn_9+ grp_ 3+ STp_gq

Tn+1 = ATp

In [9] Elsayed investigated the solution of the following non-linear difference equation

brpx,—1
Tptl = ATp—] + —————.
CcTy + dr,_o

Keratas et al. [29] gave the solution of the following difference equation

Tn—5

Ty = ——.
e 1+ 2y 2Tn 5
Saleh et al. [42] studied the behavior of the solution of the following difference equation

Yn
Yn—k

Yn4+1 = A+

Yalginkaya [49] has studied the boundedness, global stability, periodicity character and gave the solution of
some special cases of the difference equation.

ALp—k

Tpt] = ———.
et b+ cz?

Yalginkaya [50] has explored the following difference equation

Tn—m

)

Tptl =+

See also [1H7]. Other related work on rational difference equations see in Refs. [33H42, [44H54].
Here, we recall some basic definitions and some theorems that we need in the sequel.
Let I be some interval of real numbers and let

JED Ly

be a continuously differentiable function. Then for every set of initial conditions z_x,x_g11,...,x0 € I, the
difference equation

Tn41 :f(xn7xn—17”-7xn*k)7 n:O717”' (12)

o0

has a unique solution {z,}%° ,.

Definition 1.1 (Equilibrium point). A point T € [ is called an equilibrium point of Eq. (1.2) if
T = f(z,z,...,7).

That is, z, = T for n > 0, is a solution of Eq.(1.2), or equivalently, T is a fixed point of f.
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Definition 1.2 (Periodicity). A Sequence {z,}°° , is said to be periodic with period p if 2,4, = @, for
alln > —k.

Definition 1.3 (Fibonacci sequence). The sequence {F,,,}o°_; ={1,2,3,5,8,13,...}, thatis, F,, = F,_1+
F,_9>0, F5=0, F_1 =1 is called Fibonacci Sequence.

Definition 1.4 (Stability).

(i) The equilibrium point T of Eq. (1.2)) is locally stable if for every e > 0, there exists 6 > 0 such that
forall x_p,x_gy1,...,2-1,20 € I with

|x_p —T| + |2—pr1 — T| + ... + |20 — T| <6,

we have
|z, —Z| <e forall n>—k.

(ii) The equilibrium point Z of Eq. (1.2) is locally asymptotically stable if 7 is locally stable solution of
Eq. (1.2) and there exists v > 0, such that for all z_g,x_g11,...,x_1, xg € I with

|z_) —Z| + |T—py1 — T + ... + |20 — T| < 7,
we have

lim z, =7=.
n—oo

(iii) The equilibrium point = of Eq. (1.2)) is global attractor if for all z_, x_g41,...,2_1, o € I, we have

lim z, =7=.
n—oo

(iv) The equilibrium point T of Eq. (|1.2)) is globally asymptotically stable if T is locally stable, and 7 is
also a global attractor of Eq. (1.2)).

(v) The equilibrium point Z of Eq. (1.2) is unstable if Z is not locally stable.

(vi) The linearized equation of Eq. (1.2]) about the equilibrium 7 is the linear difference equation

k

oF(z,z,...T
Ynt1 = Z T O, )ynfi-
1=0

Theorem A ([35]). Assume thatp; € R, i =1,2,... and k € {0,1,2,...}. Then

k
> il <1
i=1
s a sufficient condition for the asymptotic stability of the difference equation

Yn+k + P1Yn+k—1 + .o + PkYn :07 TL:O,L... .
The following theorem will be useful for the proof of our results in this paper.

Theorem B ([35]). Let [«, 5] be an interval of real numbers and assume that g : [, ]
continuous function and consider the following equation

Tp4+1 = g(xna xnfl)) n = Oa 1a (XX} (13)

satisfying the following conditions:
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(a) g(z,y) is non-decreasing in x € |a, 3] for each fixred y € |o, B] and g(z,y) is non-increasing in y €
[a, B] for each fized x € [, f].

(b) If (m, M) € |o, B] X [av, B] is a solution of the system
M=g(Mym)  and  m=g(m M),

then
m = M,

then Eq. (1.3) has a unique equilibrium T € [a, B8] and every solution of Eq. (L.3) converges to T.

2. Local stability of the equilibrium point of Eq. (1.1)

In this section we study the local stability character of the equilibrium point of Eq. (1.1]). The equilibrium
points of Eq. (1.1)) are given by the relation

52

cx + dT

T =ax +
or
72(1 — a)(c+ d) = bz2.

If (1—a)(c+d)# Db, then the unique equilibrium point is T = 0.
Let f:(0,00)? — (0,00) be a continuously differentiable function defined by

bu?
cu+dv’

flu,v) =au+

Therefore, at T = 0, we get

of be+2bd  [Of —bd
() e ().
ou ) (c+d)?’ o). (c+d)?

Then the linearized equation of Eq. (1.1) about T is

be + 2bd bd
o ot (2 )y o =0 2.1
Yn+1 <a+(c+d>2>y 4+<(c+d)2>y 9 ( )

Theorem 2.1. Assume that
blc+3d) < (c+d)*(1—a), a<l.

Then the equilibrium point T =0 of Eq. (1.1) is locally asymptotically stable.
Proof. Tt is followed by Theorem A that, Eq. (2.1)) is asymptotically stable if

a+bc+2bd N bd -1
(c+d)? (c+d)?
o be + 3bd
C
<1
a + (c—l—d)2 <1,
and so

b(c+3d) < (c+ d)*(1 — a),
which completes the proof. O
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3. Global attractivity of the equilibrium point of Eq.

In this section we investigate the global attractivity character of solutions of Eq. .
Theorem 3.1. The equilibrium point T of Eq. is global attractor if ¢(1 — a) # b.
Proof. Let a, B are real numbers and assume that g : [, 3] — [a, 3], be a function defined by

bu?
cu+dv’

g(u,v) = au +

Suppose that (m, M) is a solution of the system
M =g(M,m) and m=g(m,M).
Then from Eq. (1.1]), we see that

bM> bm?

M=aM + ———— = _—
“ +cM—i—dm’ m am+cm—|—dM

Therefore,
bM? bm?

(1-a) cM +dm’ m(l -~ a) cm +dM’

or,

c(1 —a)(M? —m?) = b(M? — m?), c¢(l—a)#b.
Thus

M = m.

It follows by the Theorem B that T is a global attractor of Eq. (1.1) and then the proof is complete.

4. Boundedness of solutions of Eq. (1.1
In this section we study the boundedness of solution of Eq. ([1.1)).
Theorem 4.1. Every solution of Eq. (1.1)) is bounded if

<a + 6) < 1.
Y
Proof: Let {z,}22_4 be a solution of Eq. (1.1). It follows from Eq. (|1.1]) that

br? bx

2
4 b
Tptl = GTpn—q4 + <arp—4+ - =la+-|xp_y.
CTp—q + dxpn_g CTp_4 c

Then,
Tpy1 < Tp—g for all n > 0.

Then the subsequences {z5n,—4}72 o, {Tsn—3}00s {Tsn—2}02 0y {T5n—1}02, and {x5,}0°, are decreasing and

so are bounded from above by

M:max{:v,g, r—8, -7, -6, -5, T4, L3, -2, T-1, xO}'

In order to confirm the result of this section we consider some numerical examples for x_g = 6, z_g = 11,
r 7=10,2_¢=5, 2 5=8 2 4=2,2.3=9, 2. 9=5,x_1=9,20=6, anda=0.5,b=6,c=9, d=10.
(See Figure [l|) and if we put x_9g =10, x_§ =6, 27 =5,z ¢ =11, 25 =10, 24y =2, z_3 =8, x_9 = 2,

x_1=9,20="7,and a =0.8, b =6, c=9, d = 10. (See Figure )
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5. Special cases of Eq. (1.1)
5.1. First equation
In this section we study the following special case of Eq. (|1.1))
2
Lp—4
x =Tpg+t ——! 5.1
n41 n—4 t+ Tt To (5.1)

where the initial conditions x_g, x_g, T_7, x_g, T—5, T_4, T_3, T_9, T_1, Tg are arbitrary real numbers.

Theorem 5.1. Let {z,}72 4 be a solution of Eq. (5.1). Then, forn=0,1,2, ...

- f21+16+f2z]> e <f2i+1d+f2¢i>
n— n— :d > 1 . r - 9
Fon— €H<f216+f21 1] Fon=s 11;[1 foid + foi—11
Joiv1c+ faih ) & <f21+1b+f229>
n—2 — n— b
on=2 CH <f210+f2z lh o L= H f2zb+f2z 19

_ (f2z+1a+f21f>
GH
jbﬂ14‘jbz lf
where v—9 = j, x_§ =i, x7 =h,x¢ =g, 75 = f,r4 =¢ v 3 =d, v2 =c¢, 11 =Db 19 =
a, {fm}frle = {1, 1,2,3,5,8, 13,...}.
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Proof. For n = 0 result holds. Now suppose that n > 0 and that our assumption hold for n — 1, n —2. That
is,

fairre + faij

Tsp—9 =€
" faie + fai—1]

—2 .
- 4:€h (f2i+1€+f2ij>
ot ) faie + foic1j )’

§s
,_\)—l

f22+1d + f21
f22d+ f21 17

(),
(e tah)
I(F50),
(e

Il
—_

3 -
|

foit1c+ foih
faic+ fai—1h

Jois1b+ faig
f2ib+ fai—1g

<f21+1a + foif >
fZZa + f2z 1f

Now, it follows from Eq. - 5.1) that,

2
T5n—6

Tsn—6 + Tsn—11

I:I

Tsn—7 = Tsn—12

T
,_.>—l

f2it1b+ foig
faib+ fai—1g

faivria+ foif >
f21a + f2z 1f

Il
S

Tsn—6 = Tsn—11

feiv1d + fait
Hon=8 = (fzz;;l‘f‘ f21 212) Pon—13 = d H
( ) I

Tsn—5 = Tsn—10 = @

Héﬁﬁ:

=1

<.

Tsn—1 =Tsn—6 1
bﬁ <f2i+1b+f2ig> ﬁ <f2z+1b+f219>
i— f2zb+f2z 19 -1 f2zb+f21 19
1:[ <f21+1b+f219> bH <f21+1b+f219>
-1\ S2ib+ faic1g J2ib+ fai—1g

n : <f21+1b+ f2zg> <f2nlb+ f2n29>
foiv1b + faig n i1 J2ib + f2i1g fon—20+ fon—39
f2zb+f22 19 (f2n—1b+f2n—2.g)

+1
Jon—2b+ fon—3g

< fon—1b+ fon—2g )
Jon—1b + fon—29 + fon—2b+ fon—3g

n—1
foit1b+ f2i9>
b +
E <f2ib + f2i-19

foit1b + faig

)
faib + fai 19)
)
)

f2z+1b + szg
faib+ fai—1g

( f2n—1b+ f2n—29>
fonb + fon—19

foit1b+ foig <f2n+1b + f2n9>

f2@b+ f2@ 19

f2nb+ f2n 19

(
(
(s
(

Therefore,
f2it1b + f21,9>
T =b
ot H<f21b+f21 19
Also, we see from Eq. (5.1]) that,

Tsn—>5
Tsn—5 + Tsn—10

n—1 —
Joivia + foif > <f21+1a + f21f>
:aﬁ <f21+1a+f2z‘f> aH <f22a+f21 f ];[ fria + faio1f
=1 \Jeia+ faia f <f2n—1a+f2n—2f> 1
f2nf2a+ f2n73f

Tsn =Ts5n—5 +




A. Khaliq, F. Alzahrani, E. M. Elsayed, J. Nonlinear Sci. Appl. 9 (2016), 4465-4477 4472
:Gﬁ (f2i+1a+f2if> (1 n fon—1a+ fon—2f )
= \Jaia+ fai1f fon—1a+ fon—of + fon—2a + fon—3f

:aﬁ <f2¢+1a + sz‘f) <f2n+1a + f2nf)
=5 \faia+ faiorf) \fona + fon—1f '

Therefore,
ﬁ <f2@+1a + f21f>
=5 \Jaia+ faiaf
Similarly, one can prove other relations. Hence, the proof is completed. O

5.2. Second equation
In this section we solve the specific form of the Eq. (1.1]).

L4
Tt = Tng 4 —n (5.2)
Tp—4 — Tp—9

where the initial conditions x_g, x_g, T_7, x_¢g, T—_5, T_4, T_3, T_9, T_1, Tg are arbitrary real numbers.

Theorem 5.2. Suppose that {z,},2 _g be a solution of Eq. (5.2)). Then forn =0,1,2,... we see that

" faivre — f21]> (f27,+1d fait )
T —=e T5n— d
ot H (fzze—fm 1] s H foid — fai1i
faivic — faih > <f21+1b f229>
Tsp_9 =C R S B Tsn_1 =b
pn=2 H <f2i0 faic1h ot zl_I f2ib — fai1g
S (f?z—i—la - f2zf>
" foia — foi1 f
Proof. Same as the proof of Theorem and will be omitted. O

We will confirm our result by considering some numerical examples assume for Eq. (5.1) that x_g = 5,
zg=lx =42 =32 5="T,02_4=8 x_3=9,2_9=2,2_1=9, g =4 (See Figure and when
we take x_ g =11, 2. 3=9, 2 7=5,z. ¢=2,2.5=06,2_4=2,2_3=10,x_9=8, x_1 =5, xg = 12 for

Eq. (5.2) (see Figure [4).

80
70
60 -
50

< 40}
x

Figure 3
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2
3 plotofx . =x ,+((X_,/(x

+17 N4 n-4 "~ Xn-g))

Figure 4

5.8. Third equation

In this section we deal with the form of the solutions of Eq. (1.1)).
2
Tn—q
Tptl =Tpyg — ————————, 5.3
i " Tn—g + Tp—9 ( )
where the initial conditions x_g, x_g, r_7, x_g, T—_5, T_4, T_3, T_2, T_1, Tg are arbitrary real numbers.

Theorem 5.3. The solution of Eq. (5.3) will takes the following formulas for n =0,1,2, ...

bg ch
Tsp—1 =i, Ton—2 = 7% 7
" fnb+fn+1g " fnc+fn+1h
di ej
Tsp3 =————, Tsp_g = ———
T Fud o+ fagrd T fue T fard
af

Ty =————.
T fpat furr f

Proof. For n = 0, the result holds. Now suppose that n > 0 and that our assumption holds for n —1, n—2.
That is,

ej ej

Hon=9 :fnfle + fn], Ton1a = fn72€ + fnflj,
di di

on—g :fn—ld + fni7 Ton—18 = fn—?d + fn—li’
ch ch

HonT :fnflc + fnh’ Pon—1z = Jn—2c+ fnflh’
bg by

o=t :fn—lb + fng’ Toni = fn—2b+ fn_19’
af af

o T et fuf B0 St faf

Now, it follows from Eq. (5.3)) that,

2

_ T5n—6
Tsn—1 =Top—6 + ——————
T5n—6 + Ton—11
bg bg
_ bg . fn—1b+fng fn—1b+fng
fn-1b+ fng bg bg

+
fn71b+fng fn72b+fnflg
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by
————— (fa—2b+ fu-
by | bt g b )
fn—lb+ fng fn—2b+ fn—lg + fn—lb+ fng

( Jn—20+ fn19 )
fn 1b+fng fn 2b+fn 1g+fn 1b+fn9

( 2b+fn lg+fn 1b+fng+fn 2b+fn 19)
fn 1b+fn fn 2b+fn—lg+fn—1b+fng
(fn 1b+fng>
fn 1b+fng fnb+fn+1g
Thus
_ bg
T b+ farg
Also, from Eq. , we see that
PR _ 22, 10
o enes Ts5n—10 T Tsn—12
af af
_ af _ Jn—1a+ fof fara+ fuf
_fn—1a+fnf CLf + CLf
fn—1a+ fnf fn—2a+ fn-1f
af
af m(fanGJrfnflf)

“forat fof | fo2at farf + farat fuf

af (fn—la‘i‘fnf).

_fn—1a+fnf Jna + fos1f
Then,
af
Tsp = ——————.
T faat fonif
Hence, the proof is completed. O

We consider a numerical example of this special case assume x_g = 5, z_g = 8, 7 = 2, x_¢ = 7,
T5=9,x_4=12,2_3=9,2_9 =11, x_1 = 6, g = 12 (See Figure |5).

plotofxn =Xy (x 7/( X4t X g))

12 T T T T T

.
60 70 80 90 100

Figure 5

5.4. Fourth equation
In this section we obtain the expressions of the solutions of Eq. (1.1)).
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2
Tn—4q

)
Tn—4 — Tn—9

(5.4)

Tn41 = Tn—4 —

where the initial conditions z_g, x_g, x_7, £_¢, T_5, T_4, T_3, T_2, T_1, Tg are arbitrary real numbers.

Theorem 5.4. Assume that {z,}°2 o be a solution of Eq. (5.4). Then every solution of Eq. (5.4) is
periodic with period 30. Moreover, {x,}>2 4 takes the form

-4, —i,—h,—g,—f,—e, —d, —c, —b, —a, i,, i,,
, by of e—j d—1
CC_ N h—ga f,j,i,h,g,f,e,d,c,b,a,...,
or,
T30n-9 = J, T30n-8 = 1, 30n-7 = h,
Z30n—-6 = 9, T30n—5 = [, T30n—4 = €,
T30n—3 = d, T30n—2 = G, T30n—1 = b,
—ej —di
T30n = a, T30n4+1 = my T30n+2 =
—ch —bg —af
T30n+3 = c_h’ T30n+4 = Hv T30n+5 = ﬁa
Z30n+6 = —Js T30n+7 = —1, T30n+8 = —h,
T30n+9 = —9, T30n+10 = —f, T30n4+11 = —€,
T30n+12 = —d, T30n+13 = —C, T30n+14 = —b,
ej di
T30n+15 = — @ T30n+16 = —— 7 T30n417 = S
ch bg af
T30n+18 = 7 Z30n+19 = g Z30n+20 = Py

where z_g=j,z_g=t,x 7=h,x¢=¢g,x_5=f,x_4=e,x_3=d, x_9o=c,x_1 =00, xg = a.

Proof. Same as the proof of Theorem [5.3] and will be omitted.

O

Figure@shows the solution of Eq. (5.4) when x_9g =8, x_g =4, 2_7=2,x_¢=3, v_5 = 10, x_4 = 14,

r 3=19, 2 9=5,2_1=9, 29 = 13.

50

2
plot of X =X 4~ ( xn74/( X 4~ Xn,g))

x(n)
o

-50
0

20
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6. Conclusion

In This paper we studied global stability, boundedness and the form of solutions of some special cases of
Eq. (L.1). In Section we proved when b(c +3d) < (¢ +d)%(1 —a), Eq. (1.1) has local stability. In Section
we showed that the unique equilibrium of Eq. (L.1]) is globally asymptotically stable if ¢(1 — a) # b. In

b
Section 4 we proved that the solution of Eq. ((1.1) is bounded if (a 4+ — ) < 1. In Section [5, we obtained
c

the form of the solution of four special cases of Eq. (1.1)) and gave numerical examples of each of the case
with different initial values.
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